JPH06189119A - Image processing method - Google Patents

Image processing method

Info

Publication number
JPH06189119A
JPH06189119A JP4354489A JP35448992A JPH06189119A JP H06189119 A JPH06189119 A JP H06189119A JP 4354489 A JP4354489 A JP 4354489A JP 35448992 A JP35448992 A JP 35448992A JP H06189119 A JPH06189119 A JP H06189119A
Authority
JP
Japan
Prior art keywords
quantization
pixel
pixels
area
nxm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4354489A
Other languages
Japanese (ja)
Other versions
JP2898836B2 (en
Inventor
Norihide Kunikawa
憲英 国川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4354489A priority Critical patent/JP2898836B2/en
Publication of JPH06189119A publication Critical patent/JPH06189119A/en
Application granted granted Critical
Publication of JP2898836B2 publication Critical patent/JP2898836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color, Gradation (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To process a dynamic range of halftone to be handled by expanding by NXM times compared with the one in pixel unit by dividing an image targeted to process into NXM areas, and setting each of the NXM areas as one unit in processing. CONSTITUTION:Assuming area of interest in NXM(N=2, M=3) target areas to be the four picture elements in a broken line, total pixel data in the broken line are represented in A=Di, j+2+Di, j+3+Di+1, j+2+Di+1, and j+3 in the pixel area A of interest. Quantization is performed by applying binarization to the four picture elements in the area of interest by an error diffusion method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像処理方法、より詳
細には、デジタル複写機、ファミシミリ装置等、多値画
像データを量子化する必要のある装置に適用して好適な
画像処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image processing method, and more particularly to an image processing method suitable for application to an apparatus such as a digital copying machine or a family of equipment which needs to quantize multi-valued image data. .

【0002】[0002]

【従来の技術】従来、多値画像データを量子化する方法
として、デイザ法、誤差拡散法等の種々の方法が提案さ
れているが、上記方法はいずれもその対象画素を1画素
として、量子化を行うものであった。
2. Description of the Related Art Hitherto, various methods such as a dither method and an error diffusion method have been proposed as a method for quantizing multi-valued image data. It was to convert.

【0003】誤差拡散法にて量子化の具体例を説明する
と、注目画素Aをxで量子化した時、その誤差とは、次
式にて示される。 A−〔x〕=ε …(1) ここで、〔x〕は、量子化データに対応した多値化デー
タである。例えば、画素データAが8ビットであり、0
〜255の値をとり、量子化が0としての2値であると
き、x=0又は1であり、x=0のとき、〔x〕=0,
x=1のとき〔x〕=255とする。
Explaining a concrete example of quantization by the error diffusion method, when the pixel of interest A is quantized by x, the error is expressed by the following equation. A- [x] = ε (1) Here, [x] is multi-valued data corresponding to the quantized data. For example, if the pixel data A is 8 bits, 0
˜255, x = 0 or 1 when the quantization is binary with 0, and [x] = 0, when x = 0.
When x = 1, [x] = 255.

【0004】上記誤差εは、濃度保存のために、所定の
方法で、図2に示すように、周辺画素B,C,D,Eに
分散され、各々に加算される。即ち、誤差とは、ε=ε
BεCεDεEに分散され、B=B+εB,C=C+εC,D
=D+εD,E=E+εEという形で、周辺画素の各々に
加算される。次に、Bの画素を注目画素として上記の処
理を行い、以下、同じ方法で、C,Dの画素についての
処理を行う。
The error .epsilon. Is dispersed in peripheral pixels B, C, D and E by a predetermined method in order to preserve the density, and is added to each of the peripheral pixels B, C, D and E as shown in FIG. That is, the error is ε = ε
B ε C ε D ε E , B = B + ε B , C = C + ε C , D
= D + ε D , E = E + ε E , which is added to each of the peripheral pixels. Next, the above process is performed with the B pixel as the pixel of interest, and thereafter, the C and D pixels are processed in the same manner.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の方
法によると、対象画素を1画素単位とするため、取り扱
う中間調のダイナミックレンジが最大1画素の階調範囲
に限定され、それ以上のダイナミックレンジを持つこと
が出来なかった。例えば、多値データとして、8ビット
の画素データであるならば、256階調のダイナミック
レンジを持つことが出来るが、逆に、それ以上のレンジ
を持って量子化することは出来なかった。
However, according to the above-mentioned conventional method, since the target pixel is set on a pixel-by-pixel basis, the dynamic range of the halftone to be handled is limited to the gradation range of one pixel at the maximum, and the dynamic range beyond that. I couldn't have a range. For example, if the multi-valued data is 8-bit pixel data, it can have a dynamic range of 256 gradations, but on the contrary, it cannot be quantized with a range of more than that.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)量子化対象エリアをN×M画素と
し、各画素単位で量子化を行うことを特徴としたもので
あり、更には、(2)前記量子化を誤差拡散法にて行う
こと、或いは、(3)前記誤差拡散法において、前記N
×M個の画素に対して予め量子化の重み付を行うことを
特徴としたものである。
In order to solve the above-mentioned problems, the present invention is characterized in that (1) an area to be quantized is N × M pixels, and quantization is performed for each pixel. Further, (2) the quantization is performed by an error diffusion method, or (3) the N is used in the error diffusion method.
The feature is that the weighting of the quantization is performed in advance for the × M pixels.

【0007】[0007]

【作用】画像データの量子化に当って、処理の対象画像
を、1画素に限定しないで、N×Mの領域画素を対象と
し、当N×Mのエリアを処理の1単位とすることで、取
り扱う中間調のダイナミックレンジを、1画素単位のも
のと比して、N×M倍に拡張して処理する。なお、ここ
で、N,Mは整数で、N×Mが2以上であるものを意味
する。
When the image data is quantized, the target image to be processed is not limited to one pixel, but N × M area pixels are targeted, and the N × M area is regarded as one unit of processing. , The halftone dynamic range to be handled is expanded by N × M times as compared with that of one pixel unit for processing. Here, N and M are integers and N × M means 2 or more.

【0008】[0008]

【実施例】本発明は、画像データの量子化に当って、注
目(対象)画素をN×Mのエリアに分割し、この各エリ
アを1単位として取り扱うようにしたもので、例えば、
量子化前の画像データが8ビットで中間調のダイナミッ
クレンジが256階調とした場合に、N=1,M=2と
するだけでそのダイナミックレンジを512階調へと飛
躍的に増加させることができ、画質の大幅な向上を達成
することができる。なお、この画質向上の効果は、元画
像データのダイナミックレンジを変えないで、処理をN
×Mとした時の効果であるが、逆に、N×Mを2とし、
さらに、量子化後のダイナミックレンジを256階調と
するには、元画像データは、256÷2となり、128
階調、即ち、7ビットの分解能で良いことを意味し、中
間調のダイナミックレンジを維持しながら、A/D変換
等のハード回路への負担を軽減できる効果もある。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in quantization of image data, a target (target) pixel is divided into N × M areas, and each area is treated as one unit.
If the image data before quantization is 8 bits and the halftone dynamic range is 256 gradations, the dynamic range can be dramatically increased to 512 gradations only by setting N = 1 and M = 2. Therefore, a significant improvement in image quality can be achieved. The effect of this image quality improvement is that the processing is performed without changing the dynamic range of the original image data.
This is an effect when xM, but conversely, NxM is 2,
Further, in order to set the dynamic range after quantization to 256 gradations, the original image data becomes 256/2, which is 128.
This means that a gradation, that is, a resolution of 7 bits is sufficient, and there is also an effect that the load on the hard circuit such as A / D conversion can be reduced while maintaining the dynamic range of halftone.

【0009】以下、N×Mにおいて、N=2,M=2の
場合の実施例について説明する。なお、各画素データは
8ビットで表現され、1画素256階調のダイナミック
レンジを持つものとする。また、量子化は2値とし、そ
の結果を0又は1で表現し、量子化のスレショールドは
中央値の128とする。
An embodiment in the case of N = 2 and M = 2 in N × M will be described below. Each pixel data is represented by 8 bits and has a dynamic range of 256 gradations per pixel. Further, the quantization is binary, the result is expressed by 0 or 1, and the threshold of quantization is 128 which is the median value.

【0010】図1において、N×Mの対象エリアに当る
注目エリアを破線内の4つの画素とすると、破線内のト
ータルの画素データは、注目画素エリアAにおいては、 A=Di,j+2+Di,j+3+Di+1,j+2+Di+1,j+3 …(2) で表わされる。同様に注目画素エリアAの周辺での注目
画素エリアをB,C,D,Eとすると、Aと同様に、 B=Di,j+4+Di,j+5+Di+1,j+4+Di+1,j+5 …(3) C=Di+2,j+4+Di+2,j+5+Di+3,j+4+Di+3,j+5…(4) D=Di+2,j+2+Di+2,j+3+Di+3,j+2+Di+3,j+3…(5) E=Di+2,j+Di+2,j+1+Di+3,j+Di+3,j+1 …(6) で表わされる。ここで、上記式より各画素エリアのとり
うる範囲は、各画素が0〜255であることより、MA
X255×4=1020の値をとりうることを意味して
いる。
In FIG. 1, assuming that the target area corresponding to the N × M target area is four pixels in the broken line, the total pixel data in the broken line is A = Di, j + 2 + Di in the target pixel area A. , j + 3 + Di + 1, j + 2 + Di + 1, j + 3 (2) Similarly, assuming that the target pixel area around the target pixel area A is B, C, D, and E, similarly to A, B = Di, j + 4 + Di, j + 5 + Di + 1, j + 4 + Di + 1, j +5 (3) C = Di + 2, j + 4 + Di + 2, j + 5 + Di + 3, j + 4 + Di + 3, j + 5 ... (4) D = Di + 2, j + 2 + Di + 2, j + 3 + Di + 3, j + 2 + Di + 3, j + 3 (5) E = Di + 2, j + Di + 2, j + 1 + Di + 3, j + Di + 3, j + 1 (6) Here, the range that each pixel area can take from the above equation is 0 to 255 for each pixel,
It means that the value of X255 × 4 = 1020 can be taken.

【0011】量子化は、注目エリア内の4つの画素を2
値化(0又は1)で表現することより、次の手順で算出
する。上記Aの値が0〜128の時は、図2,3に示す
ように、4つの画素全てが0であるとし(図4
(a))、量子化パターンを0とすると、この時の量子
化誤差はAとなる。なお、これら関係を、図2におい
て、グラフ的に、図3において、具体的数値データとし
て、テーブルにて示す。
Quantization is performed by dividing four pixels in the area of interest into two pixels.
It is calculated by the following procedure by expressing it as a value (0 or 1). When the value of A is 0 to 128, it is assumed that all four pixels are 0 as shown in FIGS.
(A)), assuming that the quantization pattern is 0, the quantization error at this time is A. Note that these relationships are shown in a graph in FIG. 2 and in a table in FIG. 3 as concrete numerical data.

【0012】次に、Aの値が128をこえ、383の時
には、4つの画素のうち1画素を1とし、残り3画素を
0とし(図4(b))、量子化パターンを1とすると、
この時の量子化誤差はA−255となる(図2,図3参
照)。
Next, when the value of A exceeds 128 and is 383, one of the four pixels is set to 1, the remaining 3 pixels are set to 0 (FIG. 4B), and the quantization pattern is set to 1. ,
The quantization error at this time is A-255 (see FIGS. 2 and 3).

【0013】同様に、Aが383をこえ、638の間を
とるとき4つの画素のうち2画素を1とし、残り2画素
を0とし(図4(c))、量子化パターンを2とする
と、誤差はA−510となる(図2,図3参照)。Aが
638をこえ、893の間をとるとき、4つの画素のう
ち3画素を1とし、残り1画素を0とし(図4
(d))、量子化パターンを3とすると、誤差はA−7
65となり、Aが893をこえ、1020の間のとき、
4つの画素全てを1とし(図4(e))、量子化パター
ンを4とすると、誤差は、A−1020となる(図2,
図3参照)。
Similarly, when A exceeds 383 and is between 638, 2 out of 4 pixels are set to 1 and the remaining 2 are set to 0 (FIG. 4 (c)), and the quantization pattern is 2. , The error is A-510 (see FIGS. 2 and 3). When A exceeds 638 and is between 893, 3 out of 4 pixels are set to 1 and the remaining 1 pixel is set to 0 (see FIG.
(D)), assuming that the quantization pattern is 3, the error is A-7.
65, and when A exceeds 893 and is between 1020,
If all four pixels are set to 1 (FIG. 4E) and the quantization pattern is set to 4, the error becomes A-1020 (FIG. 2, FIG.
(See FIG. 3).

【0014】次に、量子化パターンより、各画素への具
体的な2値化データの対応法について説明する。図5
は、注目エリアAでの2×2画素を示しているが、これ
は印字すべき画素の優先順位を示したものである。即
ち、数値の少ない画素より印字の優先順位を付けたもの
である。 数値の1は、図1においてDi,j+3 数値の2は、図1においてDi+1,j+3 数値の3は、図1においてDi,j+2 数値の4は、図1においてDi+1,j+2 の画素を示している。従って、図3で示した量子化パタ
ーン0,1,2,3,4は、量子化後の注目エリアの画
素データが図4において、(a)(b)(c)(d)
(e)の順に対応させることができる。
Next, a specific method of corresponding binary data to each pixel based on the quantization pattern will be described. Figure 5
Shows 2 × 2 pixels in the attention area A, which shows the priority of pixels to be printed. That is, the printing priority is given to the pixels having smaller numerical values. The numerical value 1 is Di, j + 3 in FIG. 1, the numerical value 2 is Di + 1, j + 3 in FIG. 1, the numerical value 3 is Di, j + 2, and the numerical value 4 is Di in FIG. The pixels of +1 and j + 2 are shown. Therefore, in the quantization patterns 0, 1, 2, 3, and 4 shown in FIG. 3, the pixel data of the area of interest after quantization is (a) (b) (c) (d) in FIG.
It is possible to correspond in the order of (e).

【0015】以上に注目エリアAの量子化手順を説明し
たが、この結果、発生した誤差分は、画素エリア、B,
C,D,Eの各ブロックに配分される。配分の方法につ
いては、従来の誤差拡散と同様に比例配分をしたり、乱
数により配分の重みをかえたりすることが可能であり、
ここでは、その方法は問わない。いずれにしても誤差分
を全て周辺画素に分配する。
The quantization procedure of the attention area A has been described above. As a result, the generated error is the pixel area, B,
It is distributed to each block of C, D, and E. Regarding the method of distribution, it is possible to perform proportional distribution as in the conventional error diffusion, or to change the weight of distribution by random numbers,
Here, the method does not matter. In any case, all the error components are distributed to the peripheral pixels.

【0016】以上で、Aを中心としたエリアについての
処理を完了し、次に、対象エリアを主走査方向へ2画素
ずらし、図1を中心に考えると、Bの画素エリアを対象
エリアとして、上記Aの方法と同じ手順で量子化を行っ
ていく。そして、さらに、主走査方向が終了すれば、対
象画素を副走査方向に2画素ずらすことで、次のライン
についても量子化を行う。
As described above, the processing for the area centered on A is completed, and then the target area is shifted by 2 pixels in the main scanning direction. Considering FIG. 1 as the center, the pixel area of B is set as the target area. Quantization is performed in the same procedure as the method of A above. Further, when the main scanning direction is completed, the target pixel is shifted by two pixels in the sub scanning direction, so that the next line is also quantized.

【0017】上述のようにして、主/副走査の全ての画
素が量子化されるわけであるが、当量子化においては、
対象画素を4画素とすることで、4×255=1020
階調の濃度保存を行ったことになる。面積的には、1画
素当り255階調であるにもかかわらず、1020階調
の表能力を持ったものとなり、中間調画像に対して、緻
密な、表現力の豊かな画像処理を実行できる。
As described above, all pixels in the main / sub-scan are quantized. In this quantization,
By setting the target pixel to 4 pixels, 4 × 255 = 1020
This means that the gradation density has been saved. In terms of area, although it has 255 gradations per pixel, it has a display capability of 1020 gradations, and it is possible to perform precise and expressive image processing on halftone images. .

【0018】図6(a)は、4×4画素を対象エリアと
したときの量子化の優先順位を、特定画素を中心に同心
円周上に順位付けを行ったものであるが、このような重
み付けにより、中間調を網点表現の手法で処理出来るこ
とも可能となる。また、図6(b)のように、特定の走
査方向に重み付けすることで、中間調をすじ表現するこ
とも可能となる。それゆえ、このような重み付けされた
変換テーブルを多種類準備しておき、これらをソフトウ
エアにて任意に切り換えるようにすれば、多種多用の画
像処理に使用でき、大きなメリットをうみ出すことがで
きる。
FIG. 6A shows the order of priority of quantization when 4 × 4 pixels are set as the target area on a concentric circle centered on a specific pixel. By weighting, it becomes possible to process halftones by the method of halftone dot expression. In addition, as shown in FIG. 6B, by weighting in a specific scanning direction, it becomes possible to express a halftone. Therefore, if a large number of such weighted conversion tables are prepared and these can be arbitrarily switched by software, they can be used for various types of image processing, and great advantages can be obtained. .

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
によると、画像データの量子化に当って処理対象画素エ
リアを複数のN×M画素に拡大して処理するようにした
ので、中間調のダイナミックレンジをN×M倍に増加さ
せることができ、更には、量子化を誤差拡散法によって
行い、更には、該誤差拡散法において、N×M個の画素
において、予め所定の量子化の重み付けを行うことによ
って、中間調画像に対して、緻密な、表現力の豊かな画
像処理を行うことができる。
As is apparent from the above description, according to the present invention, when the image data is quantized, the pixel area to be processed is expanded to a plurality of N × M pixels for processing. The dynamic range of the tone can be increased N × M times, and the quantization is performed by the error diffusion method, and further, in the error diffusion method, predetermined quantization is performed in N × M pixels. By performing the weighting of, it is possible to perform fine and expressive image processing on the halftone image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための図で、対象
画素エリア(A,B,…E)を、N(=2),M(=
2)の4倍に拡大した場合の例を示す図である。
FIG. 1 is a diagram for explaining an embodiment of the present invention, in which target pixel areas (A, B, ... E) are designated as N (= 2) and M (=).
It is a figure which shows the example at the time of expanding 4 times of 2).

【図2】量子化算出法の一例をグラフにて示した図であ
る。
FIG. 2 is a graph showing an example of a quantization calculation method.

【図3】図2に示した量子化算出法を数値データとして
示したテーブルである。
FIG. 3 is a table showing the quantization calculation method shown in FIG. 2 as numerical data.

【図4】量子化パターン0,1,2,3,4の量子化後
の注目エリアの画素データを示す図である。
FIG. 4 is a diagram showing pixel data of an attention area after quantization of quantization patterns 0, 1, 2, 3, 4.

【図5】注目画素エリアでの画素(2×2)を示す図で
ある。
FIG. 5 is a diagram showing pixels (2 × 2) in a target pixel area.

【図6】量子化の重み付けの例を示す図である。FIG. 6 is a diagram showing an example of weighting for quantization.

【図7】誤差拡散法の例を説明するための図である。FIG. 7 is a diagram for explaining an example of an error diffusion method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 量子化対象エリアをN×M画素とし、各
画素単位で量子化を行うことを特徴とする画像処理方法
(ただし、N,Mは整数で、N×M≧2である)。
1. An image processing method, characterized in that a quantization target area is N × M pixels, and quantization is performed for each pixel (where N and M are integers and N × M ≧ 2). .
【請求項2】 前記量子化を誤差拡散法にて行うことを
特徴とする請求項1記載の画像処理方法。
2. The image processing method according to claim 1, wherein the quantization is performed by an error diffusion method.
【請求項3】 前記誤差拡散法において、前記N×M個
の画素に対して予め量子化の重み付を行うことを特徴と
する請求項2に記載の画像処理方法。
3. The image processing method according to claim 2, wherein, in the error diffusion method, quantization weighting is performed on the N × M pixels in advance.
JP4354489A 1992-12-16 1992-12-16 Image processing method Expired - Fee Related JP2898836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4354489A JP2898836B2 (en) 1992-12-16 1992-12-16 Image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4354489A JP2898836B2 (en) 1992-12-16 1992-12-16 Image processing method

Publications (2)

Publication Number Publication Date
JPH06189119A true JPH06189119A (en) 1994-07-08
JP2898836B2 JP2898836B2 (en) 1999-06-02

Family

ID=18437918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4354489A Expired - Fee Related JP2898836B2 (en) 1992-12-16 1992-12-16 Image processing method

Country Status (1)

Country Link
JP (1) JP2898836B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164502B2 (en) 2000-09-29 2007-01-16 Fujitsu Limited Image processing method, and image processor and storage medium thereof
US7692817B2 (en) 2004-06-23 2010-04-06 Sharp Kabushiki Kaisha Image processing method, image processing apparatus, image forming apparatus, computer program product and computer memory product for carrying out image processing by transforming image data to image data having spatial frequency components
US7809205B2 (en) 2005-08-30 2010-10-05 Sharp Kabushiki Kaisha Image processing method, image processing apparatus, image forming apparatus and recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164502B2 (en) 2000-09-29 2007-01-16 Fujitsu Limited Image processing method, and image processor and storage medium thereof
US7692817B2 (en) 2004-06-23 2010-04-06 Sharp Kabushiki Kaisha Image processing method, image processing apparatus, image forming apparatus, computer program product and computer memory product for carrying out image processing by transforming image data to image data having spatial frequency components
US7809205B2 (en) 2005-08-30 2010-10-05 Sharp Kabushiki Kaisha Image processing method, image processing apparatus, image forming apparatus and recording medium

Also Published As

Publication number Publication date
JP2898836B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US6271936B1 (en) Combining error diffusion, dithering and over-modulation for smooth multilevel printing
US4668995A (en) System for reproducing mixed images
US4651287A (en) Digital image processing algorithm for output devices with discrete halftone gray scale capability
EP0659012A2 (en) Method for quantization of gray level pixel data with extended distribution set
JPH08107500A (en) Error diffusion halfton processing system and method of using homogeneous response of high/low brightness picture area
JPH07120414B2 (en) Apparatus and method for generating halftone threshold value of image
EP0781034B1 (en) Image processing apparatus and method
JPH05268462A (en) Picture processor
JPH0785273A (en) Frequency-modulated halftone image and formation method
JP2905107B2 (en) Method for creating threshold matrix and method and apparatus for halftoning image
JPH06189119A (en) Image processing method
US5825509A (en) Image processing device with error-diffusion quantization function
JP2882531B2 (en) Image processing device
US6006011A (en) Target patterns controlled error management
JP2003110852A (en) Halftone processing method and processor
JP2003198843A (en) Reduced-buffer error diffusion
JPS61248661A (en) Half tone picture processing method
JP2608404B2 (en) Image processing device
JP2662405B2 (en) Image processing device
JP3302426B2 (en) Image processing method
JPH01212073A (en) Picture data reducing device
KR100522589B1 (en) Adaptive Color Error Diffusion Method
JPH04328957A (en) Method of quantizing white and black or color image
JPH09214760A (en) Picture data binarizing device
JPH0126589B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees