JPH0618870A - Projection type display device - Google Patents
Projection type display deviceInfo
- Publication number
- JPH0618870A JPH0618870A JP4178025A JP17802592A JPH0618870A JP H0618870 A JPH0618870 A JP H0618870A JP 4178025 A JP4178025 A JP 4178025A JP 17802592 A JP17802592 A JP 17802592A JP H0618870 A JPH0618870 A JP H0618870A
- Authority
- JP
- Japan
- Prior art keywords
- light
- plane
- display element
- present
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、照明光を照射すること
により、表示素子に形成された光学像をスクリーン上に
投写して画像を得る投写型表示装置に関するもので、特
に、表示パネルが小型であるにもかかわらず投写画像に
高輝度が求められる投写型表示装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection type display device which obtains an image by projecting an optical image formed on a display element onto a screen by irradiating illumination light, and more particularly to a display panel. The present invention relates to a projection display device that requires high brightness for a projected image despite its small size.
【0002】[0002]
【従来の技術】近年、大画面、軽量、小型、安価等の優
れた特性を持つ投写型表示装置が、直視型表示装置に代
わるものとして注目されている。特に、低消費電力、低
駆動電圧、軽量、小型等の特長を有する透過型液晶表示
素子を用いた投写型表示装置は、プロジェクターテレ
ビ、オーバーヘッドプロジェクター等に実用化され、そ
の実用範囲はさらに拡大しつつある。2. Description of the Related Art In recent years, a projection type display device having excellent characteristics such as a large screen, light weight, small size and low cost has been attracting attention as an alternative to the direct view type display device. In particular, a projection display device using a transmissive liquid crystal display element, which has features such as low power consumption, low driving voltage, light weight, and small size, has been put to practical use in projector TVs, overhead projectors, etc., and its practical range is further expanded. It's starting.
【0003】しかし、投写型表示装置においては、スク
リーン上での高輝度を実現するために強強度の照射光が
必要とされるので、光源に対しては、耐久性の低下、消
費電力の増大、表示素子に対しては、熱および光による
特性の劣化などの様々な問題が発生している。特に、液
晶表示素子を用いた投写型表示装置では、表示素子はい
っそう小型化する傾向にあり、これにともなってさらに
強強度の照射光が必要とされているが、液晶表示素子の
動作には大きな温度依存性が存在し、その駆動手段は光
物性効果のために光照射に敏感であることから、照射光
による発熱や照射光そのものが画質やその経時変化にお
よぼす影響が深刻な問題となっている。However, in the projection type display device, since a high intensity irradiation light is required to realize high brightness on the screen, the durability of the light source is reduced and the power consumption is increased. The display element has various problems such as deterioration of characteristics due to heat and light. In particular, in a projection display device using a liquid crystal display element, the display element tends to be further downsized, and accordingly, irradiation light of higher intensity is required. Since there is a large temperature dependence and the driving means is sensitive to light irradiation due to the optical property effect, the heat generated by the irradiation light and the effect of the irradiation light itself on the image quality and its change over time become a serious problem. ing.
【0004】そこで、照射光の強度を上げることなくス
クリーン上の輝度を向上させる手段として、正の焦点距
離をもつ光学的手段であるマイクロレンズを表示素子の
光入射側に配置するという方法が考案された。これは、
表示素子の遮光部に照射されていた損失光を、絵素開口
部へと集光させて有効に利用するものであり、言い替え
れば、表示素子の実際の開口率(幾何開口率)は現行の
ままで、実効開口率(有効利用照明光/全照明光)を向
上させるものである。Therefore, as a means for improving the brightness on the screen without increasing the intensity of the irradiation light, a method of disposing a microlens, which is an optical means having a positive focal length, on the light incident side of the display element is devised. Was done. this is,
The loss light radiated to the light-shielding portion of the display element is focused on the pixel aperture portion and is effectively used. In other words, the actual aperture ratio (geometric aperture ratio) of the display element is In addition, the effective aperture ratio (effectively used illumination light / total illumination light) is improved.
【0005】だが、従来の構成では、マイクロレンズが
その表面に形成されている透明基板は表示素子表面に密
着して配置されているため、マイクロレンズの存在する
平面と絵素の存在する平面間の距離は、表示パネルの強
度上の制約から決定される表示素子の基板厚さ等の条件
によって規定され、実効開口率向上のために最適な設計
にはなっていない。このために、入射側光学系の精度お
よび画面輝度増加を目的とする入射光束増大の要請か
ら、照明光が一定の入射分布角(θmax)を持つため
に、絵素遮光部にもかなりの光量が照射されたままであ
り、実効開口率向上効果は不十分であった。However, in the conventional structure, since the transparent substrate having the microlenses formed on the surface thereof is disposed in close contact with the surface of the display element, the plane between the plane where the microlenses are present and the plane where the picture elements are present is located. The distance is defined by conditions such as the substrate thickness of the display element, which is determined by the constraint on the strength of the display panel, and is not the optimum design for improving the effective aperture ratio. For this reason, since the illumination light has a constant incident distribution angle (θmax) due to the requirement of increasing the incident light flux for the purpose of increasing the accuracy of the incident side optical system and the screen brightness, a considerable amount of light is also applied to the pixel light shielding part. Was still irradiated, and the effect of improving the effective aperture ratio was insufficient.
【0006】[0006]
【発明が解決しようとする課題】このように、従来の構
成では、十分な実効開口率向上効果は得られておらず、
スクリーン上での高画面輝度を達成するためにはやはり
強強度の照明光が必要とされ、前述のような光源の耐久
性の低下、消費電力の増大、表示素子の熱および光によ
る特性の劣化などの問題が発生している。そこで、本発
明は、実効開口率を向上させることにより、耐久性、消
費電力上の問題を回避しつつ、高画面輝度を実現する手
段を提供することを目的とする。As described above, in the conventional structure, the effect of improving the effective aperture ratio is not sufficiently obtained.
In order to achieve high screen brightness on the screen, strong illumination light is still required, and the durability of the light source is reduced as described above, power consumption is increased, and the characteristics of the display element due to heat and light are deteriorated. There are problems such as. Therefore, an object of the present invention is to provide means for realizing high screen brightness while avoiding problems in durability and power consumption by improving the effective aperture ratio.
【0007】[0007]
【課題を解決するための手段】この目的を達成するため
に、本発明は、照明光が入射する絵素開口部の存在する
平面と絵素に対応して配置された正の焦点距離を持つ光
学的手段(マイクロレンズ)の存在する平面間の距離
(d)を、少なくともひとつの方向からみたときの絵素
幅(Pp)と開口部幅(Kp)、照明光入射分布角(θma
x)、および出射側光学系最大取込角(φmax)に対し
て、 (1/2)(Pp-Kp)/(tan(φmax)-2tan(θmax))≦d≦(1/2)Kp/
tan(θmax) の関係を満足するように設定するものである。In order to achieve this object, the present invention has a plane in which a pixel opening in which illumination light is incident exists and a positive focal length arranged corresponding to the pixel. The pixel width (Pp) and aperture width (Kp) when the distance (d) between the planes where the optical means (microlens) exists is viewed from at least one direction, the illumination light incident distribution angle (θma)
x), and the maximum capture angle (φmax) of the output side optical system, (1/2) (Pp-Kp) / (tan (φmax) -2tan (θmax)) ≦ d ≦ (1/2) Kp /
It is set so as to satisfy the relationship of tan (θmax).
【0008】[0008]
【作用】上記した範囲で投写型表示素子を構成すること
によって、表示パネルへの照明光を効率的に絵素開口部
へと送り込むことができるので、実効的な開口率を最大
にすることが可能となる。これによって極めて光利用効
率のよい投写型表示装置を実現できる。By constructing the projection type display element in the above range, the illumination light to the display panel can be efficiently sent to the pixel aperture, so that the effective aperture ratio can be maximized. It will be possible. As a result, it is possible to realize a projection display device with extremely high light utilization efficiency.
【0009】[0009]
【実施例】(図1)に本発明の提唱する開口部平面とマ
イクロレンズ平面の距離(d)の領域を示すグラフを掲
載する。EXAMPLE FIG. 1 shows a graph showing the region of the distance (d) between the aperture plane and the microlens plane proposed by the present invention.
【0010】(実施例1)本発明の第1の実施例につい
て、(図3)を用いて説明する。ここでは、照明光透過
率を制御する光シャッタ手段として、液晶層、液晶層に
電圧を印加するための電極群、および印加する電圧を変
化させるための手段であるTFTを備えた、液晶表示素
子を用いた。(Embodiment 1) A first embodiment of the present invention will be described with reference to FIG. Here, a liquid crystal display element including a liquid crystal layer, an electrode group for applying a voltage to the liquid crystal layer, and a TFT that is a means for changing the applied voltage as an optical shutter means for controlling the illumination light transmittance. Was used.
【0011】101aは、照明光を集光させるための正の焦
点距離を持つ光学的手段である凸型マイクロレンズであ
り、凸レンズの形状を持つ。100aは表示素子側透明基板
で、凸型マイクロレンズ101aは表示素子側透明基板100a
の表面にマトリクス状に多数個形成されている。この表
面がマイクロレンズ平面101pである。100bは入射側透明
基板で、表示素子側透明基板100aの凸型マイクロレンズ
101a側の表面に密着して配置され、透明基板100が形成
される。201は絵素であり、表示素子上にマトリクス状
に複数個配置され、各々が対向する凸型マイクロレンズ
101aと対応している。Reference numeral 101a is a convex microlens which is an optical means having a positive focal length for converging the illumination light, and has a convex lens shape. 100a is a display element side transparent substrate, convex microlenses 101a is a display element side transparent substrate 100a
Many are formed in a matrix on the surface of. This surface is the microlens plane 101p. 100b is an incident side transparent substrate, and a convex microlens of the display element side transparent substrate 100a.
The transparent substrate 100 is formed in close contact with the surface on the side of 101a. 201 is a picture element, and a plurality of convex microlenses are arranged on the display element in a matrix and face each other.
Corresponds to 101a.
【0012】211は各絵素201に設けられた透光用の開口
部であり、遮光用の遮光部212に囲まれて照明光が入射
する部分と定義される。213は、液晶電圧印加用電極の
ひとつである対向電極である。210は対向基板で、開口
部211、遮光部212、および対向電極213が、表面上に形
成されている。この表面が開口部平面211pである。221
はもうひとつの液晶電圧印加電極となる絵素電極で、対
向電極213間と容量を形成する。Reference numeral 211 denotes a light-transmitting opening provided in each picture element 201, and is defined as a portion surrounded by a light-shielding portion 212 for light-shielding and on which illumination light enters. Reference numeral 213 is a counter electrode which is one of the liquid crystal voltage applying electrodes. 210 is a counter substrate, on which an opening 211, a light shielding part 212, and a counter electrode 213 are formed on the surface. This surface is the opening plane 211p. 221
Is another picture element electrode serving as a liquid crystal voltage applying electrode and forms a capacitance between the opposing electrodes 213.
【0013】222は、液晶印加電圧変化手段として絵素
電極221に接続されたTFTである。220はアレイ基板
で、絵素電極221およびTFT222が表面に形成されてい
る。なお、TFT222を駆動させるために上記の他多数
の構造がアレイ基板220上に形成されているが、本発明
と直接関係はないので、ここでは説明は省略する。対向
基板210とアレイ基板220とは、対向電極213と絵素電極2
21とが対向するように配置され、その間には液晶層230
が封入されている。A TFT 222 is connected to the picture element electrode 221 as a liquid crystal applied voltage changing means. 220 is an array substrate on which a pixel electrode 221 and a TFT 222 are formed. It should be noted that many other structures described above are formed on the array substrate 220 in order to drive the TFT 222, but since they are not directly related to the present invention, description thereof is omitted here. The counter substrate 210 and the array substrate 220 are a counter electrode 213 and a pixel electrode 2
21 and the liquid crystal layer 230 between them.
Is enclosed.
【0014】200は液晶表示素子で、対向基板210、アレ
イ基板220、および液晶層230から構成されている。透明
基板100および液晶表示素子200は、それぞれ表示素子側
透明基板100a側と対向基板210側とで接合され、表示パ
ネル300をつくる。400は照明光で、一定の入射分布角θ
(≦θmax)をもって、透明基板100側から表示パネル30
0に入射する。Reference numeral 200 denotes a liquid crystal display element, which comprises a counter substrate 210, an array substrate 220 and a liquid crystal layer 230. The transparent substrate 100 and the liquid crystal display element 200 are bonded to each other on the display element side transparent substrate 100a side and the counter substrate 210 side to form the display panel 300. 400 is the illumination light, with a constant incident distribution angle θ
Display panel 30 from the transparent substrate 100 side with (≦ θmax)
Incident on 0.
【0015】この実施例の構成においては、透明基板を
2枚に分割することにより、d を適当な値にとりつつ、
表示パネルの強度を保つことが可能となっている。本発
明に関わる各種パラメータは、前述の本発明の提示する
範囲内にあり、具体的には以下に示すとおりであった。In the structure of this embodiment, by dividing the transparent substrate into two pieces, while keeping d at an appropriate value,
It is possible to maintain the strength of the display panel. The various parameters related to the present invention are within the range presented by the present invention described above, and specifically are as follows.
【0016】d=400μm Kp=42μm Pp=72μm θmax=2゜ φmax=16゜ この表示パネルに実際に照明光を照射して、照度を測定
することにより実効開口率を評価したところ、 幾何開口率 35% → 実効開口率 72% となり、明らかな実効開口率向上効果がみられた。D = 400 μm Kp = 42 μm Pp = 72 μm θmax = 2 ° φmax = 16 ° This display panel was actually irradiated with illumination light and the effective aperture ratio was evaluated by measuring the illuminance. 35% → Effective aperture ratio was 72%, showing a clear effect of improving the effective aperture ratio.
【0017】(実施例2)本発明の第2の実施例につい
て、(図4)を用いて説明する。凸型マイクロレンズ10
1aは対向基板210表面上に直接形成され、表示素子側透
明基板は存在せず、入射側透明基板100bは、対向基板21
0の凸型マイクロレンズ101a側の表面に密着して配置さ
れている。その他の構成および各種パラメータは、実施
例1に同じであった。この構成においても、 幾何開口率 35% → 実効開口率 66% となり、明らかな実効開口率向上効果がみられた。(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. Convex microlens 10
1a is formed directly on the surface of the counter substrate 210, there is no display element side transparent substrate, and the incident side transparent substrate 100b is the counter substrate 21.
It is placed in close contact with the surface of the 0-shaped convex microlens 101a side. Other configurations and various parameters were the same as in Example 1. Even in this configuration, the geometrical aperture ratio was 35% → the effective aperture ratio was 66%, showing a clear effect of improving the effective aperture ratio.
【0018】(実施例3)本発明の第3の実施例につい
て、(図5)を用いて説明する。凸型マイクロレンズ10
1aは入射側透明基板100b上に形成され、表示素子側透明
基板は存在せず、入射側透明基板100bは凸型マイクロレ
ンズ101a側で直接対向基板210に密着している。その他
の構成および各種パラメータは、実施例1に同じであっ
た。この構成においても、 幾何開口率 35% → 実効開口率 67% となり、明らかな実効開口率向上効果がみられた。(Embodiment 3) A third embodiment of the present invention will be described with reference to FIG. Convex microlens 10
1a is formed on the incident side transparent substrate 100b, there is no display element side transparent substrate, and the incident side transparent substrate 100b is in direct contact with the counter substrate 210 on the convex microlens 101a side. Other configurations and various parameters were the same as in Example 1. Even in this configuration, the geometrical aperture ratio was 35% → the effective aperture ratio was 67%, showing a clear effect of improving the effective aperture ratio.
【0019】(実施例4)本発明の第4の実施例につい
て、(図6)を用いて説明する。イオン照射マイクロレ
ンズ101bは、イオン照射による屈折率変化によって、表
示素子側透明基板100a上に形成したものである。その他
の構成および各種パラメータは、実施例1に同じであっ
た。この構成においても、 幾何開口率 35% → 実効開口率 61% となり、明らかな実効開口率向上効果がみられた。(Embodiment 4) A fourth embodiment of the present invention will be described with reference to FIG. The ion irradiation microlens 101b is formed on the display element side transparent substrate 100a by a change in the refractive index due to ion irradiation. Other configurations and various parameters were the same as in Example 1. Even in this configuration, the geometric aperture ratio was 35% → the effective aperture ratio was 61%, and a clear effect of improving the effective aperture ratio was observed.
【0020】(実施例5)本発明の第5の実施例につい
て、(図7)を用いて説明する。イオン照射マイクロレ
ンズ101bは、イオン照射による屈折率変化によって、対
向基板210上に形成したものである。その他の構成およ
び各種パラメータは、実施例2に同じであった。この構
成においても、 幾何開口率 35% → 実効開口率 57% となり、明らかな実効開口率向上効果がみられた。(Embodiment 5) A fifth embodiment of the present invention will be described with reference to FIG. The ion irradiation microlens 101b is formed on the counter substrate 210 by a change in the refractive index due to ion irradiation. Other configurations and various parameters were the same as in Example 2. Even in this configuration, the geometrical aperture ratio was 35% → the effective aperture ratio was 57%, and a clear effect of improving the effective aperture ratio was observed.
【0021】(実施例6)本発明の第6の実施例につい
て、(図8)を用いて説明する。イオン照射マイクロレ
ンズ101bは、イオン照射による屈折率変化によって、入
射側透明基板100b上に形成したものである。その他の構
成および各種パラメータは、実施例3に同じであった。
この構成においても、 幾何開口率 35% → 実効開口率 59% となり、明らかな実効開口率向上効果がみられた。(Embodiment 6) A sixth embodiment of the present invention will be described with reference to FIG. The ion irradiation microlens 101b is formed on the incident side transparent substrate 100b by a change in the refractive index due to ion irradiation. Other configurations and various parameters were the same as in Example 3.
Even in this configuration, the geometrical aperture ratio was 35% → the effective aperture ratio was 59%, and a clear effect of improving the effective aperture ratio was observed.
【0022】[0022]
【発明の効果】絵素開口部の存在する平面と光学的手段
(マイクロレンズ)の存在する平面間の距離(d)を、
本発明が述べるところの範囲に規定することにより、従
来のマイクロレンズの構成では達成できなかった大幅な
実効開口率向上を実現し、光源および表示素子の特性を
最大限に保つ範囲に照射光の強度を抑制すると同時に、
高画面輝度を得ることを可能にする。The distance (d) between the plane in which the pixel aperture is present and the plane in which the optical means (microlens) is present is
By defining the range of the present invention, it is possible to realize a significant improvement in the effective aperture ratio that cannot be achieved by the conventional microlens structure, and to adjust the irradiation light within the range in which the characteristics of the light source and the display element are kept to the maximum. While suppressing the strength,
It enables to obtain high screen brightness.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の提唱する開口部平面とマイクロレンズ
平面の距離(d)の領域を示すグラフFIG. 1 is a graph showing a region of a distance (d) between an aperture plane and a microlens plane proposed by the present invention.
【図2】マイクロレンズによる実効開口率向上効果を説
明する光行路図FIG. 2 is an optical path diagram for explaining the effect of improving the effective aperture ratio by a microlens.
【図3】本発明の実施例1の表示パネル構成図FIG. 3 is a configuration diagram of a display panel according to the first embodiment of the present invention.
【図4】本発明の実施例2の表示パネル構成図FIG. 4 is a configuration diagram of a display panel according to a second embodiment of the present invention.
【図5】本発明の実施例3の表示パネル構成図FIG. 5 is a configuration diagram of a display panel according to a third embodiment of the present invention.
【図6】本発明の実施例4の表示パネル構成図FIG. 6 is a configuration diagram of a display panel according to a fourth embodiment of the present invention.
【図7】本発明の実施例5の表示パネル構成図FIG. 7 is a configuration diagram of a display panel according to a fifth embodiment of the present invention.
【図8】本発明の実施例6の表示パネル構成図FIG. 8 is a configuration diagram of a display panel according to a sixth embodiment of the present invention.
【図9】従来例の表示パネル構成図FIG. 9 is a block diagram of a conventional display panel.
100 透明基板 100a 入射側透明基板 100b 表示素子側透明基板 101 マイクロレンズ 101a 凸型マイクロレンズ 101b イオン照射マイクロレンズ 101p マイクロレンズ平面 200 液晶表示素子 201 絵素 210 対向基板 211 開口部 211p 開口部平面 212 遮光部 213 対向電極 220 アレイ基板 221 絵素電極 222 TFT 300 表示パネル 400 照明光 100 Transparent substrate 100a Incident side transparent substrate 100b Display element side transparent substrate 101 Micro lens 101a Convex micro lens 101b Ion irradiation micro lens 101p Micro lens plane 200 Liquid crystal display element 201 Picture element 210 Opposed substrate 211 Opening 211p Opening plane 212 Light blocking 213 Counter electrode 220 Array substrate 221 Pixel electrode 222 TFT 300 Display panel 400 Illumination light
Claims (1)
手段を備えた開口部がマトリクス状に複数個平面上に配
置された表示素子と、前記開口部に対応して、正の焦点
距離をもつ光学的手段がマトリクス状に複数個平面上に
配置された透明基板とを具備した投写型表示装置におい
て、前記開口部の存在する平面と前記光学的手段の存在
する平面間の距離(d)が、少なくともひとつの方向に
対する絵素幅(Pp)と開口部幅(Kp)、前記照明光入射
分布角(θmax)、および出射側光学系最大取込角(φm
ax)に対して、 (1/2)(Pp-Kp)/(tan(φmax)-2tan(θmax))≦d≦(1/2)Kp/
tan(θmax) の関係を満足することを特徴とする投写型表示装置。1. A display element having a plurality of apertures arranged in a matrix on a plane and having a light shutter means for controlling the transmittance of incident illumination light, and a positive focal length corresponding to the apertures. In a projection display device comprising a plurality of optical means having a matrix arranged in a matrix on a transparent substrate, the distance between the plane where the opening is present and the plane where the optical means is present (d ) Is the pixel width (Pp) and the opening width (Kp) in at least one direction, the illumination light incident distribution angle (θmax), and the exit side optical system maximum acceptance angle (φm).
ax), (1/2) (Pp-Kp) / (tan (φmax) -2tan (θmax)) ≦ d ≦ (1/2) Kp /
A projection display device characterized by satisfying the relationship of tan (θmax).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4178025A JPH0618870A (en) | 1992-07-06 | 1992-07-06 | Projection type display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4178025A JPH0618870A (en) | 1992-07-06 | 1992-07-06 | Projection type display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0618870A true JPH0618870A (en) | 1994-01-28 |
Family
ID=16041271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4178025A Pending JPH0618870A (en) | 1992-07-06 | 1992-07-06 | Projection type display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0618870A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4866553A (en) * | 1985-07-19 | 1989-09-12 | Kabushiki Kaisha Toshiba | Magnetic disk apparatus having a structure suitable for measuring a minute flying weight |
JP2008032344A (en) * | 2006-07-31 | 2008-02-14 | Daikin Ind Ltd | Refrigerating device |
-
1992
- 1992-07-06 JP JP4178025A patent/JPH0618870A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4866553A (en) * | 1985-07-19 | 1989-09-12 | Kabushiki Kaisha Toshiba | Magnetic disk apparatus having a structure suitable for measuring a minute flying weight |
JP2008032344A (en) * | 2006-07-31 | 2008-02-14 | Daikin Ind Ltd | Refrigerating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5815229A (en) | Microlens imbedded liquid crystal projection panel including thermal insulation layer | |
KR100213401B1 (en) | Projector and optical modulation element array used in it | |
JP3344635B2 (en) | Color liquid crystal display | |
US5455694A (en) | Liquid crystal display with pixel shape same as image of light source through microlens | |
KR940000589B1 (en) | Image display device of projection type | |
JP2002182008A (en) | Optical lens system, image display device, microlens array, liquid crystal display element and projection type liquid crystal display device | |
US6680762B2 (en) | Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio | |
KR20060116033A (en) | Display apparatus and electronic device | |
TW200807134A (en) | Liquid crystal projector and image reproducing device | |
JP4096346B2 (en) | Light modulation element and image projection display device | |
JPH01189685A (en) | Liquid crystal light valve and video projector with liquid crystal light valve | |
US5606436A (en) | Liquid crystal projection panel construction and method of making same | |
JP2004021209A (en) | Microlens array, liquid crystal panel, projection type display device and manufacture method of microlens array | |
JP2000147500A (en) | Image projector | |
JP2008097032A (en) | Micro-lens array, liquid crystal display element, and liquid crystal display device of projection-type | |
JPH0618870A (en) | Projection type display device | |
JPH0430140A (en) | Projection type color liquid crystal display device | |
JPH1184337A (en) | Liquid crystal device and projection display device | |
JPH07199188A (en) | Liquid crystal display element and liquid crystal display device using the element | |
JPH08227103A (en) | Projection type display device | |
JPH06208112A (en) | Direct-view display device | |
JPH0361927A (en) | Liquid crystal display device | |
JPH1124060A (en) | Liquid crystal device and projection type display device | |
JPH06242411A (en) | Light valve device and display device using it | |
JP2883430B2 (en) | Liquid crystal display |