JPH0619340B2 - Probe setting method in ultrasonic testing equipment for pipes - Google Patents

Probe setting method in ultrasonic testing equipment for pipes

Info

Publication number
JPH0619340B2
JPH0619340B2 JP60173668A JP17366885A JPH0619340B2 JP H0619340 B2 JPH0619340 B2 JP H0619340B2 JP 60173668 A JP60173668 A JP 60173668A JP 17366885 A JP17366885 A JP 17366885A JP H0619340 B2 JPH0619340 B2 JP H0619340B2
Authority
JP
Japan
Prior art keywords
probe
water
pipe material
distance
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60173668A
Other languages
Japanese (ja)
Other versions
JPS6234050A (en
Inventor
繁俊 兵藤
利治 坪井
実 中楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Nippon Steel Corp
Original Assignee
NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KURAUTO KUREEMAA FUERUSUTAA KK, Sumitomo Metal Industries Ltd filed Critical NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Priority to JP60173668A priority Critical patent/JPH0619340B2/en
Publication of JPS6234050A publication Critical patent/JPS6234050A/en
Publication of JPH0619340B2 publication Critical patent/JPH0619340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、管の超音波探傷装置における円周斜角探傷用
の探触子の位置および入射角を設定する方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method of setting a position and an incident angle of a probe for circumferential oblique angle flaw detection in an ultrasonic flaw detector for a pipe.

(従来の技術) 鋼管や鋼棒等の被検査材をスパイラル搬送し、この被検
査材の下面より探傷水槽を接触せしめて探傷を行なう局
部水浸法による超音波探傷装置において、前記探傷水槽
内に設けられた探触子の入射角度や水距離の設定を従来
は手動操作により行なつていた。
(Prior art) In an ultrasonic flaw detector by a local water immersion method, in which a material to be inspected such as a steel pipe or a steel rod is spirally conveyed, and a flaw detection water tank is contacted from the lower surface of the material to be inspected, Conventionally, the incident angle and water distance of the probe provided in the above were set manually.

(発明が解決しようとする問題点) しかしながら従来の手動操作による設定方法では、正確
な探触子の設定が行なえず、しかも、その設定が短時間
で行なえないという問題があつた。
(Problems to be Solved by the Invention) However, the conventional setting method by manual operation has a problem in that the probe cannot be set accurately and the setting cannot be made in a short time.

そこで本出願人は、前記したような従来の問題点を解決
すべく探触子の入射角度および水距離を自動的に設定可
能な探傷水槽を実願昭59−170900号にて提案し
た。
Therefore, the applicant of the present application proposed in Japanese Patent Application No. 59-170900 a flaw detection water tank capable of automatically setting the incident angle and water distance of the probe in order to solve the above-mentioned conventional problems.

本発明は先に本出願人が提案した探傷水槽を用いて該探
傷水槽内に配設された円周斜角探傷用の探触子の入射角
度や水距離を高精度かつ自動的に設定する方法を提供せ
んとするものである。
The present invention uses the flaw detection water tank previously proposed by the present applicant to automatically and accurately set the incident angle and water distance of a probe for circumferential bevel flaw detection arranged in the flaw detection water tank. It is intended to provide a method.

(問題点を解決するための手段) 本発明は、スパイラル搬送される管材の外面に接触して
追従する追従ローラを前記管材の軸長方向に離間して設
けた探傷水槽と、前記探傷水槽内で昇降するベースと、
前記管材の軸芯直下の位置で前記ベース上に設けた水距
離測定用の探触子と、前記水距離測定用の探触子の基準
点と同一高さでかつ前記管材の軸長方向と直交する方向
に離間した位置で前記ベース上にその回動中心が設けて
あり前記管材の軸長方向と直交する面内において前記回
動中心まわりに回動して傾き角度が調整可能な円周斜角
探傷用の探触子とを備えた超音波探傷装置を用いて管材
を超音波探傷するに際し、探傷せんとする管材の外径肉
厚寸法に応じた円周斜角探傷用の探触子の水距離と入射
角度を予め入力された水距離と入射角度から選出し、選
出した水距離及び入射角度と入力した外径とに基づき水
距離測定用の探触子の基準点から管材の外面までの垂直
距離と円周斜角探傷用の探触子の傾き角度を演算し、前
記円周斜角探傷用の探触子の傾き角度を前記演算した傾
き角度に設定すると共に、前記ベースを昇降して前記演
算した水距離測定用の探触子の基準点から管材の外面ま
での垂直距離に基づき水距離測定用の探触子の基準点の
高さを前記追従ローラの中心を基準として設定し、その
後前記水距離測定用の探触子にて管材の外面までの水距
離を実測し、しかる後前記演算した水距離測定用の探触
子の基準点から管材の外面までの垂直距離に対応する水
距離に前記実測した水距離を合致させるべく再度前記ベ
ースを昇降して水距離測定用の探触子の基準点の高さを
補正することを要旨とする管材の超音波探傷装置におけ
る探触子設定方法である。
(Means for Solving the Problems) The present invention provides a flaw detection water tank provided with a follow-up roller that comes into contact with and follows the outer surface of a pipe material that is spirally conveyed, and is separated in the axial direction of the pipe material; With a base that moves up and down with
A probe for water distance measurement provided on the base at a position immediately below the axial center of the pipe material, at the same height as the reference point of the probe for water distance measurement, and in the axial direction of the pipe material. A circumference whose rotation center is provided on the base at positions separated in the orthogonal direction and which is rotated around the rotation center in a plane orthogonal to the axial direction of the pipe material and whose tilt angle can be adjusted. When performing ultrasonic flaw detection on a pipe using an ultrasonic flaw detector equipped with a probe for bevel angle flaw detection, a probe for circumferential bevel flaw detection according to the outer diameter and wall thickness of the pipe The water distance and the incident angle of the child are selected from the water distance and the incident angle that have been input in advance, and based on the selected water distance and the incident angle and the input outer diameter, the pipe material is Calculate the vertical distance to the outer surface and the tilt angle of the probe for circumferential bevel flaw detection, The inclination angle of the probe is set to the calculated inclination angle, and the water distance is measured based on the vertical distance from the reference point of the calculated water distance measuring probe to the outer surface of the pipe material while raising and lowering the base. The height of the reference point of the probe for water is set with the center of the follower roller as a reference, and then the water distance to the outer surface of the pipe material is measured by the water distance measuring probe, and then the calculation is performed. The probe for water distance measurement is moved up and down again to match the measured water distance with the water distance corresponding to the vertical distance from the reference point of the probe for water distance measurement to the outer surface of the pipe material. Is a method for setting a probe in an ultrasonic flaw detector for a pipe material, which is characterized in that the height of the reference point is corrected.

(作用) 本発明方法によれば、探傷水槽の出入口部に配設されて
スパイラル搬送されてくる管材の外面に接触して追従す
る追従ローラが磨耗した場合であつても正確に水距離や
入射角度の設定が行なえる為、正確な探傷が自動的に行
なえる。
(Operation) According to the method of the present invention, even if the follow-up roller that is disposed at the entrance / exit of the flaw detection water tank and follows the outer surface of the pipe material that is spirally conveyed and wears is accurately worn or incident, Since the angle can be set, accurate flaw detection can be performed automatically.

(実施例) 以下本発明を添付図面に基づいて説明する。(Example) The present invention will be described below with reference to the accompanying drawings.

先ず本発明方法を実施する場合に使用する探傷水槽の概
略構造を第3図および第4図に基づいて説明する。
First, a schematic structure of a flaw detection water tank used when carrying out the method of the present invention will be described with reference to FIGS. 3 and 4.

図中、1は探傷水槽であり、該探傷水槽1は上槽部2
と、これの下部に取付けられた下槽部3とから構成され
ている。
In the figure, 1 is a flaw detection water tank, and the flaw detection water tank 1 is an upper tank portion 2.
And a lower tank part 3 attached to the lower part of the same.

4は管材の軸心直下のパスライン前後位置に所要間隔を
存して設けられた周方向欠陥を検出するための軸斜角探
傷用の探触子群、5は前記探触子群4、4間に設けられ
た水距離測定用の探触子、6は管材の下方でかつその軸
心と所要距離を存して平行状に設けられた軸方向欠陥を
検出するための円周斜角探傷用の探触子群であり、これ
ら両探触子群4および6と探触子5は同一ベース7上に
配設されている。そして、そのうち円周斜角探傷用の探
触子群6のみは第4図(イ)に示すようにプローブロツク
8を管材27の軸長方向と直交する面内において回動中
心O(第1図参照)回りに回動が自在なように前記ベー
ス7に枢着保持されている。
Reference numeral 4 denotes a probe group for axial oblique flaw detection, which is provided at a front and rear position of a pass line immediately below the axial center of the pipe material with a required interval, for detecting circumferential defects, and 5 denotes the probe group 4, A water distance measuring probe provided between 4 and 6 are circumferential bevels for detecting axial defects provided in parallel below the pipe material and at a required distance from the axis of the pipe material. This is a probe group for flaw detection, and these probe groups 4 and 6 and the probe 5 are arranged on the same base 7. Then, among them, only the probe group 6 for circumferential oblique angle flaw detection has the center of rotation O (first position) in the plane orthogonal to the axial direction of the pipe material 27 as shown in FIG. (Refer to the drawing) It is pivotally held on the base 7 so as to be freely rotatable.

9は前記両探触子群4、6および探触子5を配設してな
るベース7を、所要距離上下動せしめるための上下位置
調整機構であり、該上下位置調整機構9は、下槽部3に
垂下状に取付けられたモータ10と、該モータ10の出
力軸に直結されたねじ軸11と、該ねじ軸11に螺合す
る雌ねじ部材12を備え、かつ、その上端が前記ベース
7に取付けられた連結部材13とから構成され、モータ
10の正逆回転によりねじ軸11を正逆回転せしめ、も
つてこれに螺合する雌ねじ部材12、連結部材13を介
してベース7を上下動させるものである。なお、図中1
4は連結部材13の上下動を案内するガイドロツドであ
る。そして、前記ベース7の上下位置は、図示省略した
がガイドロツド14を垂下状に取付け、かつ、連結部材
13に取付けられたガイドプレート15に前記ガイドロ
ツド14と同様垂下状に取付けた検出棒の上下動をポテ
ンシヨにより電圧値として読み取ることにより確認でき
るように成つている。
Reference numeral 9 denotes an up-and-down position adjusting mechanism for vertically moving a base 7 including both the probe groups 4 and 6 and the probe 5 by a required distance. The up-and-down position adjusting mechanism 9 is a lower tank. A motor 10 is attached to the portion 3 in a hanging shape, a screw shaft 11 directly connected to an output shaft of the motor 10, and a female screw member 12 screwed to the screw shaft 11, and the upper end of the female shaft member 12 is the base 7. And a connecting member 13 attached to the base member 7, and the screw shaft 11 is normally and reversely rotated by the forward and reverse rotation of the motor 10, and the base 7 is vertically moved via the female screw member 12 and the connecting member 13 which are screwed to the screw shaft 11. It is what makes me. In addition, 1 in the figure
Reference numeral 4 is a guide rod for guiding the vertical movement of the connecting member 13. Although not shown in the drawings, the vertical position of the base 7 is such that the guide rod 14 is attached in a hanging manner, and the detection rod is attached to the guide plate 15 attached to the connecting member 13 in a hanging manner like the guide rod 14 in a vertical direction. It can be confirmed by reading as a voltage value with potentiometer.

16は前記円周斜角探傷用の探触子群6を所要角度回動
させ、入射角度の設定を行なう入射角度調整機構であ
り、該入射角度調整機構16は、前記ガイドプレート1
5に垂下状に取付けられたモータ17と、該モータ17
の出力軸に直結され、その上部がウオーム18と成さし
められた回転軸19と、該回転軸19の前記ウオーム1
8に噛合すべく探触子群6を回動自在に保持する枢軸2
0にキー着されたウオームホイール21とから構成さ
れ、モータ17の正逆回転により回転軸19のウオーム
18、ウオームホイール21を介して探触子群6を所要
角度回動させるものである。そして、前記探触子群6の
回動に伴う傾き角度は、回転軸19に嵌合せしめた平歯
車22とこれに噛合する平歯車23を介してポテンシヨ
24を回動せしめ、ポテンシヨ24の電圧値として読み
取ることにより確認できるように成つている。なお、ポ
テンシヨ24の取付け時には、ポテンシヨ24の電圧値
と、実際の探触子群6の傾き角度の最低2点を計測し、
ポテンシヨ電圧値と探触子群の傾き角度との較正を行う
必要がある。
Reference numeral 16 denotes an incident angle adjusting mechanism for rotating the probe group 6 for circumferential oblique angle flaw detection by a required angle to set an incident angle. The incident angle adjusting mechanism 16 is the guide plate 1
5, the motor 17 mounted in a pendant shape, and the motor 17
A rotary shaft 19 which is directly connected to the output shaft of the rotary shaft 19 and has an upper part formed with the worm 18, and the worm 1 of the rotary shaft 19.
Axis 2 for rotatably holding the probe group 6 so as to mesh with 8.
The worm wheel 21 is keyed to 0, and the probe group 6 is rotated by a predetermined angle through the worm 18 and the worm wheel 21 of the rotary shaft 19 by the forward and reverse rotation of the motor 17. The inclination angle of the probe group 6 due to the rotation causes the potentiometer 24 to rotate through the spur gear 22 fitted to the rotary shaft 19 and the spur gear 23 meshing with the spur gear 22, and the voltage of the potentiometer 24 is changed. It can be confirmed by reading it as a value. At the time of attaching the potentiometer 24, at least two points of the voltage value of the potentiometer 24 and the inclination angle of the actual probe group 6 are measured,
It is necessary to calibrate the potentio voltage value and the tilt angle of the probe group.

なお、図中25は前記連結部材13および回転軸19部
において上部水槽部2と下部水槽部3を密閉するシール
部材、26は探傷水槽1の出入口部に配置され、スパイ
ラル搬送されてくる管材の外面に接触して追従する追従
ローラである。
In the figure, 25 is a seal member for sealing the upper water tank portion 2 and the lower water tank portion 3 at the connecting member 13 and the rotating shaft 19 portion, and 26 is a pipe member that is arranged at the inlet / outlet portion of the flaw detection water tank 1 and is spirally conveyed. This is a follow-up roller that comes into contact with and follows the outer surface.

次に上記した如く構成した探傷水槽1を用いて本発明方
法を実施する場合を、第1図および第2図に基づいて説
明する。
Next, a case of carrying out the method of the present invention using the flaw detection water tank 1 configured as described above will be described with reference to FIGS. 1 and 2.

先ず、探傷せんとする管材27の外径肉厚寸法が入力さ
れると、管材27のt/Dによつてあらかじめ決定され
ている円周斜角探傷用の探触子群6の適正入射角度と水
距離が選出される。
First, when the outer diameter and wall thickness of the pipe member 27 to be flaw-detected is input, the appropriate incident angle of the probe group 6 for circumferential oblique angle flaw detection determined in advance by the t / D of the pipe member 27. And the water distance is selected.

この適正入射角度と水距離に設定する為に入力値と既知
寸法によつて円周斜角探傷用の探触子群6の高さと傾き
角度を計算により求める。
In order to set the proper incident angle and water distance, the height and tilt angle of the probe group 6 for circumferential oblique angle flaw detection are calculated by using the input value and known dimensions.

すなわち、第1図において、円周斜角探傷用の探触子群
6の回動中心Oは水距離測定用の探触子5の基準点Qと
同一高さであり、これらの水平距離Lは既知であり、
また、水距離測定用の探触子5の基準点Qと追従ローラ
26の中心との水平距離B,水距離測定用の探触子5の
下限位置における基準点Qと追従ローラ26の中心との
垂直距離H,水距離測定用の探触子5の基準点Qから
その先端までの距離PWL,円周斜角探傷用の探触子群6
の回動中心Oからその先端までの距離P及び追従ロー
ラ26の初期外径dも既知である。一方、管材27の外
径ODは入力値であり、円周斜角探傷用の探触子群6の
適正入射角度A及び水距離(S−P)は前記入力
された管材の外径ODに基づいて選出された値である。
そしてこの既知のL,入力したOD,選出されたA
及び水距離に基づき水距離測定用の探触子5の基準点Q
と管材27の外面までの距離Hを下記式によつて求
める。
That is, in FIG. 1, the center of rotation O of the probe group 6 for circumferential oblique angle flaw detection is at the same height as the reference point Q of the probe 5 for measuring water distance, and the horizontal distance L thereof is L. 1 is known,
Further, the horizontal distance B between the reference point Q of the probe 5 for water distance measurement and the center of the follower roller 26, the reference point Q at the lower limit position of the probe 5 for water distance measurement, and the center of the follower roller 26. Vertical distance H L , the distance P WL from the reference point Q of the probe 5 for water distance measurement to its tip, and the probe group 6 for circumferential oblique angle flaw detection
The distance P L from the rotation center O to the tip thereof and the initial outer diameter d of the follower roller 26 are also known. On the other hand, the outer diameter OD of the pipe material 27 is an input value, and the proper incident angle A 2 and the water distance (S 2 −P L ) of the probe group 6 for circumferential oblique angle flaw detection are outside the input pipe material. It is a value selected based on the diameter OD.
Then, this known L 1 , the input OD, and the selected A 2
And the reference point Q of the probe 5 for measuring the water distance based on the water distance
And the distance H 2 to the outer surface of the pipe material 27 are calculated by the following formula.

しかる後、このHを用い、既知のL,入力したO
D,選出されたA及び水距離に基づき円周斜角探傷用
の探触子群6の傾き角度Aを下記式によつて求め
る。
Then, using this H 2 , a known L 1 and input O
Based on D, the selected A 2 and the water distance, the inclination angle A S of the probe group 6 for circumferential oblique angle flaw detection is calculated by the following formula.

但し、 続いて前記式で求めたHに基づき、水距離測定用の
探触子5の基準点Qの追従ローラ26の中心を基準とし
た高さを下記式によつて求める。
However, Subsequently, based on H 2 obtained by the above equation, the height of the reference point Q of the probe 5 for measuring the water distance with respect to the center of the follower roller 26 is obtained by the following equation.

PS=H−H…… 但し、H=H+C−OD/2 C=(OD/2+d/2)−B 以上の式、式により円周斜角探傷用の探触子群6の
傾き角度A及び水距離測定用の探触子5の基準点Qの
高さ、換言すれば円周斜角探傷用の探触子群6の回動中
心Oの高さHPSが演算されると、前記演算値Aとなる
ように入射角度調整機構16を作動せしめ、前記ポテン
シヨメータの読み値がAとなつた点で動作を終了する
と共に、前記演算値HPSとなるように上下位置調整機構
9を作動せしめてベース7を昇降させ、前記ポテンシヨ
メータの読み値がHPSとなつた点で動作を終了する。
H PS = H-H 2 ...... where, H = H L + C- OD / 2 C = (OD / 2 + d / 2) 2 -B 2 above equations, probe group for flaw detection circumferential beveled by the formula 6 inclination angle a S and the reference point Q of the probe 5 for water distance measurement height, the height H PS rotational center O of the probe group 6 for circumferential oblique flaw in other words, When the calculation is made, the incident angle adjusting mechanism 16 is operated so as to become the calculated value A S , the operation is terminated when the reading of the potentiometer becomes A S, and the calculated value H PS becomes The vertical position adjusting mechanism 9 is operated so as to move the base 7 up and down, and the operation ends when the reading of the potentiometer reaches H PS .

これにより、追従ローラ26の外径が初期値の場合の、
円周斜角探傷用の探触子群6の適正入射角度と水距離に
対応する傾き角度と高さが設定される。
Accordingly, when the outer diameter of the follower roller 26 is the initial value,
The tilt angle and height corresponding to the proper incident angle and the water distance of the probe group 6 for circumferential oblique flaw detection are set.

そして、前記円周斜角探傷用の探触子群6の傾き角度と
高さが設定されると、次に例えば探傷水槽1をオフライ
ンに移動せしめてテストピースを探傷水槽1の追従ロー
ラ26で支承せしめ、この状態における水距離を水距離
測定用の探触子5で実測する。
Then, when the tilt angle and height of the probe group 6 for circumferential oblique angle flaw detection are set, next, for example, the flaw detection water tank 1 is moved off-line and the test piece is moved by the follower roller 26 of the flaw detection water tank 1. It is supported, and the water distance in this state is measured by the water distance measuring probe 5.

この実測値と前記式で演算したHに対応する水距離
すなわちH−PWLを比較し、合致していない場合には
実測値が演算値と等しくなるように再度上下位置調整機
構9を作動せしめてベース7を昇降させ、水距離測定用
の探触子5の基準点Oの高さ、換言すれば円周斜角探傷
用の探触子群6の回動中心Oの高さを補正する。
This measured value is compared with the water distance corresponding to H 2 calculated by the above formula, that is, H 2 −P WL, and when they do not match, the vertical position adjusting mechanism 9 is again set so that the measured value becomes equal to the calculated value. The base 7 is moved up and down by operating it, and the height of the reference point O of the probe 5 for measuring the water distance, in other words, the height of the rotation center O of the probe group 6 for oblique bevel flaw detection is set. to correct.

なお、この補正がが完了すると、テストピースの走査を
行なつて、GAINやDACの補正を行ない、所定の走
査が終了すると探傷水槽1をオンラインに移動せしめ
る。このテストピースの走査装置としては、例えば本出
願人が先に提案した特願昭59−233429号等を使
用する。
When this correction is completed, the test piece is scanned to correct GAIN and DAC, and when the predetermined scanning is completed, the flaw detection tank 1 is moved online. As the test piece scanning device, for example, Japanese Patent Application No. 59-233429 previously proposed by the present applicant is used.

なお、本実施例では水槽引出し方式について説明した
が、長尺テストピースを用いたオンライン方式のもので
も十分に対応できることは勿論である。
In addition, although the water tank drawing method has been described in the present embodiment, it goes without saying that an online method using a long test piece is also sufficiently applicable.

(発明の効果) 以上説明したように本発明方法は、管材の外径寸法と探
傷水槽内に配設された探触子の中心間距離や追従ローラ
との関係距離等の既知の寸法及び管材の寸法に応じて選
出された水距離や入射角度に基づき円周斜角探傷用の探
触子の傾き角度と高さを設定し、しかる後該設定位置か
ら前記管材迄の水距離を実測して前記演算値と実測値が
異なる場合には、実測値となるように円周斜角探傷用の
探触子の高さを補正する為、追従ローラが磨耗して該追
従ローラの外径寸法が変化した場合にも正確な設定が行
なえ、探傷精度が向上する。
(Effects of the Invention) As described above, according to the method of the present invention, the known dimensions such as the outer diameter of the pipe material and the distance between the centers of the probes arranged in the flaw detection water tank and the relationship distance between the follower roller and the pipe material are known. Set the tilt angle and height of the probe for circumferential bevel flaw detection based on the water distance and the incident angle selected according to the dimensions of, and then measure the water distance from the set position to the pipe material. When the calculated value and the measured value are different from each other, the height of the probe for circumferential oblique angle flaw detection is corrected so that the measured value is obtained. Even if the value changes, the accurate setting can be performed and the flaw detection accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の説明図、第2図は同じくフローチ
ヤート、第3図および第4図は本発明方法を実施する場
合に使用する探傷水槽の一実施例図で、第3図(イ)は平
面図、(ロ)は断面して示す正面図、第4図(イ)は入射角度
調整機構部の一部切欠正面図、(ロ)はウオームとウオー
ムホイールとの関係を断面して示す側面図。 5は水距離測定用の接触子、6は円周斜角探傷用の探触
子群、9は上下位置調整機構、16は入射角度調整機
構、26は追従ローラ、27は管材。
FIG. 1 is an explanatory view of the method of the present invention, FIG. 2 is the same as the flow chart, and FIGS. 3 and 4 are views of one embodiment of the flaw detection water tank used when carrying out the method of the present invention. (A) is a plan view, (b) is a sectional front view, FIG. 4 (a) is a partially cutaway front view of the incident angle adjusting mechanism, and (b) is a sectional view showing the relationship between the worm and the worm wheel. The side view shown. 5 is a contactor for water distance measurement, 6 is a probe group for circumferential oblique angle flaw detection, 9 is a vertical position adjusting mechanism, 16 is an incident angle adjusting mechanism, 26 is a follow-up roller, and 27 is a pipe material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−219453(JP,A) 実開 昭60−70063(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-219453 (JP, A) SAIKAI 60-70063 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スパイラル搬送される管材の外面に接触し
て追従する追従ローラを前記管材の軸長方向に離間して
設けた探傷水槽と、前記探傷水槽内で昇降するベース
と、前記管材の軸芯直下の位置で前記ベース上に設けた
水距離測定用の探触子と、前記水距離測定用の探触子の
基準点と同一高さでかつ前記管材の軸長方向と直交する
方向に離間した位置で前記ベース上にその回動中心が設
けてあり前記管材の軸長方向と直交する面内において前
記回動中心まわりに回動して傾き角度が調整可能な円周
斜角探傷用の探触子とを備えた超音波探傷装置を用いて
管材を超音波探傷するに際し、探傷せんとする管材の外
径肉厚寸法に応じた円周斜角探傷用の探触子の水距離と
入射角度を予め入力された水距離と入射角度から選出
し、選出した水距離及び入射角度と入力した外径とに基
づき水距離測定用の探触子の基準点から管材の外面まで
の垂直距離と円周斜角探傷用の探触子の傾き角度を演算
し、前記円周斜角探傷用の探触子の傾き角度を前記演算
した傾き角度に設定すると共に、前記ベースを昇降して
前記演算した水距離測定用の探触子の基準点から管材の
外面までの垂直距離に基づき水距離測定用の探触子の基
準点の高さを前記追従ローラの中心を基準として設定
し、その後前記水距離測定用の探触子にて管材の外面ま
での水距離を実測し、しかる後前記演算した水距離測定
用の探触子の基準点から管材の外面までの垂直距離に対
応する水距離に前記実測した水距離を合致させるべく再
度前記ベースを昇降して水距離測定用の探触子の基準点
の高さを補正することを特徴とする管材の超音波探傷装
置における探触子設定方法。
1. A flaw detection water tank provided with a follow-up roller that comes into contact with and follows the outer surface of a spirally conveyed pipe material in the axial direction of the pipe material, a base that moves up and down in the flaw detection water tank, and a pipe of the pipe material. A probe for water distance measurement provided on the base at a position directly below the axis, and a direction at the same height as the reference point of the probe for water distance measurement and orthogonal to the axial direction of the pipe material. A circular bevel flaw detector whose rotation center is provided on the base at a position spaced apart from each other and which can be rotated around the rotation center in a plane orthogonal to the axial direction of the pipe material to adjust the tilt angle. When performing ultrasonic flaw detection on a pipe using an ultrasonic flaw detector equipped with a probe for water, the water of the probe for circumferential oblique angle flaw detection according to the outer diameter and wall thickness of the pipe to be detected The distance and incident angle are selected from the water distance and incident angle that have been input in advance, and the selected water distance and incident angle are selected. Based on the incident angle and the input outer diameter, calculate the vertical distance from the reference point of the probe for water distance measurement to the outer surface of the pipe material and the inclination angle of the probe for circumferential oblique angle flaw detection. The inclination angle of the probe for oblique flaw detection is set to the calculated inclination angle, and the vertical distance from the reference point of the calculated probe for measuring water distance to the outer surface of the pipe material while raising and lowering the base. Based on, set the height of the reference point of the probe for water distance measurement with the center of the follower roller as a reference, and then measure the water distance to the outer surface of the pipe material with the probe for water distance measurement. After that, the water distance is measured by moving up and down the base again to match the measured water distance with the water distance corresponding to the vertical distance from the calculated reference point of the water distance measuring probe to the outer surface of the pipe material. Of the pipe material characterized by correcting the height of the reference point of the probe for Probe setting probe in ultrasonic flaw detector.
JP60173668A 1985-08-06 1985-08-06 Probe setting method in ultrasonic testing equipment for pipes Expired - Lifetime JPH0619340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60173668A JPH0619340B2 (en) 1985-08-06 1985-08-06 Probe setting method in ultrasonic testing equipment for pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173668A JPH0619340B2 (en) 1985-08-06 1985-08-06 Probe setting method in ultrasonic testing equipment for pipes

Publications (2)

Publication Number Publication Date
JPS6234050A JPS6234050A (en) 1987-02-14
JPH0619340B2 true JPH0619340B2 (en) 1994-03-16

Family

ID=15964882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60173668A Expired - Lifetime JPH0619340B2 (en) 1985-08-06 1985-08-06 Probe setting method in ultrasonic testing equipment for pipes

Country Status (1)

Country Link
JP (1) JPH0619340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116413336B (en) * 2023-06-12 2023-08-25 天津市宝来工贸有限公司 End weld joint detection device and detection method for use of welded pipe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3221021C2 (en) * 1982-06-04 1985-11-07 Nukem Gmbh, 6450 Hanau Procedure for adjusting a system for non-destructive material testing using ultrasound
JPS6070063U (en) * 1983-10-19 1985-05-17 株式会社トキメック Ultrasonic flaw detection equipment

Also Published As

Publication number Publication date
JPS6234050A (en) 1987-02-14

Similar Documents

Publication Publication Date Title
US4474064A (en) Ultrasonic flaw detector
US4383448A (en) Semi-automatic scanner for ultrasonic flaw detection
CN109341553B (en) Pipe wall thickness measuring device and measuring method
US4018082A (en) Device for nondestructive ultrasonic testing of cylindrical parts
US4255972A (en) Device for the inspection of welds
JPH0619340B2 (en) Probe setting method in ultrasonic testing equipment for pipes
CN115451777A (en) Method for measuring wall thickness of pipe end of steel pipe
JPS58160805A (en) Method for measuring size and shape of large-diameter steel pipe
JPH0711412B2 (en) Pipe shape measuring device
JPH073327B2 (en) Method and apparatus for automatic measurement of tubular products
JPS61153562A (en) Ultrasonic flaw detecting device
CN219474525U (en) Longitudinal circumferential seam misalignment measuring instrument
JPH06307845A (en) Roll alignment measuring method
JPS6170459A (en) Method and apparatus for adjusting sensitivity of ultrasonic flow detector
JPH05240844A (en) Copying method of flaw detecting apparatus for welded part of seam welded pipe
JPS61296201A (en) Apparatus for automatically measuring film thickness of coated steel pipe
JPS5913706B2 (en) Weld position detection device
CN114252041B (en) Non-contact online measuring method for outer diameter of pipe end of steel pipe
JPS6252455A (en) Method and apparatus for ultrasonic flaw detection
JPS6230953A (en) Piping inspection device
CN215640673U (en) Portable engineering supervision and detection equipment
JP2932965B2 (en) Centering device for ultrasonic flaw detector
JPS6236536B2 (en)
JPS57187601A (en) Measuring device of bend tube
JPS5649953A (en) Ultrasonic flaw detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term