JPH0618865U - Gas-liquid separator - Google Patents

Gas-liquid separator

Info

Publication number
JPH0618865U
JPH0618865U JP5400292U JP5400292U JPH0618865U JP H0618865 U JPH0618865 U JP H0618865U JP 5400292 U JP5400292 U JP 5400292U JP 5400292 U JP5400292 U JP 5400292U JP H0618865 U JPH0618865 U JP H0618865U
Authority
JP
Japan
Prior art keywords
gas
liquid
refrigerant
phase refrigerant
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5400292U
Other languages
Japanese (ja)
Inventor
毅 蛭子
克宏 川端
浩幸 山下
晃一 安尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP5400292U priority Critical patent/JPH0618865U/en
Publication of JPH0618865U publication Critical patent/JPH0618865U/en
Pending legal-status Critical Current

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

(57)【要約】 【目的】 壁面衝突型気液分離器の液滴飛散を防止して
気液分離性能を向上させる。 【構成】 蒸発器などからの気液2相冷媒噴流が供給さ
れる気液分離器の気液分離室内に冷媒噴流の衝撃を緩和
するとともに毛細管現象によって液冷媒を吸収する多孔
質部材を設け、2相冷媒導入時の液滴の飛散による液冷
媒のガス冷媒取出口側への侵入を防止した。
(57) [Summary] [Purpose] To prevent the droplets from scattering in the wall-impacting gas-liquid separator and improve the gas-liquid separation performance. A porous member is provided in a gas-liquid separation chamber of a gas-liquid separator to which a gas-liquid two-phase refrigerant jet is supplied from an evaporator and the like, which absorbs the impact of the refrigerant jet and absorbs the liquid refrigerant by a capillary phenomenon. The liquid refrigerant was prevented from entering the gas refrigerant outlet side due to the scattering of droplets when the two-phase refrigerant was introduced.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本願考案は、ヒートポンプ式空気調和機の冷凍回路に使用される気液分離器に 関するものである。 The present invention relates to a gas-liquid separator used in a refrigeration circuit of a heat pump type air conditioner.

【0002】[0002]

【従来の技術】[Prior art]

一般に容量制御システムやマルチ運転制御システムを採用したヒートポンプ式 空気調和機の冷凍回路では、例えば蒸発器で蒸発し切れなかった液冷媒が直接圧 縮機に入って液圧縮をすることがないようにし、又システムの冷媒量を適正に調 整するために液冷媒とガス冷媒とを分離する気液分離器(液溜め器)が用いられて いる。 Generally, in the refrigeration circuit of a heat pump type air conditioner that adopts a capacity control system or a multi-operation control system, for example, make sure that the liquid refrigerant that has not completely evaporated in the evaporator does not enter the compressor directly for liquid compression. Further, a gas-liquid separator (liquid reservoir) that separates a liquid refrigerant and a gas refrigerant is used in order to appropriately adjust the amount of refrigerant in the system.

【0003】 この気液分離器は、通常蒸発器の出口と圧縮機の吸込口との間に位置して設け られ、例えば図10に示すように、圧縮機の容量やチャージ量に応じた大きさの 気液分離室1aを有する筺体1の上部にガス冷媒の取出口(圧縮機吸込口)2を、 また同底部に液冷媒の取出口3を各々設け、蒸発器からの2相冷媒導入口4を図 に示すように一側面側から他方側の内壁面方向に向けて導入し、壁面に衝突させ て飛散させガス冷媒と液冷媒との重量差を利用してガス冷媒と液冷媒とを上下方 向に分離するようになっている。This gas-liquid separator is usually provided between the outlet of the evaporator and the suction port of the compressor, and as shown in FIG. 10, for example, has a size corresponding to the capacity and charge amount of the compressor. A gas refrigerant outlet (compressor inlet) 2 is provided at the top of a housing 1 having a gas-liquid separation chamber 1a, and a liquid refrigerant outlet 3 is provided at the bottom of the housing 1 to introduce a two-phase refrigerant from an evaporator. As shown in the figure, the port 4 is introduced from the one side surface toward the inner wall surface on the other side, collides against the wall surface, and is scattered to utilize the weight difference between the gas refrigerant and the liquid refrigerant to generate the gas refrigerant and the liquid refrigerant. Are separated into upper and lower parts.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、上記蒸発器などの出口から気液分離室1a内に導入される気液2相 状態の冷媒は、相当の噴出速度を有している。 However, the gas-liquid two-phase refrigerant introduced into the gas-liquid separation chamber 1a from the outlet of the evaporator or the like has a considerable ejection speed.

【0005】 したがって、上記気液分離室1aの内壁面に向けて2相冷媒を直接噴出した場 合には、気液が激しく飛び散り、液滴の飛散や気泡の巻き込みがおこり、ガス冷 媒出口への液冷媒の混入や液冷媒出口へのガス冷媒の混入が生じる問題がある。Therefore, when the two-phase refrigerant is directly ejected toward the inner wall surface of the gas-liquid separation chamber 1a, the gas-liquid is splattered violently, droplets are scattered and bubbles are entrained, and the gas cooling medium outlet is generated. There is a problem that liquid refrigerant is mixed into the liquid refrigerant and gas refrigerant is mixed into the liquid refrigerant outlet.

【0006】 このように従来の気液分離器の構造では、ガス冷媒中に液冷媒が混入し、良好 な気液分離を行うことができなかった。As described above, in the structure of the conventional gas-liquid separator, the liquid refrigerant is mixed in the gas refrigerant, and it is not possible to perform good gas-liquid separation.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

本願の請求項1および2各項記載の考案は、各々上記従来の問題を解決するこ とを目的としてなされたもので、それぞれ次のように構成されている。 The invention described in each of claims 1 and 2 of the present application is made for the purpose of solving the above-mentioned conventional problems, and is configured as follows.

【0008】 (1) 請求項1記載の考案の構成 請求項1記載の考案の気液分離器は、2相冷媒導入口4と、該2相冷媒導入口 4を介して気液2相冷媒が壁面方向に導入される気液分離室1aと、該気液分離 室1aの上部に設けられたガス冷媒取出口2と、上記気液分離室1aの底部に設け られた液冷媒取出口3とを備えてなる気液分離器において、上記2相冷媒導入口 4に対向して多孔質部材9A,9B,9C,9D,9Eを設けたことを特徴とするも のである。(1) Configuration of the Invention According to Claim 1 The gas-liquid separator according to the invention described in claim 1 is a two-phase refrigerant introduction port 4 and a gas-liquid two-phase refrigerant through the two-phase refrigerant introduction port 4. Gas / liquid separation chamber 1a into which gas is introduced in the wall direction, gas refrigerant outlet 2 provided at the top of gas / liquid separation chamber 1a, and liquid refrigerant outlet 3 provided at the bottom of gas / liquid separation chamber 1a. In the gas-liquid separator provided with, the porous member 9A, 9B, 9C, 9D, 9E is provided facing the two-phase refrigerant introduction port 4.

【0009】 (2) 請求項2記載の考案の構成 請求項2記載の考案の気液分離器は、2相冷媒導入口4と、該2相冷媒導入口 4を介して気液2相冷媒が壁面方向に導入される気液分離室1aと、該気液分離 室1aの上部に設けられたガス冷媒取出口2と、上記気液分離室1aの底部に設け られた液冷媒取出口3とを備えてなる気液分離器において、上記2相冷媒導入口 4の開口端部に多孔質部材よりなる多孔質チャンバー部9Fを設けたことを特徴 とするものである。(2) Configuration of the invention according to claim 2 The gas-liquid separator according to the invention according to claim 2 is a two-phase refrigerant introduction port 4 and a gas-liquid two-phase refrigerant through the two-phase refrigerant introduction port 4. Gas / liquid separation chamber 1a into which gas is introduced in the wall direction, gas refrigerant outlet 2 provided at the top of gas / liquid separation chamber 1a, and liquid refrigerant outlet 3 provided at the bottom of gas / liquid separation chamber 1a. In the gas-liquid separator including the above, a porous chamber portion 9F made of a porous member is provided at the opening end portion of the two-phase refrigerant introduction port 4.

【0010】[0010]

【作用】[Action]

本願の請求項1および2各項記載の考案の気液分離器は、各々上記のように構 成されている結果、当該各構成に基いて、次のような作用を奏する。 The gas-liquid separator of the invention described in each of claims 1 and 2 of the present application is configured as described above, and as a result, the following action is achieved based on each configuration.

【0011】 (1) 請求項1記載の考案の作用 請求項1記載の考案の気液分離器では、上述のように、先ず2相冷媒導入口4 と、該2相冷媒導入口4を介して気液2相冷媒が壁面方向に向けて導入される気 液分離室1aと、該気液分離室1aの上部に設けられたガス冷媒取出口2と、上記 気液分離室1aの底部に設けられた液冷媒取出口3とを備えて前提となる気液分 離器が構成されており、相当の噴出速度で導入された気液2相状態の冷媒が気液 分離室1a内で、その重量に応じて上下2層に分離され、ガス冷媒7は上方側ガ ス冷媒取出口2から、また液冷媒5は底部側液冷媒取出口3から各々取り出され る。(1) Operation of the invention according to claim 1 In the gas-liquid separator according to the invention according to claim 1, as described above, first, the two-phase refrigerant introducing port 4 and the two-phase refrigerant introducing port 4 are used. A gas-liquid separation chamber 1a into which the gas-liquid two-phase refrigerant is introduced toward the wall surface, a gas refrigerant outlet 2 provided at the top of the gas-liquid separation chamber 1a, and a bottom portion of the gas-liquid separation chamber 1a. A gas-liquid separator as a premise is provided with the provided liquid-refrigerant outlet 3, and the refrigerant in a gas-liquid two-phase state introduced at a considerable ejection speed is in the gas-liquid separation chamber 1a, The gas refrigerant 7 is taken out from the upper gas refrigerant outlet 2 and the liquid refrigerant 5 is taken out from the bottom liquid refrigerant outlet 3 according to the weight.

【0012】 そして、さらに上記基本構成において、上記気液分離室1a内には、上記2相 冷媒導入口4に対向して多孔質部材9A,9B,9C,9D,9Eが設けられている 。Further, in the above-mentioned basic configuration, porous members 9A, 9B, 9C, 9D, 9E are provided in the gas-liquid separation chamber 1a so as to face the two-phase refrigerant inlet port 4.

【0013】 したがって、上記2相冷媒導入口4より導入された2相冷媒噴流は、該多孔質 部材9A,9B,9C,9D,9Eによって、その衝撃力が吸収緩和されるとともに 液冷媒が毛細管現象により効果的に吸収されて自由落下することにより液滴の飛 散が殆んど生じなくなる。Therefore, the impact of the two-phase refrigerant jet flow introduced from the two-phase refrigerant inlet port 4 is absorbed and relaxed by the porous members 9A, 9B, 9C, 9D, 9E, and the liquid refrigerant is capillary. Due to the phenomenon, the droplets are effectively absorbed and fall freely, so that almost no droplets are scattered.

【0014】 したがって、従来のようにガス冷媒取出口側に液冷媒が侵入するようなことは なくなり、気液分離性能が大きく向上する。Therefore, unlike the conventional case, the liquid refrigerant does not enter the gas refrigerant outlet side, and the gas-liquid separation performance is greatly improved.

【0015】 また、上記多孔質部材9A,9B,9C,9D,9Eは、上記のような2相冷媒噴 流の導入時だけでなく、液冷媒滞留時にも毛細管現象によって液冷媒を引き寄せ るので、液面位が高い時などに液膜がガス冷媒取出口側に引き込まれるのを防ぐ ことができ、この点でも気液分離性能が向上する。Further, since the porous members 9A, 9B, 9C, 9D, 9E draw the liquid refrigerant by the capillary phenomenon not only when introducing the two-phase refrigerant jet as described above but also when the liquid refrigerant stays. It is possible to prevent the liquid film from being drawn into the gas refrigerant outlet side when the liquid level is high, and the gas-liquid separation performance is also improved in this respect.

【0016】 (2) 請求項2記載の考案の作用 請求項2記載の考案の気液分離器では、上述のように、先ず2相冷媒導入口4 と、該2相冷媒導入口4を介して気液2相冷媒が側方から壁面方向に導入される 気液分離室1aと、該気液分離室1aの上部に設けられたガス冷媒取出口2と、上 記気液分離室1aの底部に設けられた液冷媒取出口3とを備えて前提となる気液 分離器が構成されており、相当の噴出速度で壁面方向に導入された気液2相状態 の冷媒が気液分離室1a内で、その重量に応じて上下2層に分離され、ガス冷媒 7は上方側ガス冷媒取出口2から、また液冷媒5は底部側液冷媒取出口3から各 々取り出される。(2) Operation of the invention of claim 2 In the gas-liquid separator of the invention of claim 2, as described above, first, the two-phase refrigerant inlet port 4 and the two-phase refrigerant inlet port 4 are used. The gas-liquid two-phase refrigerant is introduced from the side in the direction of the wall surface, the gas-liquid separation chamber 1a, the gas refrigerant outlet 2 provided in the upper part of the gas-liquid separation chamber 1a, and the gas-liquid separation chamber 1a. A gas-liquid separator, which is a prerequisite, is configured with a liquid-refrigerant outlet 3 provided at the bottom, and the refrigerant in a gas-liquid two-phase state introduced in the wall surface direction at a considerable ejection speed is used in the gas-liquid separation chamber. The gas refrigerant 7 is taken out from the upper side gas refrigerant outlet port 2 and the liquid refrigerant 5 is taken out from the bottom side liquid refrigerant outlet port 3 respectively according to the weight of the gas refrigerant 7a.

【0017】 そして、さらに上記基本構成において、上記気液分離室1a内の上記2相冷媒 導入口4の開口端部には多孔質部材よりなる多孔質チャンバー部9Fが設けられ ている。Further, in the above basic structure, a porous chamber portion 9F made of a porous member is provided at the opening end portion of the two-phase refrigerant inlet port 4 in the gas-liquid separation chamber 1a.

【0018】 したがって、上記2相冷媒導入口4より導入された2相冷媒噴流は、当該多孔 質部材により形成されているチャンバー部によって、その衝撃力が吸収緩和され るとともに液冷媒が毛細管現象により効果的に吸収されて自由落下することによ り液滴の飛散が略完全に生じなくなる。Therefore, the impact of the two-phase refrigerant jet introduced from the two-phase refrigerant introduction port 4 is absorbed and relaxed by the chamber portion formed by the porous member, and the liquid refrigerant undergoes the capillary phenomenon. Due to the effective absorption and free fall, almost no droplet scattering occurs.

【0019】 したがって、従来のようにガス冷媒取出口側に液冷媒が侵入するようなことは 確実になくなり、気液分離性能がより大きく向上する。Therefore, unlike the conventional case, the liquid refrigerant is surely prevented from entering the gas refrigerant outlet side, and the gas-liquid separation performance is further improved.

【0020】[0020]

【発明の効果】【The invention's effect】

上記のように、本願考案の気液分離器によると、気液分離性能が向上し、圧縮 機などへの液バックを確実に防止することができるようになる。 As described above, according to the gas-liquid separator of the present invention, the gas-liquid separation performance is improved, and it becomes possible to reliably prevent liquid backing to the compressor or the like.

【0021】 また、多孔質部材の噴流衝撃の吸収又は緩衝作用により、気液分離室自体の縮 小が可能となるため、気液分離器自体の小型化、コンパクト化が可能となる。Further, the gas-liquid separation chamber itself can be downsized by absorbing or buffering the jet impact of the porous member, so that the gas-liquid separator itself can be downsized and downsized.

【0022】[0022]

【実施例】【Example】

(1) 第1実施例 図1および図2は、本願考案の第1実施例に係る気液分離器の構造を示してい る。 (1) First Embodiment FIGS. 1 and 2 show the structure of a gas-liquid separator according to a first embodiment of the present invention.

【0023】 この気液分離器Aは、例えば空気調和機における蒸発器の出口と圧縮機の吸込 口との間に位置して設けられ、図に示すように、圧縮機の容量やチャージ量に応 じた大きさの気液分離室1aを備えた縦型筒状の筺体1の上部にガス冷媒の取出 口(圧縮機吸込口)2を、また同下部に液冷媒の取出口3を各々設け、蒸発器から のパイプ状の気液2相冷媒導入口4を図に示すように一側面側から他側面側に向 けて導入開口させており、矢線で示すように水平方向に向けて気液2相冷媒を導 入し、壁面方向に衝突させることにより重量差によりガス冷媒7と液冷媒5とを 図示の如く上下2層に分離するようになっている。The gas-liquid separator A is provided, for example, between the outlet of the evaporator and the suction port of the compressor in the air conditioner, and as shown in the figure, the capacity and charge amount of the compressor can be reduced. A gas refrigerant outlet (compressor inlet) 2 is provided at the upper part of a vertical cylindrical housing 1 having a gas-liquid separation chamber 1a of a corresponding size, and a liquid refrigerant outlet 3 is provided at the lower part thereof. A pipe-shaped gas-liquid two-phase refrigerant inlet port 4 from the evaporator is provided and opened from one side face to the other side face as shown in the figure, and is horizontally oriented as shown by the arrow. As a result, the gas-liquid two-phase refrigerant is introduced and collided in the direction of the wall surface so that the gas refrigerant 7 and the liquid refrigerant 5 are separated into upper and lower two layers due to the weight difference.

【0024】 そして、上記気液分離室1aの上記気液2相冷媒噴流が衝突する壁面部には、 図示の如く断面半円状の多孔質部材9Aが設けられている。該多孔質部材9Aは 、例えば上記噴流の衝撃を吸収するのに十分な厚さを有し、かつ液冷媒を毛細管 現象によって吸収し下方に流下させ得るような発泡金属等によって形成されてい る。A porous member 9A having a semicircular cross section is provided on the wall surface of the gas-liquid separation chamber 1a on which the gas-liquid two-phase refrigerant jet flows collide. The porous member 9A has, for example, a thickness sufficient to absorb the impact of the jet flow, and is formed of a foam metal or the like capable of absorbing the liquid refrigerant by a capillary phenomenon and flowing down.

【0025】 該構成において、今例えば図示のように、上記2相冷媒導入口4から気液2相 状態の冷媒噴流が他方側壁面部方向に向けて相当の噴出速度で導入されると、そ のままだと前述の図10に示す従来例のように、当該壁面部への衝突による衝撃 で液冷媒が液滴となって上下方向に飛散し、ガス冷媒取出口2側に侵入してしま う。In the above configuration, when the two-phase refrigerant introduction port 4 introduces the gas-liquid two-phase refrigerant jet flow toward the other side wall surface at a considerable ejection speed, as shown in the figure, for example, If left as it is, as in the conventional example shown in FIG. 10, the liquid refrigerant becomes droplets due to the impact due to the collision with the wall surface portion and is scattered in the vertical direction, and enters the gas refrigerant outlet port 2 side. .

【0026】 ところが、本実施例の構成では、上述のように上記2相冷媒噴流が衝突する壁 面部に多孔質部材9Aが設けられている。従って、上記導入された2相冷媒噴流 は、該多孔質部材9Aによって、その衝撃力が吸収緩和されるとともに液冷媒が 毛細管現象により効果的に吸収されて液滴の飛散が殆んど生じなくなる。However, in the configuration of the present embodiment, the porous member 9A is provided on the wall surface portion with which the two-phase refrigerant jet flow collides as described above. Therefore, the impact of the introduced two-phase refrigerant jet is absorbed and alleviated by the porous member 9A, and the liquid refrigerant is effectively absorbed by the capillary phenomenon, and almost no droplets are scattered. .

【0027】 したがって、従来のようにガス冷媒取出口2側に液冷媒が侵入するようなこと はなくなり、気液分離性能が大きく向上する。Therefore, unlike the conventional case, the liquid refrigerant does not enter the gas refrigerant outlet 2 side, and the gas-liquid separation performance is greatly improved.

【0028】 また、上記多孔質部材9Aは、上記のような2相冷媒噴流の導入時だけでなく 、液冷媒滞留時にも毛細管現象によって液冷媒を引き寄せるので、液面位が高い 時などに液膜がガス冷媒取出口2側に引き込まれるのをのを防止することができ 、この点でも気液分離性能が向上する。Further, the porous member 9A attracts the liquid refrigerant by the capillary phenomenon not only when the two-phase refrigerant jet flow is introduced as described above but also when the liquid refrigerant stays, so that the liquid level is high when the liquid level is high. It is possible to prevent the membrane from being drawn into the gas refrigerant outlet port 2 side, and in this respect also, the gas-liquid separation performance is improved.

【0029】 そして、上記のように液滴の飛散を防止できる結果、2相冷媒導入口4、ガス 冷媒取出口2、液冷媒取出口3を相互に大きく離間させる必要がなくなり、それ だけ気液分離器を小型かつコンパクトなものにすることができる。As a result of preventing the liquid droplets from scattering as described above, it is not necessary to largely separate the two-phase refrigerant inlet 4, the gas refrigerant outlet 2, and the liquid refrigerant outlet 3 from each other, and only that much The separator can be made small and compact.

【0030】 なお、以上において、壁面自体の内側面を多孔質部材によって形成してもよい 。In the above, the inner surface of the wall surface itself may be formed of a porous member.

【0031】 (2) 第2実施例 次に図3および図4は、本願考案の第2実施例に係る気液分離器の構造を示し ている。(2) Second Embodiment Next, FIGS. 3 and 4 show the structure of a gas-liquid separator according to a second embodiment of the present invention.

【0032】 この気液分離器Aは、上記第1実施例の場合と同様、例えば空気調和機におけ る蒸発器の出口と圧縮機の吸込口との間に位置して設けられ、図に示すように、 圧縮機の容量やチャージ量に応じた大きさの気液分離室1aを備えた縦型筒状の 筺体1の上部にガス冷媒の取出口(圧縮機吸込口)2を、また同下部に液冷媒の取 出口3を各々設け、蒸発器からのパイプ状の気液2相冷媒導入口4を図に示すよ うに一側面側から他側面側に向けて導入開口させており、矢線で示すように水平 方向に向けて気液2相冷媒を導入し、壁面方向に衝突させることにより重量差に よりガス冷媒7と液冷媒5とを図示の如く上下2層に分離するようになっている 。This gas-liquid separator A is provided, for example, between the outlet of the evaporator and the inlet of the compressor in the air conditioner, as in the case of the first embodiment. As shown, a gas refrigerant outlet (compressor suction port) 2 is provided at the top of a vertical cylindrical housing 1 having a gas-liquid separation chamber 1a of a size corresponding to the capacity and charge amount of the compressor. Liquid refrigerant outlets 3 are provided in the lower part, respectively, and a pipe-shaped gas-liquid two-phase refrigerant inlet port 4 from the evaporator is introduced from one side to the other side as shown in the figure. As shown by the arrow, the gas-liquid two-phase refrigerant is introduced horizontally and collided in the wall direction so that the gas refrigerant 7 and the liquid refrigerant 5 are separated into upper and lower two layers due to the weight difference. It has become .

【0033】 そして、上記気液分離室1aの上記気液2相冷媒噴流が衝突する壁面前方部に は、図示の如く平板状の多孔質部材9Bが設けられている。該平板状の多孔質部 材9Bは、例えば上記噴流の衝撃を吸収するのに十分な厚さを有し、かつ液冷媒 を毛細管現象によって吸収し下方に流下させ得るような発泡金属等によって形成 されている。A flat plate-shaped porous member 9B is provided as shown in the front part of the wall surface of the gas-liquid separation chamber 1a where the gas-liquid two-phase refrigerant jet flow collides. The flat plate-shaped porous member 9B is formed of, for example, a foam metal or the like having a thickness sufficient to absorb the impact of the jet flow and capable of absorbing the liquid refrigerant by a capillary phenomenon and flowing down. Has been done.

【0034】 該構成において、今例えば図示のように、上記2相冷媒導入口4から気液2相 状態の冷媒噴流が他方側壁面部方向に向けて相当の噴出速度で導入されると、そ のままだと前記図10に示す従来例のように、当該壁面部への衝突による衝撃で 液冷媒が液滴となって上下方向に飛散し、ガス冷媒取出口2側に侵入してしまう 。In the configuration, when the refrigerant jet flow in the gas-liquid two-phase state is introduced from the two-phase refrigerant inlet port 4 toward the other side wall surface portion at a considerable ejection speed, as shown in the figure, for example, If left as it is, as in the conventional example shown in FIG. 10, the liquid refrigerant becomes droplets due to the impact due to the collision with the wall surface portion and is scattered in the vertical direction to enter the gas refrigerant outlet port 2 side.

【0035】 ところが、本実施例の構成では、上述のように上記2相冷媒噴流が衝突する壁 面部の前方に位置して平板状の多孔質部材9Bが設けられている。従って、上記 導入された2相冷媒噴流は、該平板状の多孔質部材9Bによって、その衝撃力が 吸収緩和されるとともに液冷媒が毛細管現象により効果的に吸収されて液滴の飛 散が殆んど生じなくなる。However, in the configuration of this embodiment, as described above, the flat plate-shaped porous member 9B is provided in front of the wall surface portion with which the two-phase refrigerant jet flow collides. Therefore, the impact force of the introduced two-phase refrigerant jet is absorbed and relaxed by the flat plate-shaped porous member 9B, and the liquid refrigerant is effectively absorbed by the capillary phenomenon so that the liquid droplets are hardly scattered. It never happens.

【0036】 したがって、従来のようにガス冷媒取出口2側に液冷媒が侵入するようなこと はなくなり、気液分離性能が大きく向上する。Therefore, unlike the conventional case, the liquid refrigerant does not enter the gas refrigerant outlet port 2 side, and the gas-liquid separation performance is greatly improved.

【0037】 また、上記平板状の多孔質部材9Bは、上記のような2相冷媒噴流の導入時だ けでなく、液冷媒滞留時にも毛細管現象によって液冷媒を引き寄せるので、液面 位が高い時などに液膜がガス冷媒取出口2側に引き込まれるのをのを防止するこ とができ、この点でも気液分離性能が向上する。Further, since the flat plate-shaped porous member 9B attracts the liquid refrigerant by the capillary phenomenon not only when introducing the two-phase refrigerant jet as described above but also when the liquid refrigerant stays, the liquid level is high. It is possible to prevent the liquid film from being drawn into the gas refrigerant outlet 2 side at the time, and also in this respect, the gas-liquid separation performance is improved.

【0038】 そして、上記のように液滴の飛散を防止できる結果、2相冷媒導入口4、ガス 冷媒取出口2、液冷媒取出口3を相互に大きく離間させる必要がなくなり、それ だけ気液分離器を小型かつコンパクトなものにすることができる。As a result of preventing the liquid droplets from scattering as described above, it is not necessary to greatly separate the two-phase refrigerant inlet port 4, the gas refrigerant outlet port 2 and the liquid refrigerant outlet port 3 from each other. The separator can be made small and compact.

【0039】 (3) 第3実施例 また図5および図6は、本願考案の第3実施例に係る気液分離器の構造を示し ている。(3) Third Embodiment FIGS. 5 and 6 show the structure of a gas-liquid separator according to a third embodiment of the present invention.

【0040】 この気液分離器Aは、上記第1、第2実施例同様、例えば空気調和機における 蒸発器の出口と圧縮機の吸込口との間に位置して設けられ、図に示すように、圧 縮機の容量やチャージ量に応じた大きさの気液分離室1aを備えた縦型筒状の筺 体1の上部にガス冷媒の取出口(圧縮機吸込口)2を、また同下部に液冷媒の取出 口3を各々設け、蒸発器からのパイプ状の気液2相冷媒導入口4を図に示すよう に一側面側から他側面側に向けて導入開口させており、矢線で示すように水平方 向に向けて気液2相冷媒を導入し、壁面方向に衝突させることにより重量差によ りガス冷媒7と液冷媒5とを図示の如く上下2層に分離するようになっている。The gas-liquid separator A is provided, for example, between the outlet of the evaporator and the inlet of the compressor in the air conditioner, as in the first and second embodiments. In addition, a gas refrigerant take-out port (compressor suction port) 2 is provided at the upper part of a vertical cylindrical housing 1 provided with a gas-liquid separation chamber 1a having a size corresponding to the capacity and charge amount of the compressor. Liquid refrigerant outlets 3 are respectively provided in the lower portion, and a pipe-shaped gas-liquid two-phase refrigerant inlet 4 from the evaporator is introduced and opened from one side to the other side as shown in the figure. As shown by the arrow, the gas-liquid two-phase refrigerant is introduced in the horizontal direction and collided in the wall direction to separate the gas refrigerant 7 and the liquid refrigerant 5 into upper and lower two layers due to the weight difference. It is supposed to do.

【0041】 そして、上記気液分離室1aの上記気液2相冷媒噴流が衝突する壁面部には、 図示の如く屈曲されてジグザグ構造になった全体として断面半円形状の多孔質部 材9Cが設けられている。該ジグザグ構造の多孔質部材9Cは、例えば上記噴流 の衝撃を吸収するのに十分な厚さを有し、かつ液冷媒を毛細管現象によって吸収 し下方に流下させ得るような発泡金属等によって形成されている。Then, the wall surface portion of the gas-liquid separation chamber 1a on which the gas-liquid two-phase refrigerant jet flow collides is bent into a zigzag structure as shown in the figure to form a porous member 9C having a semicircular cross section as a whole. Is provided. The zigzag-structured porous member 9C is formed of, for example, a foam metal having a sufficient thickness to absorb the impact of the jet flow and capable of absorbing the liquid refrigerant by a capillary phenomenon and flowing downward. ing.

【0042】 該構成において、今例えば図示のように、上記2相冷媒導入口4から気液2相 状態の冷媒噴流が他方側壁面部に向けて相当の噴出速度で導入されると、そのま まだと前記図10に示す従来例のように、当該壁面部への衝突による衝撃で液冷 媒が液滴となって上下方向に飛散し、ガス冷媒取出口2側に侵入してしまう。In the configuration, as shown in the figure, for example, when the two-phase refrigerant inlet port 4 introduces the gas-liquid two-phase refrigerant jet flow toward the other side wall surface portion at a considerable ejection speed, the state is maintained. As in the conventional example shown in FIG. 10, the liquid cooling medium becomes droplets due to the impact caused by the collision with the wall surface portion and is scattered in the vertical direction to enter the gas refrigerant outlet port 2 side.

【0043】 ところが、本実施例の構成では、上述のように上記2相冷媒噴流が衝突する壁 面部にジグザグ状に屈曲された多孔質部材9Cが設けられている。従って、上記 導入された2相冷媒噴流は、該ジグザグに屈曲された多孔質部材9Cのジグザグ 部(斜面部)によって、その衝撃力が効果的に吸収緩和されるとともに液冷媒が毛 細管現象により効果的に吸収されて液滴の飛散が殆んど生じなくなる。However, in the configuration of this embodiment, the porous member 9C bent in a zigzag shape is provided on the wall surface portion on which the two-phase refrigerant jet flow collides as described above. Therefore, the introduced two-phase refrigerant jet is effectively absorbed and relaxed by the zigzag portion (slope portion) of the porous member 9C bent in the zigzag and the liquid refrigerant is caused by the capillary phenomenon. It is effectively absorbed and almost no droplet scattering occurs.

【0044】 したがって、従来のようにガス冷媒取出口2側に液冷媒が侵入するようなこと はなくなり、気液分離性能が大きく向上する。Therefore, unlike the conventional case, the liquid refrigerant does not enter the gas refrigerant outlet 2 side, and the gas-liquid separation performance is greatly improved.

【0045】 また、上記ジグザグに屈曲した多孔質部材9Cは、上記のような2相冷媒噴流 の導入時だけでなく、液冷媒滞留時にも毛細管現象によって液冷媒を引き寄せる ので、液面位が高い時などに液膜がガス冷媒取出口2側に引き込まれるのをのを 防止することができ、この点でも気液分離性能が向上する。Further, the zigzag-bent porous member 9C attracts the liquid refrigerant by the capillary phenomenon not only when the two-phase refrigerant jet is introduced as described above but also when the liquid refrigerant is retained, so that the liquid level is high. It is possible to prevent the liquid film from being drawn into the gas refrigerant outlet port 2 side at times, and in this respect also the gas-liquid separation performance is improved.

【0046】 そして、上記のように液滴の飛散を防止できる結果、2相冷媒導入口4、ガス 冷媒取出口2、液冷媒取出口3を相互に大きく離間させる必要がなくなり、それ だけ気液分離器を小型かつコンパクトなものにすることができる。As a result of preventing the liquid droplets from scattering as described above, it is not necessary to greatly separate the two-phase refrigerant inlet 4, the gas refrigerant outlet 2, and the liquid refrigerant outlet 3 from each other, and only that much The separator can be made small and compact.

【0047】 (4) 第4実施例 さらに図7は、本願考案の第4実施例に係る気液分離器の構造を示している。(4) Fourth Embodiment FIG. 7 shows the structure of the gas-liquid separator according to the fourth embodiment of the present invention.

【0048】 この気液分離器Aは、例えば空気調和機における蒸発器の伝熱管出口部に位置 して設けられ、図に示すように、圧縮機の容量やチャージ量に応じた大きさの気 液分離室1aを備えた縦型筒状の筺体1の上部にガス冷媒の取出口(圧縮機吸込口 )2を、また同下部に液冷媒の取出口3を各々設け、蒸発器からの気液2相冷媒 導入口4を図に示すように一側面側から他側面側に向けて導入開口させており、 矢線で示すように水平方向に向けて気液2相冷媒を導入し、壁面方向に衝突させ ることにより重量差によりガス冷媒7と液冷媒5とを図示の如く上下2層に分離 するようになっている。The gas-liquid separator A is provided, for example, at the heat transfer tube outlet of the evaporator of the air conditioner, and as shown in the figure, has a size corresponding to the capacity of the compressor and the charge amount. A gas refrigerant outlet (compressor suction port) 2 is provided in the upper part of a vertical cylindrical housing 1 having a liquid separation chamber 1a, and a liquid refrigerant outlet 3 is provided in the lower part thereof, respectively. Liquid two-phase refrigerant The inlet port 4 is opened from one side surface to the other side surface as shown in the figure. The gas-liquid two-phase refrigerant is introduced horizontally as shown by the arrow, and the wall surface is introduced. By making them collide with each other in the direction, the gas refrigerant 7 and the liquid refrigerant 5 are separated into upper and lower layers as shown in the figure due to the difference in weight.

【0049】 そして、上記気液分離室1aの上記気液2相冷媒噴流が衝突する部分(気液分離 室の略全体)には、図示の如く断面円形円柱体状の多孔質部材9Dが設けられて いる。該円柱体状の多孔質部材9Dは、例えば上記噴流の衝撃を吸収するのに十 分な直径を有し、かつ液冷媒を毛細管現象によって吸収し下方に流下させ得るよ うな発泡金属等によって形成されている。Then, as shown in the figure, a porous member 9D having a circular columnar shape in cross section is provided in a portion of the gas-liquid separation chamber 1a where the gas-liquid two-phase refrigerant jet flow collides (substantially the entire gas-liquid separation chamber). It has been done. The cylindrical porous member 9D has, for example, a diameter sufficient to absorb the impact of the jet flow, and is formed of a foam metal or the like capable of absorbing the liquid refrigerant by a capillary phenomenon and flowing downward. Has been done.

【0050】 該構成において、今例えば図示のように、上記2相冷媒導入口4から気液2相 状態の冷媒噴流が他方側壁面部に向けて相当の噴出速度で導入されると、そのま まだと前記図10に示す従来例のように、当該壁面部への衝突による衝撃で液冷 媒が液滴となって上下方向に飛散し、ガス冷媒取出口2側に侵入してしまう。In this configuration, as shown in the figure, for example, when the two-phase refrigerant introduction port 4 introduces a gas-liquid two-phase refrigerant jet flow toward the other side wall surface at a considerable ejection speed, the state is maintained. As in the conventional example shown in FIG. 10, the liquid cooling medium becomes droplets due to the impact caused by the collision with the wall surface portion and is scattered in the vertical direction to enter the gas refrigerant outlet port 2 side.

【0051】 ところが、本実施例の構成では、上述のように上記2相冷媒噴流が衝突する部 分に円柱体状の多孔質部材9Dが設けられている。従って、上記導入された2相 冷媒噴流は、該円柱体状の多孔質部材9Dによって、その衝撃力が吸収緩和され るとともに液冷媒が毛細管現象により効果的に吸収されて液滴の飛散が殆んど生 じなくなる。However, in the configuration of the present embodiment, the cylindrical porous member 9D is provided at the portion where the two-phase refrigerant jet flow collides as described above. Therefore, the impact force of the introduced two-phase refrigerant jet is absorbed and relaxed by the cylindrical porous member 9D, and the liquid refrigerant is effectively absorbed by the capillary phenomenon so that the droplets are hardly scattered. I will never be born.

【0052】 したがって、従来のようにガス冷媒取出口2側に液冷媒が侵入するようなこと はなくなり、気液分離性能が大きく向上する。Therefore, unlike the conventional case, the liquid refrigerant does not enter the gas refrigerant outlet port 2 side, and the gas-liquid separation performance is greatly improved.

【0053】 また、上記円柱体状の多孔質部材9Dは、上記のような2相冷媒噴流の導入時 だけでなく、液冷媒滞留時にも毛細管現象によって液冷媒を引き寄せるので、液 面位が高い時などに液膜がガス冷媒取出口2側に引き込まれるのをのを防止する ことができ、この点でも気液分離性能が向上する。Further, since the cylindrical porous member 9D attracts the liquid refrigerant by the capillary phenomenon not only when the two-phase refrigerant jet flow is introduced as described above but also when the liquid refrigerant stays, the liquid level is high. It is possible to prevent the liquid film from being drawn into the gas refrigerant outlet 2 side at the time, and the gas-liquid separation performance is also improved in this respect.

【0054】 そして、上記のように液滴の飛散を防止できる結果、2相冷媒導入口4、ガス 冷媒取出口2、液冷媒取出口3を相互に大きく離間させる必要がなくなり、それ だけ気液分離器を小型かつコンパクトなものにすることができる。As a result of preventing the liquid droplets from scattering as described above, it is not necessary to greatly separate the two-phase refrigerant inlet 4, the gas refrigerant outlet 2, and the liquid refrigerant outlet 3 from each other, and only that much The separator can be made small and compact.

【0055】 (5) 第5実施例 さらに、図8は、本願考案の第5実施例に係る気液分離器の構造を示している 。(5) Fifth Embodiment Further, FIG. 8 shows a structure of a gas-liquid separator according to a fifth embodiment of the present invention.

【0056】 この気液分離器Aは、例えば空気調和機における蒸発器の伝熱管出口部に位置 して設けられ、図に示すように、圧縮機の容量やチャージ量に応じた大きさの気 液分離室1aを備えた球状の筺体1の上部にガス冷媒の取出口(圧縮機吸込口)2 を、また同下部に液冷媒の取出口3を各々設け、蒸発器からのパイプ状の気液2 相冷媒導入口(伝熱管後端)4を図に示すように一側面側から他側面側に向けて導 入開口させており、矢線で示すように水平方向に向けて気液2相冷媒を導入し、 壁面方向に衝突させることにより重量差によりガス冷媒7と液冷媒5とを図示の 如く上下2層に分離するようになっている。The gas-liquid separator A is provided, for example, at the outlet of the heat transfer tube of the evaporator in the air conditioner, and as shown in the figure, it has a size corresponding to the capacity and charge amount of the compressor. A gas refrigerant outlet (compressor inlet) 2 is provided in the upper part of the spherical housing 1 having the liquid separation chamber 1a, and a liquid refrigerant outlet 3 is provided in the lower part thereof, and a pipe-shaped gas from the evaporator is provided. Liquid 2-phase refrigerant inlet (rear end of heat transfer tube) 4 is opened from one side to the other side as shown in the figure. By introducing the phase refrigerant and causing it to collide in the wall surface direction, the gas refrigerant 7 and the liquid refrigerant 5 are separated into upper and lower two layers due to the difference in weight, as shown in the figure.

【0057】 そして、上記気液分離室1aの上記気液2相冷媒噴流が衝突する部分には、図 示の如く球状の多孔質部材9Eが設けられている。該球状の多孔質部材9Eは、 例えば上記噴流の衝撃を吸収するのに十分な直径を有し、かつ液冷媒を毛細管現 象によって吸収し下方に流下させ得るような発泡金属等によって形成されている 。A spherical porous member 9E is provided at a portion of the gas-liquid separation chamber 1a where the gas-liquid two-phase refrigerant jet flow collides, as shown in the figure. The spherical porous member 9E has, for example, a diameter sufficient to absorb the impact of the jet flow, and is formed of a foam metal or the like capable of absorbing the liquid refrigerant by the capillary phenomenon and flowing downward. There is.

【0058】 該構成において、今例えば図示のように、上記2相冷媒導入口4から気液2相 状態の冷媒噴流が他方側壁面部に向けて相当の噴出速度で導入されると、そのま まだと前記図10に示す従来例のように、当該壁面部への衝突による衝撃で液冷 媒が液滴となって上下方向に飛散し、ガス冷媒取出口2側に侵入してしまう。In the above configuration, as shown in the figure, for example, when the two-phase refrigerant introduction port 4 introduces a gas-liquid two-phase refrigerant jet flow toward the other side wall surface at a considerable ejection speed, the state is maintained. As in the conventional example shown in FIG. 10, the liquid cooling medium becomes droplets due to the impact caused by the collision with the wall surface portion and is scattered in the vertical direction to enter the gas refrigerant outlet port 2 side.

【0059】 ところが、本実施例の構成では、上述のように上記2相冷媒噴流が衝突する部 分に球状の多孔質部材9Eが設けられている。従って、上記導入された2相冷媒 噴流は、該球状の多孔質部材9Eによって、その衝撃力が効果的に吸収緩和され るとともに液冷媒が毛細管現象により効果的に吸収されて液滴の飛散が殆んど生 じなくなる。However, in the configuration of the present embodiment, the spherical porous member 9E is provided at the portion where the two-phase refrigerant jet flow collides as described above. Therefore, the impact force of the introduced two-phase refrigerant jet is effectively absorbed and relaxed by the spherical porous member 9E, and the liquid refrigerant is effectively absorbed by the capillary phenomenon, and the droplets are scattered. It almost never happens.

【0060】 したがって、従来のようにガス冷媒取出口2側に液冷媒が侵入するようなこと はなくなり、気液分離性能が大きく向上する。Therefore, unlike the conventional case, the liquid refrigerant does not enter the gas refrigerant outlet 2 side, and the gas-liquid separation performance is greatly improved.

【0061】 また、上記多孔質部材9Eは、上記のような2相冷媒噴流の導入時だけでなく 、液冷媒滞留時にも毛細管現象によって液冷媒を引き寄せるので、液面位が高い 時などに液膜がガス冷媒取出口2側に引き込まれるのをのを防止することができ 、この点でも気液分離性能が向上する。Further, since the porous member 9E attracts the liquid refrigerant not only when the two-phase refrigerant jet flow is introduced as described above but also when the liquid refrigerant is retained, the liquid refrigerant is attracted by the capillary phenomenon, so that the liquid level is high when the liquid level is high. It is possible to prevent the membrane from being drawn into the gas refrigerant outlet port 2 side, and in this respect also, the gas-liquid separation performance is improved.

【0062】 そして、上記のように液滴の飛散を防止できる結果、2相冷媒導入口4、ガス 冷媒取出口2、液冷媒取出口3を相互に大きく離間させる必要がなくなり、それ だけ気液分離器を小型かつコンパクトなものにすることができる。As a result of preventing the droplets from scattering as described above, it is not necessary to largely separate the two-phase refrigerant inlet port 4, the gas refrigerant outlet port 2 and the liquid refrigerant outlet port 3 from each other. The separator can be made small and compact.

【0063】 (6) 第6実施例 最後に図9は、本願考案の第6実施例に係る気液分離器の構造を示している。(6) Sixth Embodiment Finally, FIG. 9 shows the structure of a gas-liquid separator according to a sixth embodiment of the present invention.

【0064】 この気液分離器Aは、上記第1〜第3実施例同様、例えば空気調和機における 蒸発器の出口と圧縮機の吸込口との間に位置して設けられ、図に示すように、圧 縮機の容量やチャージ量に応じた大きさの気液分離室1aを備えた縦型筒状の筺 体1の上部にガス冷媒の取出口(圧縮機吸込口)2を、また同下部に液冷媒の取出 口3を各々設け、蒸発器からのパイプ状の気液2相冷媒導入口4を図に示すよう に一側面側から他側面側に向けて導入開口させており、矢線で示すように水平方 向に向けて気液2相冷媒を導入し、重量差によりガス冷媒7と液冷媒5とを図示 の如く上下2層に分離するようになっている。The gas-liquid separator A is provided, for example, between the outlet of the evaporator and the inlet of the compressor in the air conditioner, as in the first to third embodiments. In addition, a gas refrigerant take-out port (compressor suction port) 2 is provided at the upper part of a vertical cylindrical housing 1 provided with a gas-liquid separation chamber 1a having a size corresponding to the capacity and charge amount of the compressor. Liquid refrigerant outlets 3 are respectively provided in the lower portion, and a pipe-shaped gas-liquid two-phase refrigerant inlet 4 from the evaporator is introduced and opened from one side to the other side as shown in the figure. As shown by the arrow, the gas-liquid two-phase refrigerant is introduced in the horizontal direction, and the gas refrigerant 7 and the liquid refrigerant 5 are separated into upper and lower two layers as shown by the difference in weight.

【0065】 そして、上記気液分離室1aの上記2相冷媒導入口4の先端部には、図示の如 く多孔質部材よりなる円筒体状の多孔質チャンバー9Fが設けられている。該有 底円筒状の多孔質チャンバー9Fは、例えば上記噴流の衝撃を吸収するのに十分 な壁面厚さを有し、かつ液冷媒を毛細管現象によって吸収し下方に効率良く流下 させ得るような発泡金属等によって形成されている。A cylindrical porous chamber 9F made of a porous member as shown in the drawing is provided at the tip of the two-phase refrigerant inlet 4 of the gas-liquid separation chamber 1a. The bottomed cylindrical porous chamber 9F has, for example, a wall thickness sufficient to absorb the impact of the jet flow, and foams so that the liquid refrigerant can be absorbed by the capillary phenomenon and efficiently flow downward. It is made of metal or the like.

【0066】 該構成において、今例えば図示のように、上記2相冷媒導入口4の先端から気 液2相状態の冷媒噴流が他方側壁面部方向に向けて相当の噴出速度で噴出される と、そのままだと前記図10に示す従来例のように、当該壁面部への衝突による 衝撃で液冷媒が液滴となって上下方向に飛散し、ガス冷媒取出口2側に侵入して しまう。In the configuration, as shown in the figure, for example, when a refrigerant jet in a gas-liquid two-phase state is ejected from the tip of the two-phase refrigerant inlet port 4 toward the other side wall surface portion at a considerable ejection speed, If left as it is, as in the conventional example shown in FIG. 10, the liquid refrigerant becomes droplets due to the impact due to the collision with the wall surface portion and is scattered in the vertical direction to enter the gas refrigerant outlet port 2 side.

【0067】 ところが、本実施例の構成では、上述のように上記2相冷媒噴流が噴出する2 相冷媒導入口4自体の先端部に有底円筒状の多孔質チャンバー9Fが嵌合して設 けられている。従って、上記導入された2相冷媒噴流は、該有底円筒状の多孔質 チャンバー9Fによって、その衝撃力が吸収緩和されるとともに液冷媒が毛細管 現象により効果的に吸収されて下方に透過して行き液滴の飛散が殆んど生じなく なる。However, in the configuration of the present embodiment, as described above, the cylindrical chamber 9F having a bottom is fitted to the tip portion of the two-phase refrigerant inlet port 4 itself from which the above-mentioned two-phase refrigerant jet is ejected. It has been burned. Therefore, the impact of the introduced two-phase refrigerant jet is absorbed and relaxed by the bottomed cylindrical porous chamber 9F, and the liquid refrigerant is effectively absorbed by the capillary phenomenon and permeates downward. Almost no scattering of outbound droplets occurs.

【0068】 そして、上記のように略完全に液滴の飛散を防止できる結果、2相冷媒導入口 4、ガス冷媒取出口2、液冷媒取出口3を相互に大きく離間させる必要がなくな り、それだけ気液分離器を一層小型かつコンパクトなものにすることができる。As described above, as a result of almost completely preventing the liquid droplets from scattering, it is not necessary to greatly separate the two-phase refrigerant inlet 4, the gas refrigerant outlet 2, and the liquid refrigerant outlet 3. Therefore, the gas-liquid separator can be made smaller and more compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本願考案の第1実施例に係る気液分離
器の構造を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing the structure of a gas-liquid separator according to a first embodiment of the present invention.

【図2】図2は、同本願考案の第1実施例に係る気液分
離器の構造を示す水平断面図である。
FIG. 2 is a horizontal cross-sectional view showing the structure of the gas-liquid separator according to the first embodiment of the present invention.

【図3】図3は、本願考案の第2実施例に係る気液分離
器の構造を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing the structure of a gas-liquid separator according to a second embodiment of the present invention.

【図4】図4は、同本願考案の第2実施例に係る気液分
離器の構造を示す水平断面図である。
FIG. 4 is a horizontal sectional view showing a structure of a gas-liquid separator according to a second embodiment of the present invention.

【図5】図5は、本願考案の第3実施例に係る気液分離
器の構造を示す縦断面図である。
FIG. 5 is a vertical cross-sectional view showing the structure of a gas-liquid separator according to a third embodiment of the present invention.

【図6】図6は、同本願考案の第3実施例に係る気液分
離器の構造を示す水平断面図である。
FIG. 6 is a horizontal sectional view showing the structure of a gas-liquid separator according to a third embodiment of the present invention.

【図7】図7は、本願考案の第4実施例に係る気液分離
器の構造を示す縦断面図である。
FIG. 7 is a vertical sectional view showing the structure of a gas-liquid separator according to a fourth embodiment of the present invention.

【図8】図8は、本願考案の第5実施例に係る気液分離
器の構造を示す断面図である。
FIG. 8 is a sectional view showing the structure of a gas-liquid separator according to a fifth embodiment of the present invention.

【図9】図9は、本願考案の第6実施例に係る気液分離
器の構造を示す縦断面図である。
FIG. 9 is a vertical sectional view showing the structure of a gas-liquid separator according to a sixth embodiment of the present invention.

【図10】図10は、従来例に係る気液分離器の構造を
示す断面図である。
FIG. 10 is a cross-sectional view showing a structure of a gas-liquid separator according to a conventional example.

【符号の説明】[Explanation of symbols]

1は筺体、1aは気液分離室、2はガス冷媒取出口、3
は液冷媒取出口、4は2相冷媒導入口、9A〜9Eは多
孔質部材、9Fは多孔質チャンバーである。
1 is a housing, 1a is a gas-liquid separation chamber, 2 is a gas refrigerant outlet, 3
Is a liquid refrigerant outlet, 4 is a two-phase refrigerant inlet, 9A to 9E are porous members, and 9F is a porous chamber.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 山下 浩幸 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)考案者 安尾 晃一 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Yamashita, 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industries, Ltd.Kanaoka Factory, Sakai Manufacturing Co., Ltd. (72) Koichi Yasoo, 1304, Kanaoka-machi, Sakai City, Osaka Prefecture Sakai Factory Kanaoka Factory

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 2相冷媒導入口(4)と、該2相冷媒導入
口(4)を介して気液2相冷媒が壁面方向に導入される気
液分離室(1a)と、該気液分離室(1a)の上部に設けられ
たガス冷媒取出口(2)と、上記気液分離室(1a)の底部
に設けられた液冷媒取出口(3)とを備えてなる気液分離
器において、上記2相冷媒導入口(4)に対向して多孔質
部材(9A),(9B),(9C),(9D),(9E)を設けたこと
を特徴とする気液分離器。
1. A two-phase refrigerant introduction port (4), a gas-liquid separation chamber (1a) into which a gas-liquid two-phase refrigerant is introduced in the wall surface direction through the two-phase refrigerant introduction port (4), and the gas Gas-liquid separation comprising a gas refrigerant outlet (2) provided at the upper part of the liquid separation chamber (1a) and a liquid refrigerant outlet (3) provided at the bottom of the gas-liquid separation chamber (1a). A gas-liquid separator characterized in that a porous member (9A), (9B), (9C), (9D), (9E) is provided facing the two-phase refrigerant inlet port (4). .
【請求項2】 2相冷媒導入口(4)と、該2相冷媒導入
口(4)を介して気液2相冷媒が壁面方向に導入される気
液分離室(1a)と、該気液分離室(1a)の上部に設けられ
たガス冷媒取出口(2)と、上記気液分離室(1a)の底部
に設けられた液冷媒取出口(3)とを備えてなる気液分離
器において、上記2相冷媒導入口(4)の開口端部に多孔
質部材よりなる多孔質チャンバー部(9F)を設けたこと
を特徴とする気液分離器。
2. A two-phase refrigerant introduction port (4), a gas-liquid separation chamber (1a) into which a gas-liquid two-phase refrigerant is introduced in the wall surface direction through the two-phase refrigerant introduction port (4), and the gas-liquid separation chamber (1a). Gas-liquid separation comprising a gas refrigerant outlet (2) provided at the top of the liquid separation chamber (1a) and a liquid refrigerant outlet (3) provided at the bottom of the gas-liquid separation chamber (1a). A gas-liquid separator characterized in that, in the container, a porous chamber portion (9F) made of a porous member is provided at the opening end portion of the two-phase refrigerant introduction port (4).
JP5400292U 1992-07-31 1992-07-31 Gas-liquid separator Pending JPH0618865U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5400292U JPH0618865U (en) 1992-07-31 1992-07-31 Gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5400292U JPH0618865U (en) 1992-07-31 1992-07-31 Gas-liquid separator

Publications (1)

Publication Number Publication Date
JPH0618865U true JPH0618865U (en) 1994-03-11

Family

ID=12958393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5400292U Pending JPH0618865U (en) 1992-07-31 1992-07-31 Gas-liquid separator

Country Status (1)

Country Link
JP (1) JPH0618865U (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194403A (en) * 1997-09-19 1999-04-09 Matsushita Electric Ind Co Ltd Gas-liquid separator of refrigerating cycle device
JP2003050060A (en) * 2001-08-03 2003-02-21 Mitsubishi Electric Corp Refrigerant circuit of air conditioner
WO2007083624A1 (en) * 2006-01-17 2007-07-26 Daikin Industries, Ltd. Gas-liquid separator and refrigeration device with the gas-liquid separator
JP2010210142A (en) * 2009-03-10 2010-09-24 Mitsubishi Electric Corp Gas-liquid separator and refrigerating cycle device mounted with the same
WO2012147290A1 (en) * 2011-04-25 2012-11-01 三菱電機株式会社 Gas-liquid separator and refrigerating cycle apparatus equipped with gas-liquid separator
KR101319671B1 (en) * 2011-09-06 2013-10-17 엘지전자 주식회사 Air conditioner
JP2014034119A (en) * 2012-08-07 2014-02-24 Hitachi Industrial Equipment Systems Co Ltd Inkjet recorder
WO2015129047A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Accumulator, and refrigeration device with said accumulator
JP2016221481A (en) * 2015-06-02 2016-12-28 三菱重工業株式会社 Gas-liquid separation device
JPWO2016063400A1 (en) * 2014-10-23 2017-04-27 三菱電機株式会社 Oil separator
JP2018119785A (en) * 2018-05-15 2018-08-02 株式会社不二工機 accumulator
WO2019073564A1 (en) * 2017-10-12 2019-04-18 三菱電機株式会社 Gas-liquid separator and refrigerant circuit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194403A (en) * 1997-09-19 1999-04-09 Matsushita Electric Ind Co Ltd Gas-liquid separator of refrigerating cycle device
JP2003050060A (en) * 2001-08-03 2003-02-21 Mitsubishi Electric Corp Refrigerant circuit of air conditioner
JP4561012B2 (en) * 2001-08-03 2010-10-13 三菱電機株式会社 Air conditioner
WO2007083624A1 (en) * 2006-01-17 2007-07-26 Daikin Industries, Ltd. Gas-liquid separator and refrigeration device with the gas-liquid separator
JP2007192433A (en) * 2006-01-17 2007-08-02 Daikin Ind Ltd Gas-liquid separator, and refrigerating device comprising the same
JP2010210142A (en) * 2009-03-10 2010-09-24 Mitsubishi Electric Corp Gas-liquid separator and refrigerating cycle device mounted with the same
JP5634597B2 (en) * 2011-04-25 2014-12-03 三菱電機株式会社 Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator
WO2012147290A1 (en) * 2011-04-25 2012-11-01 三菱電機株式会社 Gas-liquid separator and refrigerating cycle apparatus equipped with gas-liquid separator
KR101319671B1 (en) * 2011-09-06 2013-10-17 엘지전자 주식회사 Air conditioner
JP2014034119A (en) * 2012-08-07 2014-02-24 Hitachi Industrial Equipment Systems Co Ltd Inkjet recorder
WO2015129047A1 (en) * 2014-02-28 2015-09-03 三菱電機株式会社 Accumulator, and refrigeration device with said accumulator
JPWO2015129047A1 (en) * 2014-02-28 2017-03-30 三菱電機株式会社 Accumulator and refrigeration apparatus provided with the accumulator
US10060661B2 (en) 2014-02-28 2018-08-28 Mitsubishi Electric Corporation Accumulator and refrigeration apparatus including the same
JPWO2016063400A1 (en) * 2014-10-23 2017-04-27 三菱電機株式会社 Oil separator
US11015850B2 (en) 2014-10-23 2021-05-25 Mitsubishi Electric Corporation Oil separator
JP2016221481A (en) * 2015-06-02 2016-12-28 三菱重工業株式会社 Gas-liquid separation device
WO2019073564A1 (en) * 2017-10-12 2019-04-18 三菱電機株式会社 Gas-liquid separator and refrigerant circuit
JPWO2019073564A1 (en) * 2017-10-12 2020-10-01 三菱電機株式会社 Gas-liquid separator and refrigerant circuit
JP2018119785A (en) * 2018-05-15 2018-08-02 株式会社不二工機 accumulator

Similar Documents

Publication Publication Date Title
JPH0618865U (en) Gas-liquid separator
JP4356214B2 (en) Oil separator and outdoor unit
US11137183B2 (en) Phobic/philic structures in refrigeration systems and liquid vapor separation in refrigeration systems
US4715196A (en) Oil returning mechanism of evaporator for air conditioner
US20170276415A1 (en) Oil separator
JP3945252B2 (en) Gas-liquid separator for ejector cycle
JP4191847B2 (en) Gas-liquid separator
US5201195A (en) Bi-flow receiver/dehydrator for refrigeration system
JP2007178046A (en) Accumulator
JPH0540308Y2 (en)
CN210688828U (en) Gas-liquid separator applied to air conditioning system
JP2002349978A (en) Ejector cycle
JP2002013845A (en) Oil separator, and freezing cycle, and its oil separation method
JP2001082814A (en) Refrigeration cycle device and accululator using the same
JP2000088369A (en) Refrigerating cycle
JPH1194403A (en) Gas-liquid separator of refrigerating cycle device
JP2586083Y2 (en) Gas-liquid separator
CN215412627U (en) Air inlet pipe, shell and tube condenser and air conditioner
CN114294868B (en) Gas-liquid separation device and gas-liquid separation control method
CN215832237U (en) Oil-gas separation device, condenser and air conditioner
CN114234497B (en) Liquid storage device and compressor assembly
JP2505194B2 (en) Gas-liquid separator for freezing and cooling
CN214250233U (en) Oil separator and compressor heat exchange system
CN202101481U (en) Liquid accumulator of compressor
CN212205150U (en) Liquid blocking device for evaporator