JPH06192708A - Method for forming cuttings of high-melting-point active metal and its alloy - Google Patents

Method for forming cuttings of high-melting-point active metal and its alloy

Info

Publication number
JPH06192708A
JPH06192708A JP36202892A JP36202892A JPH06192708A JP H06192708 A JPH06192708 A JP H06192708A JP 36202892 A JP36202892 A JP 36202892A JP 36202892 A JP36202892 A JP 36202892A JP H06192708 A JPH06192708 A JP H06192708A
Authority
JP
Japan
Prior art keywords
alloy
active metal
point active
cutting waste
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36202892A
Other languages
Japanese (ja)
Inventor
Akira Kanai
章 金井
Hiroaki Shiraishi
博章 白石
Eiji Fujii
栄治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP36202892A priority Critical patent/JPH06192708A/en
Publication of JPH06192708A publication Critical patent/JPH06192708A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the material with the content of the volatile alloy component easily adjustable and the material for the bar, tube, shape, etc., with a simple device as compared with the conventional one in which cuttings are remelted and with a small consumption of energy. CONSTITUTION:The cuttings of a high-m.p. active metal such as titanium and zirconium or their alloy are crushed, cleaned and then put in a capsule, and the cuttings are compressed by a press so that the ratio of the bulk density to the true sp.gr. is controlled to 50%, degreased, sealed and then hot-extruded into the bar, tube and shape. When the cuttings easy to form are used, the cuttings are compacted by extrusion, then put in a capsule and treated by the same process as before.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高融点活性金属の切削
屑、特に、チタン、ジルコニウム及びそれらの合金の切
削屑を素材として再生(リサイクル)するための成型法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding method for recycling (recycling) high-melting-point active metal chips, particularly titanium, zirconium and their alloy chips.

【0002】[0002]

【従来の技術】高融点活性金属であるチタン(Ti)、
ジルコニウム(Zr)及びそれらの合金は、各分野で広
く利用されている。特に、チタン及びチタン合金は比強
度が大きく、耐食性、耐熱性に優れ、宇宙・航空関係、
海洋関係、化学工業、原子力など工業の多方面にわたっ
て重要な部材として活用されている。とりわけ、比強度
を重視する航空機用材料としては、エンジン部材、機体
構造材等に必要不可欠の材料である。
2. Description of the Related Art Titanium (Ti), which is a high melting point active metal,
Zirconium (Zr) and alloys thereof are widely used in various fields. In particular, titanium and titanium alloys have high specific strength, excellent corrosion resistance and heat resistance,
It is used as an important member in various fields such as marine relations, chemical industry, and nuclear power. In particular, as an aircraft material that places importance on specific strength, it is an indispensable material for engine members, airframe structural materials, and the like.

【0003】これらの材料は、精錬に多量の電力を要
し、製造工程が複雑で高価な金属である上に、航空機の
エンジン部品のような精密品を製造する場合、ある大き
さを有する鍛造素材から切削成形するため多量の切削屑
が発生する。この切削屑のリサイクルが、チタンやチタ
ン合金など高融点活性金属を素材として扱う産業におけ
る経済性に大きな影響を及ぼすので、従来から、そのリ
サイクルが積極的になされてきた。その方法としては、
チタンやチタン合金の場合を例にとると、下記の方法が
あげられる。なお、現状では、(a)の方法が主として
用いられている。
These materials require a large amount of electric power for refining, are complicated and expensive in the manufacturing process, and have a certain size for forging precision products such as aircraft engine parts. Since it is cut and formed from the material, a large amount of cutting waste is generated. Since the recycling of this cutting waste has a great influence on the economical efficiency in the industry in which high melting point active metals such as titanium and titanium alloys are used as raw materials, the recycling has been actively made from the past. As a method,
Taking the case of titanium or titanium alloy as an example, the following methods can be given. At present, the method (a) is mainly used.

【0004】(a)切削屑に原料スポンジチタンを混合
し、これをプレスしてコンパクトとし、このコンパクト
を消耗電極として真空アーク炉で溶解する方法。
(A) A method in which raw material sponge titanium is mixed with cutting scraps and pressed into a compact, and the compact is used as a consumable electrode and melted in a vacuum arc furnace.

【0005】(b)切削屑を単独で、または、スポンジ
チタンと混合して電子ビームで溶解する方法。
(B) A method in which cutting waste is melted by an electron beam alone or mixed with titanium sponge.

【0006】(c)切削屑を単独で、または、スポンジ
チタンと混合してプラズマアーク溶解する方法。
(C) A method in which cutting dust is melted alone or in admixture with titanium sponge to perform plasma arc melting.

【0007】しかしながら、上記のリサイクル方法はい
ずれも切削屑を再溶解する工程を必要としており、さら
にその後、熱間粗鍛造および熱間型鍛造、切削等の工程
を経てチタンまたはチタン合金の製品又は素材とするま
でに多大のエネルギーを要し、再び多量の切削屑が発生
する。また、(a)の方法では、消耗電極として使用す
るコンパクトの強度を確保するため切削屑の配合比を5
0%未満としなければならないという制約がある。ま
た、(b)の方法では、溶解を高真空で行うためアルミ
ニウム等の揮発しやすい金属が蒸発するので、このよう
な金属を合金成分として添加する場合、その含有率を正
確にコントロールすることは困難である。
However, all of the above recycling methods require a step of remelting the cutting chips, and then, after the steps of hot rough forging, hot die forging, cutting, etc., a product of titanium or titanium alloy or A large amount of energy is required to make it into a material, and a large amount of cutting waste is generated again. In addition, in the method (a), in order to secure the strength of the compact used as the consumable electrode, the mixing ratio of cutting waste is set to 5
There is a constraint that it must be less than 0%. Further, in the method (b), since the volatile metal such as aluminum is evaporated because the melting is performed in a high vacuum, when such a metal is added as an alloy component, it is not possible to accurately control its content rate. Have difficulty.

【0008】[0008]

【発明が解決しようとする課題】本発明は、高融点活性
金属及びその合金の切削屑を素材としてリサイクルする
に際して、工程が簡素で多大のエネルギーを必要とせ
ず、また、原料配合面における制約を受けず、揮発しや
すい合金成分の含有率の調整が容易な切削屑の成型法を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has a simple process and does not require a large amount of energy when recycling the cutting waste of a high melting point active metal and its alloy as a raw material, and also has a restriction in terms of raw material mixing. It is an object of the present invention to provide a molding method for cutting chips, which is easy to adjust the content rate of alloy components which are not easily received and easily volatilize.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、下記の
切削屑の成型法にある。
The gist of the present invention resides in the following molding method for cutting chips.

【0010】 高融点活性金属またはその合金の切削
屑を破砕、清浄化した後カプセルに入れ、プレスにより
真比重比(真比重に対する蒿比重)が50%以上になる
ように圧縮し、脱気し、密封した後、熱間押出しにより
棒、管及び形材を成型することを特徴とする高融点活性
金属及びその合金の切削屑の成型法。
After crushing and cleaning cutting waste of a high melting point active metal or its alloy, it is put in a capsule, compressed by a press so that the true specific gravity ratio (the rod specific gravity relative to the true specific gravity) becomes 50% or more, and deaerated. A method for forming cutting waste of a high melting point active metal and its alloy, which comprises forming a rod, a tube and a shape by hot extrusion after sealing.

【0011】 高融点活性金属またはその合金の切削
屑を破砕、清浄化した後プレスにより真比重比が50%
以上になるように圧縮し、カプセルに入れ、脱気し、密
封した後、熱間押出しにより棒、管及び形材を成型する
ことを特徴とする高融点活性金属及びその合金の切削屑
の成型法。
After crushing and cleaning the cutting waste of the high melting point active metal or its alloy, the true specific gravity ratio is 50% by pressing.
Molding of cutting waste of high melting point active metal and its alloy characterized by compressing, encapsulating, deaerating and sealing as described above, then molding rod, tube and shape by hot extrusion Law.

【0012】本発明の対象となる切削屑としては、チタ
ン、ジルコニウム、チタン合金またはジルコニウム合金
の切削屑が代表的なものであるが、その他にタンタル
(Ta)、ニオブ(Nb)、モリブデン(Mo)など、
融点が高く、熱力学的に活性な金属の切削屑があげられ
る。
Typical examples of the cutting scraps to which the present invention is applied are cutting scraps made of titanium, zirconium, a titanium alloy or a zirconium alloy. )Such,
Metal chips, which have a high melting point and are thermodynamically active, are mentioned.

【0013】の発明は成型性の良い切削屑を対象とす
る場合で、破砕、清浄化した後そのまま金型で真比重比
が50%以上になるように圧縮し、その後カプセルに入
れ、脱気密封以降の処理を行う。
The invention of (1) is intended for cutting waste having good moldability, and after crushing and cleaning, it is compressed in a mold as it is so that the true specific gravity ratio becomes 50% or more, then put in a capsule and deaerated. Process after sealing.

【0014】[0014]

【作用】以下、本発明方法を図に基づいて説明する。The method of the present invention will be described below with reference to the drawings.

【0015】図1は本発明方法の工程全体を示す図であ
るが、本発明方法は、この図に示されるように、切削屑
を直接熱間押出しすることにより棒、管及び形材等の素
材を得ることができるところに特徴がある。
FIG. 1 is a diagram showing the whole steps of the method of the present invention. As shown in this figure, the method of the present invention directly extrudes cutting chips by hot extrusion to obtain rods, pipes, profiles and the like. The feature is that you can obtain the material.

【0016】切削屑としては、高融点活性金属の切削屑
でも、その合金の切削屑でもよく、それらが2種以上混
じったものでもよい。要は、目的とする化学組成を有す
る素材が得られるような切削屑であればよい。
The cutting dust may be a cutting dust of a high melting point active metal, a cutting dust of an alloy thereof, or a mixture of two or more kinds thereof. The point is that it is sufficient if it is a cutting waste that can obtain a material having a desired chemical composition.

【0017】破砕工程では、切削屑を長さ5〜25mm
程度の細片にする。
In the crushing process, the length of cutting waste is 5 to 25 mm.
Cut into small pieces.

【0018】清浄化の工程の目的は炭素(C)、酸素
(O)、窒素(N)等のピックアップの防止と、押出し
に際しての密度の向上である。この目的にかなうよう
に、高融点活性金属の種類に応じて通常行われている条
件で酸洗処理を行えばよい。
The purpose of the cleaning step is to prevent carbon (C), oxygen (O), nitrogen (N) and the like from being picked up and to improve the density during extrusion. In order to meet this purpose, the pickling treatment may be carried out under the conditions which are usually performed depending on the kind of the high melting point active metal.

【0019】プレス処理の工程では、前記のように、切
削屑の成型性に応じて、カプセルに充填してプレスして
もよいし、プレス後カプセルへ挿入してもよい。なお、
カプセルの材質としては、処理温度で原料である切削屑
と反応しないことが必要で、チタンやチタン合金をプレ
ス処理する場合は、軟鋼製あるいはチタン製のカプセル
が適している。
In the step of pressing, as described above, the capsule may be filled and pressed, or may be inserted into the capsule after pressing, depending on the formability of the cutting waste. In addition,
As the material of the capsule, it is necessary that it does not react with the cutting wastes that are the raw material at the processing temperature, and when titanium or titanium alloy is pressed, a capsule made of mild steel or titanium is suitable.

【0020】プレス処理は、真比重比が50%以上にな
るように行う。これは、カプセルへ充填した後プレス処
理を行わず、単に振動させたり、手作業により押し込ん
だ場合、あるいはプレス処理を行っても真比重比が50
%に満たない場合は、押出しコンテナー内でカプセルの
座屈が起り深いしわが発生し、押出しされた素材の表面
疵となって現われるからである。
The press treatment is performed so that the true specific gravity ratio becomes 50% or more. This is because the true specific gravity ratio is 50 even when the capsules are simply vibrated or pressed by hand without being pressed after being filled, or even after being pressed.
If it is less than%, buckling of the capsule occurs in the extrusion container and deep wrinkles occur, which appear as surface defects of the extruded material.

【0021】図2は、図1のの工程を示す図である。
(イ)はプレス処理工程で、底付きカプセル2に装入し
た切削屑1を金型3に入れ、上ポンチ4で圧縮した状
態、(ロ)は金型3から取り出したカプセル2に脱気用
管6を備えたカプセル蓋5を溶接した状態、(ハ)は脱
気用管6から脱気してカプセル2内を真空にした後、管
6の一部(図の7の部分)を圧着溶接して密封した状
態、(ニ)は切削屑を充填密封したカプセルを押出しし
ている状態を示している。
FIG. 2 is a diagram showing the process of FIG.
(A) is a press process, in which the cutting waste 1 charged in the bottomed capsule 2 is put into the mold 3 and compressed by the upper punch 4, and (b) is degassed into the capsule 2 taken out from the mold 3. In the state where the capsule lid 5 provided with the working tube 6 is welded, (c) is degassed from the degassing tube 6 to evacuate the inside of the capsule 2 and then a part of the tube 6 (7 in the figure) The state of being crimped and welded and sealed, (d) shows the state of extruding a capsule filled with cutting chips and sealed.

【0022】例えば、チタン及びジルコニウムの場合は
下記の条件で行うのが好適である。
For example, in the case of titanium and zirconium, it is preferable to carry out under the following conditions.

【0023】 押出し温度については、変形抵抗をある程度持たせ、材
料にかかる内部応力を高めて、切削屑の密着力を与える
こと。また、組織の粗大化を抑えることが必要であるこ
とから、上限を1373Kとし、キャビティーの発生を
防ぎ、切削屑の密着性をよくするために、下限を107
3Kとする。押出し比は、密着性をよくするために下限
を5とする。上限は設備、割れ防止の面から12程度に
抑えられる。押出し材の熱処理については、拡散により
接着部の均質化を図る意味から実施する必要があるが、
従来の条件で問題はない。
[0023] Regarding the extrusion temperature, give some degree of deformation resistance and increase the internal stress applied to the material to give the adhesion of cutting chips. Further, since it is necessary to suppress the coarsening of the structure, the upper limit is set to 1373K, and the lower limit is set to 107 in order to prevent the generation of cavities and improve the adhesion of cutting chips.
3K. The lower limit of the extrusion ratio is 5 in order to improve the adhesion. The upper limit can be suppressed to about 12 in terms of equipment and crack prevention. Regarding the heat treatment of the extruded material, it is necessary to carry out it in the sense of homogenizing the adhesive part by diffusion,
There is no problem under conventional conditions.

【0024】押出し、熱処理後、機械切削あるいは酸洗
処理を行ってカプセルを除去することにより棒等の素材
が得られる。
After extrusion and heat treatment, mechanical cutting or pickling treatment is performed to remove the capsules, whereby a material such as a rod is obtained.

【0025】[0025]

【実施例】表1に示す組成のチタン合金(Ti−6%A
l−4%V)の切削屑を原料とし、厚さ0.5mm、幅
と長さが10mm程度に破砕した後、弗硝酸で酸洗し、
水洗、アルコール洗浄、真空乾燥を行い、内径48mm
の純チタン製のカプセルに入れ、プレス処理して蒿比重
2.48g/cm(真比重比56%)とした。切削屑
層の高さは56mmであった。
EXAMPLE A titanium alloy having the composition shown in Table 1 (Ti-6% A
(1-4% V) cutting material as a raw material, crushed to a thickness of 0.5 mm, width and length of about 10 mm, and then pickled with hydrofluoric nitric acid,
Washed with water, washed with alcohol, vacuum-dried, inner diameter 48 mm
No. 1 pure titanium capsule, and press-treated to give a rod specific gravity of 2.48 g / cm 3 (true specific gravity ratio of 56%). The height of the cutting waste layer was 56 mm.

【0026】以下、図1のの工程に従って押出しを行
った。押出しの条件は、温度:1273K、押出し比=
5.8、熱処理:1023K、24Hr。
Extrusion was carried out according to the process shown in FIG. Extrusion conditions are temperature: 1273K, extrusion ratio =
5.8, heat treatment: 1023K, 24Hr.

【0027】押出しによって、直径20mm、長さ:1
85mm、真比重比100%の健全な合金棒が得られ
た。
By extrusion, diameter 20 mm, length: 1
A sound alloy rod of 85 mm and a true specific gravity ratio of 100% was obtained.

【0028】表1に押出し後1023Kで焼なました状
態での合金素材の化学組成を併せ示す。各成分の含有量
は原料のそれと殆ど同じで、蒸発しやすいAl含有量の
減少も認められなかった。また、ミクロ組織も微細で、
良好であった。
Table 1 also shows the chemical composition of the alloy material in the state of being annealed at 1023K after extrusion. The content of each component was almost the same as that of the raw material, and no decrease in the Al content, which was likely to evaporate, was observed. Also, the microstructure is fine,
It was good.

【0029】表2に焼なまし後の合金素材の引張試験結
果を示す。耐力、引張強さ及び伸びのいずれについても
良好な結果が得られた。
Table 2 shows the tensile test results of the alloy material after annealing. Good results were obtained in terms of yield strength, tensile strength and elongation.

【0030】[0030]

【比較例】実施例と同一の原料を用い、同じ純チタン製
のカプセルで蒿比重2.03g/cm(真比重比46
%)のものを作り、実施例と同じ条件で押出しを行った
ところ、押出し材の表面にしわ疵が発生し、一部カプセ
ル表面に割れが発生し、内部の切屑が露出しているのが
みられ、健全な合金とは云い難い。
[Comparative Example] Using the same raw material as in the example, the same pure titanium capsule had a specific gravity of 2.03 g / cm 3 (a true specific gravity ratio of 46).
%) And extruded under the same conditions as in the example, wrinkles were generated on the surface of the extruded material, some capsule surfaces were cracked, and internal chips were exposed. Seen, it is hard to say that it is a healthy alloy.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】高融点活性金属及びその合金の切削屑を
素材としてリサイクルする方法としての本発明の切削屑
の成型法は、切削屑の再溶解を必要とする従来の方法に
比べて工程が簡素で、エネルギー消費量が少ない。ま
た、原料配合面における制約を受けず、揮発しやすい合
金成分の含有率の調整が容易で、切削屑から、直接Ne
ar−Net−Shape(製品近似寸法)の素材や棒
等の素材を得ることができる。
EFFECT OF THE INVENTION The molding method of cutting waste of the present invention as a method of recycling cutting waste of high melting point active metal and its alloy as a raw material has a step as compared with the conventional method which requires remelting of cutting waste. Simple and low energy consumption. In addition, it is easy to adjust the content rate of alloy components that easily volatilize without being restricted by the raw material mixing surface, and to directly remove Ne from the cutting waste.
It is possible to obtain a material such as ar-Net-Shape (product approximate size) or a material such as a rod.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法の工程全体を示す図であ
る。
FIG. 1 is a diagram showing the overall steps of the method of the present invention.

【図2】図2は、図1のの工程を示す図で、(イ)は
プレス処理工程、(ロ)はカプセル蓋溶接工程、(ハ)
は脱気・密封工程、(ニ)は押出し工程である。
FIG. 2 is a diagram showing the process of FIG. 1, in which (a) is a pressing process, (b) is a capsule lid welding process, and (c) is a process.
Is a deaeration / sealing process, and (d) is an extrusion process.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高融点活性金属またはその合金の切削
屑を破砕、清浄化した後カプセルに入れ、プレスにより
真比重比が50%以上になるように圧縮し、脱気し、密
封した後、熱間押出しにより棒、管及び形材を成型する
ことを特徴とする高融点活性金属及びその合金の切削屑
の成型法。
1. Crushing and cleaning the cutting waste of a high melting point active metal or its alloy, encapsulating it, compressing it by a press so that the true specific gravity ratio becomes 50% or more, deaeration and sealing, A method for forming cutting waste of a high melting point active metal and its alloy, which comprises forming a rod, a tube and a profile by hot extrusion.
【請求項2】 高融点活性金属またはその合金の切削
屑を破砕、清浄化した後プレスにより真比重比が50%
以上になるように圧縮し、カプセルに入れ、脱気し、密
封した後、熱間押出しにより棒、管及び形材を成型する
ことを特徴とする高融点活性金属及びその合金の切削屑
の成型法。
2. The true specific gravity ratio is 50% by pressing after crushing and cleaning cutting chips of a high melting point active metal or its alloy.
Molding of cutting waste of high melting point active metal and its alloy characterized by compressing, encapsulating, deaerating and sealing as described above, then molding rod, tube and shape by hot extrusion Law.
【請求項3】 高融点活性金属またはその合金の切削
屑がチタン、ジルコニウム、チタン合金またはジルコニ
ウム合金の切削屑である請求項1または2に記載の高融
点活性金属及びその合金の切削屑の成型法。
3. Molding of cutting waste of high melting point active metal and its alloy according to claim 1 or 2, wherein the cutting waste of high melting point active metal or its alloy is cutting waste of titanium, zirconium, titanium alloy or zirconium alloy. Law.
JP36202892A 1992-12-24 1992-12-24 Method for forming cuttings of high-melting-point active metal and its alloy Pending JPH06192708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36202892A JPH06192708A (en) 1992-12-24 1992-12-24 Method for forming cuttings of high-melting-point active metal and its alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36202892A JPH06192708A (en) 1992-12-24 1992-12-24 Method for forming cuttings of high-melting-point active metal and its alloy

Publications (1)

Publication Number Publication Date
JPH06192708A true JPH06192708A (en) 1994-07-12

Family

ID=18475666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36202892A Pending JPH06192708A (en) 1992-12-24 1992-12-24 Method for forming cuttings of high-melting-point active metal and its alloy

Country Status (1)

Country Link
JP (1) JPH06192708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233212A (en) * 2011-04-28 2012-11-29 Toho Titanium Co Ltd Method for producing metal sintered compact
CN112077324A (en) * 2020-09-04 2020-12-15 中国航发北京航空材料研究院 Horizontal extrusion integrated sheath for powder high-temperature alloy and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233212A (en) * 2011-04-28 2012-11-29 Toho Titanium Co Ltd Method for producing metal sintered compact
CN112077324A (en) * 2020-09-04 2020-12-15 中国航发北京航空材料研究院 Horizontal extrusion integrated sheath for powder high-temperature alloy and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20200156154A1 (en) Process for manufacturing an aluminum alloy part
US3626578A (en) Conversion of metal scrap to useful products
JP2014514445A (en) Method for manufacturing titanium alloy welding wire
CN1658990A (en) Method for fabricating a metallic article without any melting
JP6835036B2 (en) Titanium material
WO2019026251A1 (en) Titanium block, method for producing same, and titanium slab
JP2018164943A5 (en)
JPH0130898B2 (en)
US3933473A (en) Method for recovering a usable alloy from titanium scrap
KR20140143219A (en) Magnesium alloy member and method for manufacturing same
JPH06192708A (en) Method for forming cuttings of high-melting-point active metal and its alloy
DE3113733C2 (en) Process for the recovery of high quality materials
JPH0570805A (en) Method for forming cuttings of high-melting-point active metal and its alloy
JPH06264233A (en) Sputtering target for producing tft
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
JP6756364B2 (en) Titanium composite and packaging
JPH11286732A (en) Manufacture of alumina-dispersed strengthened copper
RU2228960C1 (en) Method of production of deformed semi-finished articles from metal chips
WO2017171056A1 (en) Titanium composite material and method for manufacturing same, and package
JP3515597B2 (en) Method for producing rapidly solidified aluminum alloy powder
RU2612106C2 (en) Method of titanium-based composite workpiece manufacturing
Isserow Type 350 maraging steel processed by powder metallurgy
JPH06220596A (en) Production of molybdenum or molybdenum alloy sheet
CN114855103A (en) Metal reinforced magnesium-based composite material based on accumulated plastic deformation and preparation method thereof
JPH06184605A (en) Forging and forming method of aluminum parts