JPH06191923A - Plastic material for in-mold extrusion - Google Patents

Plastic material for in-mold extrusion

Info

Publication number
JPH06191923A
JPH06191923A JP4344516A JP34451692A JPH06191923A JP H06191923 A JPH06191923 A JP H06191923A JP 4344516 A JP4344516 A JP 4344516A JP 34451692 A JP34451692 A JP 34451692A JP H06191923 A JPH06191923 A JP H06191923A
Authority
JP
Japan
Prior art keywords
plastic material
extrusion
mold
cavity
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4344516A
Other languages
Japanese (ja)
Inventor
Kazuyuki Toki
和幸 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4344516A priority Critical patent/JPH06191923A/en
Publication of JPH06191923A publication Critical patent/JPH06191923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a three-dimensional near-net-shape ceramic formed article having excellent mold-releasability by compounding ceramic powder with water and N-lauroyl-aspartic acid beta-lauryl ester. CONSTITUTION:This plastic material 1 for in-mold extrusion is produced by compounding 100 pts.wt. of ceramic powder with 0.5-2 pts.wt. of N-lauroyl- aspartic acid beta ester, a water-soluble binder and water. The plastic material 1 is filled in an extrusion cylinder 2. The extrusion cylinder 2, an extrusion piston 6 and a four-part mold 3 having a valveshaped cavity 3a are clamped between a base 4 and a mobile bed 5 and the extrusion piston 6 is lowered to extrude the plastic material 1 through the opening at the bottom of the extrusion cylinder 2 into the cavity 3a to obtain a formed article.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は型内押出用可塑性材料に
関し、詳しくは型内押出によりセラミックス成形体を得
る可塑性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic material for in-mold extrusion, and more particularly to a plastic material for obtaining a ceramic molded body by in-mold extrusion.

【0002】[0002]

【従来の技術】従来のセラミックス成形体の成形方法と
して、押出成形法が知られている。一般的な押出成形法
は、セラミック粉末、水、結合剤、分散剤、滑剤及び可
塑剤からなる粘土状の可塑性材料を用意し、押出機に所
望の断面形状を有するダイスを取付け、このダイスから
上記可塑性材料を押し出して棒状のセラミックス成形体
を得る(「セラミックス材料技術集成」昭和54年4月
発行)、「ファインセラミックス・金属粉体成形用バイ
ンダ類の基礎と応用技術」昭和63年12月10発
行)。
2. Description of the Related Art An extrusion molding method is known as a conventional method for molding a ceramic molded body. A general extrusion molding method is to prepare a clay-like plastic material consisting of ceramic powder, water, a binder, a dispersant, a lubricant and a plasticizer, attach a die having a desired cross-sectional shape to the extruder, and from this die The plastic material is extruded to obtain a rod-shaped ceramic compact ("Ceramics Material Technology Collection", published in April 1979), "Fundamental and applied technology of binders for fine ceramics / metal powder molding", December 1988 10 issues).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の押
出成形法では、パイプ、ハニカム、板類等のように断面
形状が長手方向で変化しない棒状の物を連続的に大量生
産することはできるものの、断面形状が長手方向で変化
する三次元形状のセラミックス成形体は成形できない。
However, in the above-mentioned conventional extrusion molding method, it is possible to continuously mass-produce rod-shaped products such as pipes, honeycombs and plates whose cross-sectional shape does not change in the longitudinal direction. However, it is not possible to form a three-dimensional ceramics molded body whose cross-sectional shape changes in the longitudinal direction.

【0004】また、従来の押出成形法では、押し出しに
よりセラミックス成形体が得られるためキャビティ内に
可塑性材料を充填することがなく、可塑性材料の離型性
は考慮されてはいなかった。このため、従来の押出成形
法に用いられていた可塑性材料により、三次元形状のセ
ラミックス成形体を得るべく、キャビティ内への型内押
出を行った場合、セラミックス成形体がキャビティ面に
張りつき、キャビティから容易に脱型できない。これ
は、水とメチルセルロース等の水溶性結合剤とのみを添
加した可塑性材料では、セラミック粉末が接着剤により
固められているのと同様であり、キャビティ内にこの可
塑性材料を押し出せば、水溶性結合剤によりセラミック
ス成形体がキャビティ面に付着し、剥がれにくくなるか
らである。
Further, in the conventional extrusion molding method, since a ceramic molded body is obtained by extrusion, the cavity is not filled with the plastic material, and the releasability of the plastic material has not been considered. Therefore, when in-mold extrusion into the cavity is performed to obtain a three-dimensional ceramics molded body using the plastic material used in the conventional extrusion molding method, the ceramics molded body sticks to the cavity surface and Cannot be easily removed from the mold. This is similar to the case where the ceramic powder is hardened by the adhesive in the plastic material in which only water and a water-soluble binder such as methylcellulose are added, and if this plastic material is extruded into the cavity, the water-soluble This is because the ceramic molded body adheres to the cavity surface due to the binder and is difficult to peel off.

【0005】このため、従来の可塑性材料では、優れた
離型性の下、三次元形状のニアネットシェイプセラミッ
クス成形体を得ることは困難である。本発明は、上記従
来の実情に鑑みてなされたものであって、優れた離型性
の下、三次元形状のニアネットシェイプセラミックス成
形体を得ることのできる型内押出用可塑性材料を提供す
ることを目的とする。
Therefore, it is difficult to obtain a three-dimensional shaped near net shape ceramics molded body with excellent mold releasability using conventional plastic materials. The present invention has been made in view of the above conventional circumstances, and provides a plastic material for in-mold extrusion capable of obtaining a three-dimensional shape near net shape ceramics molded body under excellent mold releasability. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明の型内押出用可塑
性材料は、三次元形状のキャビティ内に押出され、押出
の際の圧力により該キャビティ内に充填されるとともに
該キャビティで賦形されるセラミック粉末、水及び水溶
性結合剤を含む型内押出用可塑性材料であって、前記型
内押出用可塑性材料はN−ラウロイル・アスパラギン酸
・β−ラウリルエステルを含むことを特徴とするもので
ある。
The plastic material for in-mold extrusion of the present invention is extruded into a cavity having a three-dimensional shape, filled in the cavity by the pressure during extrusion, and shaped in the cavity. A plastic material for in-mold extrusion containing ceramic powder, water and a water-soluble binder, wherein the in-mold extrusion plastic material contains N-lauroyl / aspartic acid / β-lauryl ester. is there.

【0007】N−ラウロイル・アスパラギン酸・β−ラ
ウリルエステルは、型内押出用可塑性材料に含まれるセ
ラミック粉末100重量部に対し、0.5〜2重量部で
あることが好ましい。
The amount of N-lauroyl / aspartic acid / β-lauryl ester is preferably 0.5 to 2 parts by weight with respect to 100 parts by weight of the ceramic powder contained in the in-mold extrusion plastic material.

【0008】[0008]

【作用】本発明の型内押出用可塑性材料は、キャビティ
内において可塑性材料が流動し、押出の際の圧力で三次
元形状のキャビティ内に充填されるとともに同キャビテ
ィで賦形される。賦形された可塑性材料は、N−ラウロ
イル・アスパラギン酸・β−ラウリルエステルを含むこ
とにより溶媒が型とセラミックス成形体の間へしみ出し
にくいため、水溶性結合剤としての作用が得られるとと
もに、従来の可塑性材料に比べて脱型が容易である。
In the plastic material for in-mold extrusion of the present invention, the plastic material flows in the cavity and is filled in the three-dimensional cavity by the pressure during extrusion and is shaped in the cavity. Since the shaped plastic material contains N-lauroyl / aspartic acid / β-lauryl ester, the solvent is less likely to seep out between the mold and the ceramic molded body, so that the function as a water-soluble binder can be obtained. Easier to remove from the mold than conventional plastic materials.

【0009】N−ラウロイル・アスパラギン酸・β−ラ
ウリルエステルが型内押出用可塑性材料に含まれるセラ
ミック粉末100重量部に対し、0.5〜2重量部であ
る場合には、脱型が容易であるとともに、保形性がよ
い。N−ラウロイル・アスパラギン酸・β−ラウリルエ
ステルがセラミック粉末100重量部に対し、0.5重
量部未満である場合には、離型性向上の効果が少なく、
2重量部を超えれば、セラミックス成形体の脱脂後にボ
アが多くなり、保形性が損なわれやすく、密度が高くな
りにくい。
When the amount of N-lauroyl / aspartic acid / β-lauryl ester is 0.5 to 2 parts by weight based on 100 parts by weight of the ceramic powder contained in the plastic material for in-mold extrusion, demolding is easy. It also has good shape retention. When the amount of N-lauroyl / aspartic acid / β-lauryl ester is less than 0.5 parts by weight based on 100 parts by weight of the ceramic powder, the effect of improving the releasability is small,
If the amount exceeds 2 parts by weight, the number of bores increases after degreasing the ceramic molded body, the shape retention is likely to be impaired, and the density is unlikely to increase.

【0010】[0010]

【実施例】以下、本発明の型内押出用可塑性材料を具体
化し、混練工程、型内押出工程によりセラミックス成形
体を得る実施例1〜4を比較例1とともに図面を参照し
つつ説明する。 (実施例1) {混練工程}まず、Si3 4 粉末(平均粒径0.2μ
m)90重量部、Y2 3 粉末(平均粒径0.2μm)
6重量部、MgAl2 4 粉末(平均粒径0.2μm)
4重量部とを用意する。Y2 3 粉末及びMgAl2
4 粉末はSi3 4 粉末に対する焼結助剤である。これ
らをエタノール中で混粉後、目開き10μmの篩いを通
してセラミック粉末とした。
EXAMPLES Examples 1 to 4 in which the plastic material for in-mold extrusion of the present invention is embodied and ceramic moldings are obtained by a kneading step and an in-mold extrusion step will be described together with Comparative Example 1 with reference to the drawings. (Example 1) {Kneading step} First, Si 3 N 4 powder (average particle size 0.2 μ)
m) 90 parts by weight, Y 2 O 3 powder (average particle size 0.2 μm)
6 parts by weight, MgAl 2 O 4 powder (average particle size 0.2 μm)
4 parts by weight are prepared. Y 2 O 3 powder and MgAl 2 O
4 powder is a sintering aid for Si 3 N 4 powder. These were mixed in ethanol and then passed through a sieve with a mesh opening of 10 μm to obtain a ceramic powder.

【0011】セラミック粉末100重量部に、水34重
量部と、分散剤としてのポリカルボン酸アンモニウム塩
0.7重量部と、水溶性結合剤としてのメチルセルロー
ス(信越化学(株)製SM4000)1.0重量部と、
可塑剤としてのグリセリン1.0重量部と、本実施例の
特徴的な構成としてN−ラウロイル・アスパラギン酸・
β−ラウリルエステル(C1225NHC(CH2 COO
1225)HCOOH、比重:1.0)0.9重量部と
をそれぞれ添加し、充分混練機により混合・混練し、型
内押出用可塑性材料を得る。 {型内押出工程}図1に示すように、この可塑性材料1
を押出シリンダ2内に充填する。また、図2に示すよう
に、ステム部直径8mm、全長120mm、傘部直径4
0mmのバルブ形状のキャビティ3aをもつ4分割の金
型3を用意する。
To 100 parts by weight of ceramic powder, 34 parts by weight of water, 0.7 parts by weight of polycarboxylic acid ammonium salt as a dispersant, and methyl cellulose as a water-soluble binder (SM4000 manufactured by Shin-Etsu Chemical Co., Ltd.) 0 parts by weight,
1.0 part by weight of glycerin as a plasticizer and N-lauroyl aspartic acid.
β-lauryl ester (C 12 H 25 NHC (CH 2 COO
C 12 H 25 ) HCOOH and specific gravity: 1.0) 0.9 parts by weight are respectively added and sufficiently mixed and kneaded by a kneader to obtain a plastic material for in-mold extrusion. {In-mold extrusion step} As shown in FIG. 1, this plastic material 1
Is filled in the extrusion cylinder 2. In addition, as shown in FIG. 2, the stem diameter is 8 mm, the total length is 120 mm, and the umbrella diameter is 4.
A four-divided mold 3 having a 0 mm bulb-shaped cavity 3a is prepared.

【0012】基台4とこの基台4に対して昇降可能な可
動台5との間に、これら押出シリンダ2、押出ピストン
6、金型3を挟持し、押出ピストン4を降下させること
により、押出シリンダ2の下端の開口から成形圧力60
MPaで可塑性材料1をキャビティ3a内に押出す。こ
うして、可塑性材料1をキャビティ3a内に充填・賦形
する。
By sandwiching the extruding cylinder 2, the extruding piston 6, and the mold 3 between the base 4 and the movable table 5 which can be moved up and down with respect to the base 4, and lowering the extruding piston 4, From the opening at the lower end of the extrusion cylinder 2, the molding pressure 60
The plastic material 1 is extruded into the cavity 3a at MPa. In this way, the plastic material 1 is filled and shaped in the cavity 3a.

【0013】この後、金型3を一つづつ外したところ、
セラミックス成形体はキャビティ3a面に張りつかず、
かつ保形性も良好であり、キャビティ3aから容易に脱
型できた。 (実施例2)N−ラウロイル・アスパラギン酸・β−ラ
ウリルエステルを0.5重量部とした以外は実施例1と
同様に型内押出用可塑性材料を得る。そして、実施例1
と同様に混練、型内押出を行なう。
After that, when the molds 3 were removed one by one,
The ceramic molded body does not stick to the surface of the cavity 3a,
In addition, the shape retaining property was also good, and the mold could be easily removed from the cavity 3a. Example 2 A plastic material for in-mold extrusion is obtained in the same manner as in Example 1 except that 0.5 part by weight of N-lauroyl / aspartic acid / β-lauryl ester is used. And Example 1
Kneading and in-mold extrusion are performed in the same manner as in.

【0014】この可塑性材料においても、セラミックス
成形体はキャビティ面に張りつかず、かつ保形性も良好
であり、キャビティから容易に脱型できた。 (実施例3)図3に示すように、直径20mm、全長7
0mmの円柱状のキャビティ7aをもつ4分割の金型7
を用意する。他の条件は実施例1と同様である。
Also in this plastic material, the ceramic molded body did not stick to the cavity surface and had a good shape-retaining property, and could be easily released from the cavity. (Example 3) As shown in FIG. 3, the diameter is 20 mm and the total length is 7
Four-divided mold 7 having 0 mm cylindrical cavity 7a
To prepare. The other conditions are the same as in Example 1.

【0015】この金型7を用いた場合においても、セラ
ミックス成形体はキャビティ面に張りつかず、かつ保形
性も良好であり、キャビティから容易に脱型できた。 (実施例4)実施例3と同一の金型7を採用し、可塑性
材料として実施例2のものを採用する。そして、実施例
1と同様に混練、型内押出を行なう。
Even when this mold 7 was used, the ceramic molded body did not stick to the cavity surface, had good shape retention, and could be easily removed from the cavity. (Embodiment 4) The same mold 7 as in Embodiment 3 is adopted, and the plastic material of Embodiment 2 is adopted. Then, kneading and in-mold extrusion are performed in the same manner as in Example 1.

【0016】この金型7を用い、かつこの可塑性材料を
用いた場合においても、セラミックス成形体はキャビテ
ィ面に張りつかず、かつ保形性も良好であり、キャビテ
ィから容易に脱型できた。 (比較例1)N−ラウロイル・アスパラギン酸・β−ラ
ウリルエステルを添加しないこと以外は実施例1と同様
に型内押出用可塑性材料を得る。そして、実施例1と同
様に混練、型内押出を行なう。
Even when this mold 7 was used and this plastic material was used, the ceramic molded body did not stick to the cavity surface, had good shape retention, and could be easily released from the cavity. (Comparative Example 1) A plastic material for in-mold extrusion is obtained in the same manner as in Example 1 except that N-lauroyl / aspartic acid / β-lauryl ester is not added. Then, kneading and in-mold extrusion are performed in the same manner as in Example 1.

【0017】この可塑性材料では、キャビティ内への充
填は可能であったものの、キャビティ面に可塑性材料が
張りつき、セラミックス成形体の形状を崩さなければキ
ャビティから脱型ができなかった。したがって、実施例
1、2の可塑性材料では、N−ラウロイル・アスパラギ
ン酸・β−ラウリルエステルが含まれており、脱型が容
易であるとともに、保形性がよく、三次元であるバルブ
形状又は円柱状のニアネットシェイプセラミックス成形
体を得ることができることがわかる。
With this plastic material, it was possible to fill the cavity, but the plastic material stuck to the cavity surface, and the mold could not be released from the cavity unless the shape of the ceramic molded body was destroyed. Therefore, the plastic materials of Examples 1 and 2 contain N-lauroyl / aspartic acid / β-lauryl ester, which facilitates demolding, has good shape retention, and has a three-dimensional valve shape or It can be seen that a cylindrical near net shape ceramics compact can be obtained.

【0018】なお、セラミック粉末としては、Si3
4 粉末の他に、SiO2 粉末、Al 2 3 粉末等を採用
することができる。水はセラミック粉末100体積%に
対して100〜130体積%含有されることが好まし
い。水がセラミック粉末100体積%に対して100体
積%未満であれば、可塑性材料が粘土状になりにくい。
水がセラミック粉末100体積%に対して130体積%
を超えれば、セラミックス成形体の保形性が悪い。水は
セラミック粉末100体積%に対して105〜120体
積%含有されることがより好ましい。
As the ceramic powder, Si is used.3N
FourIn addition to powder, SiO2Powder, Al 2O3Adopt powder etc.
can do. Water is 100% by volume of ceramic powder
On the other hand, it is preferable that the content is 100 to 130% by volume.
Yes. 100 bodies of water for 100% by volume of ceramic powder
If it is less than the product%, the plastic material is unlikely to be clay-like.
Water is 130% by volume with respect to 100% by volume of ceramic powder
If it exceeds, the shape retention of the ceramic molded body is poor. Water is
105-120 bodies per 100% by volume of ceramic powder
More preferably, it is contained in a volume percentage.

【0019】水溶性結合剤としては、メチルセルロース
等のセルロース類の他に、でんぷん、デキストリン、に
かわ、カゼイン、ゼラチン等を採用することができる。
ここで、水溶性結合剤はセラミック粉末100体積%に
対して1〜15体積%含有されることが好ましい。水溶
性結合剤がセラミック粉末100体積%に対して1体積
%未満であれば、セラミックス成形体が乾燥後にクラッ
クを生じやすい。水溶性結合剤がセラミック粉末100
体積%に対して15.0体積%を超えれば、水溶性結合
剤が凝集しやすく、焼結後のセラミックに強度欠陥が生
じやすい。
As the water-soluble binder, starch, dextrin, glue, casein, gelatin, etc. can be adopted in addition to celluloses such as methyl cellulose.
Here, the water-soluble binder is preferably contained in an amount of 1 to 15% by volume based on 100% by volume of the ceramic powder. If the water-soluble binder is less than 1% by volume with respect to 100% by volume of the ceramic powder, the ceramic molded body tends to crack after drying. Water-soluble binder is 100 ceramic powder
If it exceeds 15.0% by volume with respect to the volume%, the water-soluble binder is likely to agglomerate and a strength defect is likely to occur in the sintered ceramic.

【0020】可塑性材料には分散剤を含有させることが
できる。分散剤としては、ポリカルボン酸アンモニウム
塩、アクリル酸オリゴマーNH4 塩、ポリアクリル酸ソ
ーダ、アクリル酸70重量%とアクリル酸メチル30重
量%の共重合体オリゴマーNH4 塩などを採用すること
ができる。ここで、分散剤はセラミック粉末100体積
%に対して1〜8体積%含有されることが好ましい。
The plastic material may contain a dispersant. As the dispersant, polycarboxylic acid ammonium salt, acrylic acid oligomer NH 4 salt, polyacrylic acid soda, copolymer oligomer NH 4 salt of 70% by weight of acrylic acid and 30% by weight of methyl acrylate, and the like can be adopted. . Here, the dispersant is preferably contained in an amount of 1 to 8% by volume with respect to 100% by volume of the ceramic powder.

【0021】可塑性材料の押出圧力、押出速度、押出時
間等は、可塑性材料のチクソトロピー性、キャビティの
形状により選択され得る。
The extrusion pressure, extrusion speed, extrusion time and the like of the plastic material can be selected depending on the thixotropy of the plastic material and the shape of the cavity.

【0022】[0022]

【発明の効果】以上詳述したように、本発明の可塑性材
料では、三次元形状のキャビティに対応したセラミック
ス成形体が得られるため、従来の押出成形法に比べて複
雑な形状品の成形が可能となる。そして、この可塑性材
料ではN−ラウロイル・アスパラギン酸・β−ラウリル
エステルを含むため、優れた離型性の下、三次元形状の
ニアネットシェイプセラミックス成形体を得ることがで
きる。
As described above in detail, with the plastic material of the present invention, a ceramic molded body corresponding to a cavity having a three-dimensional shape can be obtained, so that a molded article having a complicated shape can be formed as compared with the conventional extrusion molding method. It will be possible. Since this plastic material contains N-lauroyl / aspartic acid / β-lauryl ester, it is possible to obtain a near-net-shape ceramic molded body having a three-dimensional shape with excellent releasability.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、2及び比較例1の成形方法の工程を
示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing a step of a molding method of Examples 1 and 2 and Comparative Example 1.

【図2】図1のA−A矢視断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】実施例3、4の成形方法の工程を示す模式断面
図である。
FIG. 3 is a schematic cross-sectional view showing the steps of the molding method of Examples 3 and 4.

【図4】図3のB−B矢視断面図である。FIG. 4 is a sectional view taken along the line BB of FIG.

【符号の説明】 3a、7a…キャビティ 1…型内押出用可
塑性材料
[Explanation of Codes] 3a, 7a ... Cavity 1 ... Plastic material for in-mold extrusion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】三次元形状のキャビティ内に押出され、押
出の際の圧力により該キャビティ内に充填されるととも
に該キャビティで賦形されるセラミック粉末、水及び水
溶性結合剤を含む型内押出用可塑性材料であって、 前記型内押出用可塑性材料はN−ラウロイル・アスパラ
ギン酸・β−ラウリルエステルを含むことを特徴とする
型内押出用可塑性材料。
1. In-mold extrusion including a ceramic powder, water and a water-soluble binder, which is extruded into a cavity having a three-dimensional shape, is filled in the cavity by pressure during extrusion, and is shaped in the cavity. A plastic material for in-mold extrusion, wherein the plastic material for in-mold extrusion contains N-lauroyl / aspartic acid / β-lauryl ester.
JP4344516A 1992-12-24 1992-12-24 Plastic material for in-mold extrusion Pending JPH06191923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4344516A JPH06191923A (en) 1992-12-24 1992-12-24 Plastic material for in-mold extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4344516A JPH06191923A (en) 1992-12-24 1992-12-24 Plastic material for in-mold extrusion

Publications (1)

Publication Number Publication Date
JPH06191923A true JPH06191923A (en) 1994-07-12

Family

ID=18369882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4344516A Pending JPH06191923A (en) 1992-12-24 1992-12-24 Plastic material for in-mold extrusion

Country Status (1)

Country Link
JP (1) JPH06191923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241310A (en) * 2012-05-22 2013-12-05 Denso Corp Plastic molding composition and baked product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241310A (en) * 2012-05-22 2013-12-05 Denso Corp Plastic molding composition and baked product

Similar Documents

Publication Publication Date Title
CN111233485B (en) Method for 3D printing direct-writing forming of complex-structure ceramic based on high-solid-content silicon slurry
US5238627A (en) Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor
DE68927185T2 (en) Molding process and device for manufacturing ceramic objects
JPH02172852A (en) Production of ceramics
JPH06191923A (en) Plastic material for in-mold extrusion
JPH06116012A (en) Plastic material for internal extrusion
DE3736660A1 (en) METHOD FOR PRODUCING A POROUS FORM BODY
JP2651864B2 (en) Molding method of non-plastic material
JP3175455B2 (en) Ceramics molding method
JPH05345304A (en) Forming method for ceramic formed body
JP3912914B2 (en) Method for molding porous molded body and molding apparatus therefor
CN210082424U (en) Inner cavity structure of 3D printer extrusion assembly
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation
JP3283346B2 (en) Clay composition for extrusion molding
JPH0768515A (en) Molding method for ceramics
JPH05345305A (en) Forming method of ceramic formed body
JPH05318426A (en) Method for molding ceramics molded object
JPH03130305A (en) Manufacture of sintered body having hollow part and manufacturing apparatus used thereto
JPS6213303A (en) Slip casting molding method
JPH06170826A (en) Mold for in-mold extrusion molding
JPH1081847A (en) Production of pencil lead
JPH08108415A (en) Ceramic molding method
JPH0725664A (en) Composition for ceramic molding
JPS60195070A (en) Manufacture of ceramic porous formed body
JP2004010373A (en) Sintered product and its manufacturing process