JPH06188203A - Crystal growth device - Google Patents

Crystal growth device

Info

Publication number
JPH06188203A
JPH06188203A JP33998392A JP33998392A JPH06188203A JP H06188203 A JPH06188203 A JP H06188203A JP 33998392 A JP33998392 A JP 33998392A JP 33998392 A JP33998392 A JP 33998392A JP H06188203 A JPH06188203 A JP H06188203A
Authority
JP
Japan
Prior art keywords
crystal growth
crystal
substrate
sample holder
needlelike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33998392A
Other languages
Japanese (ja)
Inventor
Ryotaro Irie
亮太郎 入江
Taku Oshima
卓 大嶋
Takeyuki Hiruma
健之 比留間
Yoshihisa Fujisaki
芳久 藤崎
Tetsuo Ono
哲郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33998392A priority Critical patent/JPH06188203A/en
Publication of JPH06188203A publication Critical patent/JPH06188203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the crystal growth device capable of rapidly growing a needlelike crystal used for the semiconductor device using the quantum effect due to one-dimensional confinement of electrons. CONSTITUTION:A light source having lower photoquantum energy than that of the band gap of a substrate base (102) is provided inside a specimen holder of the title crystal growing device i.e., on the rear side of the substrate to irradiate the substrate during the crystal growth time. These beams reaching the growing surface (upper side surface of 102) are absorbed into a dimer in a part (needlelike crystal growth region) of the surface. As the results of the photoabsorption, the dimer is decomposed to produce a dangling bond while activating the surface. Here, a light irradiation window (103) is inside a specimen holder with the transmitted light intensity not decreased due to any contamination, so that a gaseous raw material may be reacted and deposited on the needlelike crystal region thereby enabling the needlelike crystal to be manufactured rapidly and continuously. Accordingly, the needlelike crystal can be grown rapidly, stably and continuously at relatively low temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子の1次元閉じ込め
による量子効果を用いる半導体デバイスの製造に好適な
光照射機能を有する結晶成長に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to crystal growth having a light irradiation function suitable for manufacturing a semiconductor device using a quantum effect due to one-dimensional confinement of electrons.

【0002】[0002]

【従来の技術】従来の針状(1次元細線)成長は、真
空、第35巻、490頁(1992)に記載されている
ように通常のMOCVD膜成長条件の低温領域において
実現している。
2. Description of the Related Art Conventional needle-like (one-dimensional thin line) growth is realized in a low temperature region of normal MOCVD film growth conditions as described in vacuum, vol. 35, page 490 (1992).

【0003】一方、半導体結晶を高速に成長させるため
に、従来技術では、ジャーナル・オブ・クリスタル・グ
ロース 31巻 20−30頁(1957)(J.of Cry
stalGrowth, Vol.31,p.20−30(1975)に
も記載されているように、成長種に金属等の触媒を混入
し基板を加熱するか、あるいはマテリアル・リサーチ・
ソサエティ・シンポジューム・プロシーディング 22
2巻 121−132頁(1991)(Mat. Res. Soc.
Symp. Proc. Vol.222,p.121−132(199
1)に記されているように、基板上側から光を照射する
ことにより、成長表面を活性化している。
On the other hand, in order to grow a semiconductor crystal at a high speed, in the prior art, Journal of Crystal Growth 31: 20-30 (1957) (J. of Cry
As described in stalGrowth, Vol.31, p.20-30 (1975), a catalyst such as a metal is mixed with the growing seeds to heat the substrate, or material research.
Society Symposium Proceeding 22
Vol. 2, pp. 121-132 (1991) (Mat. Res. Soc.
Symp. Proc. Vol. 222, p. 121-132 (199
As described in 1), the growth surface is activated by irradiating light from the upper side of the substrate.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、よ
り細い針状結晶を成長させようとすると、目的とする半
導体デバイスに有効な量子効果を与えるためには成長温
度を低く設定せねばならないが、そうすると、成長速度
が著しく低くなり、量産に供することが困難となる。ま
た、低温で成長させるために、基板上側から光照射を行
なうと、原料ガス等による窓汚染のため、安定で持続的
な結晶成長が困難となる。
In the above-mentioned prior art, when a finer needle crystal is grown, the growth temperature must be set low in order to give an effective quantum effect to the target semiconductor device. Then, the growth rate becomes extremely low, which makes it difficult to use for mass production. Further, when light irradiation is performed from the upper side of the substrate in order to grow at a low temperature, stable and continuous crystal growth becomes difficult due to window contamination by the source gas and the like.

【0005】本発明の目的は、低温においても高速、安
定、かつ持続的に、針状結晶を成長させることである。
An object of the present invention is to grow needle crystals at high speed, stably and continuously even at low temperature.

【0006】[0006]

【課題を解決するための手段】上記目的は、基板裏側
(成長表面の反対側)に、基板母体のバンドギャップよ
りも小さなエネルギーを有する光量子を放射する光源を
装備する結晶成長装置とすることにより達成される。
The above object is to provide a crystal growth apparatus equipped with a light source for emitting photons having an energy smaller than the band gap of the substrate matrix on the back side of the substrate (the side opposite to the growth surface). To be achieved.

【0007】[0007]

【作用】基板裏側の光源の光は、光量子エネルギーが基
板母体のバンドギャップより小さいので、基板母体に吸
収されることなく、成長表面まで到達する。このことに
より、基板は直接加熱されないので、低温条件を維持し
やすい。表面に到達した光は、表面の一部のダイマー
(未結合手(ダングリングボンド)間の結合)により吸
収される。なぜなら、これらのダイマーの結合性および
反結合性準位は基板母体のバンドギャップ内に存在する
からである。光吸収の結果として反結合性準位に電子が
入り、ダイマーが分解、ダングリングボンドが生成し、
表面は活性化される。ここで、光照射窓は、密閉された
試料ホルダーの内側(基板下部)にあり、汚染は少な
い。また、上記の光源から発せられた光量子のエネルギ
ーの大きさは、成長表面の中で、針状結晶成長領域のダ
イマーを切るには十分であるが、その他の大面積領域の
ダイマーを切るには不十分である。これは、次に示す理
由による。針状結晶成長領域の表面ダイマーの分解状態
では、各原子が成長領域の境界の方向、すなわち、水平
方向への緩和の自由度を有するために、構造の緩和によ
り、分解状態は大きく安定化される。したがって、針状
結晶成長領域のダイマーは、比較的小さなエネルギーで
分解することが可能であり、そのエネルギーは、バンド
ギャップよりも小さい。それに対して、その他の大面積
領域においては、ダイマー分解後の原子の緩和の自由度
が小さいので、ダイマー分解エネルギーは、バンドギャ
ップと同程度か、それよりも大きい。よって、光裏照射
によって活性化された針状結晶領域の上のみで原料ガス
が反応、堆積し、初期に与えた針状結晶成長領域と同一
の断面積(太さ)を有する針状結晶を製造することがで
きる。
The light from the light source on the back side of the substrate reaches the growth surface without being absorbed by the substrate matrix because the photon energy is smaller than the band gap of the substrate matrix. As a result, the substrate is not directly heated, and it is easy to maintain the low temperature condition. The light that reaches the surface is absorbed by a part of the dimer (bonding between dangling bonds) of the surface. This is because the binding and antibonding levels of these dimers exist within the band gap of the substrate matrix. As a result of light absorption, electrons enter the antibonding level, dimers decompose, and dangling bonds are generated.
The surface is activated. Here, the light irradiation window is inside the sealed sample holder (lower part of the substrate), and there is little contamination. Further, the magnitude of the energy of the photons emitted from the above light source is sufficient to cut the dimer in the acicular crystal growth region in the growth surface, but to cut the dimer in other large-area regions. Is insufficient. This is for the following reason. In the decomposed state of the surface dimer in the acicular crystal growth region, each atom has a degree of freedom of relaxation in the direction of the boundary of the growth region, that is, in the horizontal direction, so the structural relaxation greatly stabilizes the decomposed state. It Therefore, the dimer in the acicular crystal growth region can decompose with a relatively small energy, and the energy is smaller than the band gap. On the other hand, in other large-area regions, the degree of freedom of relaxation of atoms after dimer decomposition is small, and thus the dimer decomposition energy is about the same as or larger than the band gap. Therefore, the raw material gas reacts and deposits only on the needle-like crystal regions activated by the light back irradiation, and needle-like crystals having the same cross-sectional area (thickness) as the initially given needle-like crystal growth region are formed. It can be manufactured.

【0008】[0008]

【実施例】本発明による針状結晶成長の実施例を、Ga
As針状結晶成長について実施例1に、InAs針状結
晶成長について実施例2に、Si針状結晶成長について
実施例3に示す。
EXAMPLE An example of acicular crystal growth according to the present invention is Ga
Example 1 shows As needle crystal growth, Example 2 shows InAs needle crystal growth, and Example 3 shows Si needle crystal growth.

【0009】(実施例1)先ず、本発明の針状結晶成長
装置の試料ホルダー部分の構造の1例を図1を用いて説
明する。101は試料ホルダーであり、102は試料
(結晶成長の基板)であり、103は光を透過し熱を遮
蔽する試料ホルダーの光照射窓であり、104は基板母
体のバンドギャップより小さなエネルギーの光量子を発
する光源である。101の内部に結晶成長供給ガスは侵
入出来ず、101の内部に104が収納されている。1
04は、その光が103を通して102に照射されるよ
うに、配置されている。103は、104から102へ
の熱の伝導および対流を防止するとともに、102を加
熱し得る(即ち、102が吸収し得る)熱線を遮断する
機能を有する。したがって、104から発せられ102
の背面に到達する物は基板母体のバンドギャップより小
さなエネルギーの光量子のみである。これらの光量子
は、さらに、吸収されずに102の内部を透過し、10
2の表面(成長表面)に到達する。103の例として
は、2枚のKBr板の間に真空層を配置した透明熱遮蔽
板が上げられる。
Example 1 First, an example of the structure of the sample holder portion of the needle-shaped crystal growth apparatus of the present invention will be described with reference to FIG. Reference numeral 101 is a sample holder, 102 is a sample (crystal growth substrate), 103 is a light irradiation window of the sample holder that transmits light and shields heat, and 104 is a photon of energy smaller than the band gap of the substrate matrix. Is a light source that emits. The crystal growth supply gas cannot enter the inside of 101, and 104 is stored inside 101. 1
04 is arranged so that the light is irradiated to 102 through 103. 103 has a function of preventing heat conduction and convection from 104 to 102, and a function of blocking a heat ray that can heat 102 (that is, can be absorbed by 102). Therefore, it is emitted from 104
The only thing that reaches the back surface of is a photon with energy smaller than the band gap of the substrate matrix. These photons further penetrate the interior of 102 without being absorbed and
2 surface (growth surface) is reached. As an example of 103, a transparent heat shield plate in which a vacuum layer is arranged between two KBr plates is raised.

【0010】次に図2を用いて、従来の針状結晶成長装
置の試料ホルダー部分の構造を図2を用いて説明する。
201は試料ホルダーであり、202は試料であり、2
03はヒーターである。203から発せられた熱線およ
び光は、201が熱線や光を透過しないために、201
で熱(振動)に変換され、202に伝えられる。したが
って、203から発せられ202の背面に到達するもの
は、熱(振動)エネルギーのみであり、そのエネルギー
は成長表面活性化のためだけでなく、202全体を加熱
するために消費されることになる。
Next, the structure of the sample holder portion of the conventional needle crystal growth apparatus will be described with reference to FIG. 2 with reference to FIG.
201 is a sample holder, 202 is a sample, and 2
03 is a heater. The heat ray and the light emitted from 203 are 201, since 201 does not transmit the heat ray and the light.
Is converted into heat (vibration) and transmitted to 202. Therefore, what is emitted from 203 and reaches the back surface of 202 is only heat (vibration) energy, which is consumed not only for activation of the growth surface but also for heating the whole 202. .

【0011】図3に針状結晶成長装置の成長室(試料ホ
ルダー部分を含む)の概略を示す。301は、結晶成長
室であり、302は試料ホルダーであり、303はガス
供給口であり、304は排気口である。
FIG. 3 schematically shows a growth chamber (including a sample holder portion) of the needle crystal growth apparatus. 301 is a crystal growth chamber, 302 is a sample holder, 303 is a gas supply port, and 304 is an exhaust port.

【0012】次に、GaAs針状結晶成長の方法とその
結果を説明する。まず、本発明の試料ホルダーの中にG
aAs結晶のバンドギャップ(1.42eV)よりも小
さなエネルギーを有する光量子を放射する光源を用意す
る。ただし、光源の光量子エネルギーの最大値は1.2
8eVである。光源の例としては、Nd3+:YAGレー
ザーが上げられる成長室(図3)として、本発明の試料
ホルダー(図1)および従来の試料ホルダー(図2)を
有する成長室を準備する。各々のホルダー上にGaAs
基板を装着し、そのGaAs(111)面上に、真空下
で半径100nmのGaAsクラスター(成長種)を1
マイクロメータ四方に1個の割合で付着させ、針状結晶
成長基板とした。各々の試料ホルダー上の基板の温度を
ヒータを用いて300℃とし、本発明の試料ホルダーの
光源を点灯し、成長室圧力を2×104Paとして、ガ
ス供給口から、成長原料のトリメチルガリウム((CH
33Ga):TMG)およびアルシン(AsH3)を、
各々、1cc/minおよび5cc/minにて、キャ
リヤガスの水素(H2)とともに3分間供給した。その
後、従来の試料ホルダー上の試料表面をSEMで観察し
たところ、針状結晶は認められなかった。他方、本発明
の試料ホルダー上の試料表面をSEMで観察したとこ
ろ、直径約100nmの針状結晶が認められた。
Next, a method of GaAs needle crystal growth and its result will be described. First, in the sample holder of the present invention, G
A light source that emits photons having an energy smaller than the band gap (1.42 eV) of the aAs crystal is prepared. However, the maximum value of photon energy of the light source is 1.2
It is 8 eV. As an example of the light source, a growth chamber having a sample holder of the present invention (FIG. 1) and a conventional sample holder (FIG. 2) is prepared as a growth chamber (FIG. 3) in which a Nd 3 +: YAG laser is raised. GaAs on each holder
A substrate is mounted, and GaAs clusters (growing seeds) with a radius of 100 nm are grown on the GaAs (111) surface under vacuum.
One needle was attached to each side of the micrometer to obtain a needle-shaped crystal growth substrate. The temperature of the substrate on each sample holder was set to 300 ° C. using a heater, the light source of the sample holder of the present invention was turned on, the growth chamber pressure was set to 2 × 10 4 Pa, and trimethylgallium as a growth raw material was supplied from the gas supply port. ((CH
3 ) 3 Ga): TMG) and arsine (AsH 3 )
It was supplied with hydrogen (H 2 ) as a carrier gas for 3 minutes at 1 cc / min and 5 cc / min, respectively. After that, when the surface of the sample on the conventional sample holder was observed by SEM, needle crystals were not observed. On the other hand, when the surface of the sample on the sample holder of the present invention was observed by SEM, needle crystals having a diameter of about 100 nm were recognized.

【0013】また、上記条件で結晶成長を数十回行った
が、光照射窓103の光透過率の変化はほとんど認めら
れなかった。
Further, although crystal growth was carried out several tens of times under the above conditions, almost no change in light transmittance of the light irradiation window 103 was observed.

【0014】(実施例2)本実施例で用いる本発明の針
状結晶成長装置の試料ホルダー部分の構造と従来の針状
結晶成長装置の試料ホルダー部分の構造、および針状結
晶成長装置の成長室(試料ホルダー部分を含む)の構造
の概略は、実施例1と同様である。
(Embodiment 2) The structure of the sample holder part of the acicular crystal growth apparatus of the present invention used in this example, the structure of the sample holder part of the conventional acicular crystal growth apparatus, and the growth of the acicular crystal growth apparatus. The outline of the structure of the chamber (including the sample holder portion) is similar to that of the first embodiment.

【0015】次に、InAs針状結晶成長の方法とその
結果を説明する。まず、本発明の試料ホルダーの中にI
nAs結晶のバンドギャップ(0.36eV)よりも小
さなエネルギーを有する光量子を放射する光源を用意す
る。ただし、光源の光量子エネルギーの最大値は0.3
2eVである。光源の例としては、3.9μm干渉フィ
ルターを出射口に装着したフッ化重水素レーザーが上げ
られる。成長室(図3)として、本発明の試料ホルダー
(図1)および従来の試料ホルダー(図2)を有する成
長室を準備する。各々のホルダー上にInAs基板を装
着し、そのInAs(111)面上に、真空下で直径5
0nmのInAsクラスター(成長種)を1マイクロメ
ータ四方に1個の割合で付着させ、針状結晶成長基板と
した。各々の試料ホルダー上の基板の温度をヒータを用
いて300℃とし、本発明の試料ホルダーの光源を点灯
し、成長室圧力を2×104Paとして、ガス供給口か
ら、成長原料のトリメチルインジウム((CH33
n):TMI)およびアルシン(AsH3)を、各々、
1cc/minおよび5cc/minにて、キャリヤガ
スの水素(H2)とともに3分間供給した。その後、従
来の試料ホルダー上の試料表面をSEMで観察したとこ
ろ、針状結晶は認められなかった。他方、本発明の試料
ホルダー上の試料表面をSEMで観察したところ、直径
約50nmの針状結晶が認められた。
Next, the method of InAs needle-like crystal growth and its results will be described. First, in the sample holder of the present invention, I
A light source that emits photons having an energy smaller than the band gap (0.36 eV) of the nAs crystal is prepared. However, the maximum value of photon energy of the light source is 0.3
It is 2 eV. As an example of the light source, a deuterium fluoride laser equipped with a 3.9 μm interference filter at the emission port can be used. As the growth chamber (FIG. 3), a growth chamber having the sample holder of the present invention (FIG. 1) and the conventional sample holder (FIG. 2) is prepared. An InAs substrate was mounted on each holder, and the diameter of the InAs (111) surface was 5 under vacuum.
0 nm InAs clusters (growing seeds) were attached at a rate of 1 per 1 micrometer square to obtain a needle crystal growth substrate. The temperature of the substrate on each sample holder was set to 300 ° C. using a heater, the light source of the sample holder of the present invention was turned on, the growth chamber pressure was set to 2 × 10 4 Pa, and trimethylindium as a growth raw material was supplied from the gas supply port. ((CH 3 ) 3 I
n): TMI) and arsine (AsH 3 ) respectively,
At 1 cc / min and 5 cc / min, hydrogen (H 2 ) as a carrier gas was supplied for 3 minutes. After that, when the surface of the sample on the conventional sample holder was observed by SEM, needle crystals were not observed. On the other hand, when the surface of the sample on the sample holder of the present invention was observed by SEM, needle crystals having a diameter of about 50 nm were recognized.

【0016】また、上記条件で結晶成長を数十回行った
が、光照射窓103の光透過率の変化はほとんどなかっ
た。
Further, although crystal growth was carried out several tens of times under the above-mentioned conditions, there was almost no change in the light transmittance of the light irradiation window 103.

【0017】(実施例3)本実施例で用いる本発明の針
状結晶成長装置の試料ホルダー部分の構造と従来の針状
結晶成長装置の試料ホルダー部分の構造、および針状結
晶成長装置の成長室(試料ホルダー部分を含む)の構造
の概略は、実施例1と同様である。
(Embodiment 3) The structure of the sample holder portion of the needle-shaped crystal growth apparatus of the present invention used in this embodiment, the structure of the sample holder portion of the conventional needle-shaped crystal growth apparatus, and the growth of the needle-shaped crystal growth apparatus. The outline of the structure of the chamber (including the sample holder portion) is similar to that of the first embodiment.

【0018】次に、Si針状結晶成長の方法とその結果
を説明する。まず、本発明の試料ホルダーの中にSi結
晶のバンドギャップ(1.12eV)よりも小さなエネ
ルギーを有する光量子を放射する光源を用意する。ただ
し、光源の光量子エネルギーの最大値は1.08eVで
ある。光源の例としては、ヘリウム・ネオンレーザーが
上げられる。成長室(図3)として、本発明の試料ホル
ダー(図1)および従来の試料ホルダー(図2)を有す
る成長室を準備する。各々のホルダー上にSi基板を装
着し、そのSi(111)面上に、真空下で直径200
nmのSiクラスター(成長種)を1マイクロメータ四
方に1個の割合で付着させ、針状結晶成長基板とした。
各々の試料ホルダー上の基板の温度をヒータを用いて3
00℃とし、本発明の試料ホルダーの光源を点灯し、成
長室圧力を2×104Paとして、ガス供給口から、成
長原料の塩化シラン(SiCl4)を5cc/minに
てキャリヤガスの水素(H2)とともに3分間供給し
た。その後、従来の試料ホルダー上の試料表面をSEM
で観察したところ、針状結晶は認められなかった。他
方、本発明の試料ホルダー上の試料表面をSEMで観察
したところ、直径約200nmの針状結晶が認められ
た。
Next, the method of Si needle crystal growth and the result thereof will be described. First, a light source that emits photons having energy smaller than the band gap (1.12 eV) of Si crystal is prepared in the sample holder of the present invention. However, the maximum value of the photon energy of the light source is 1.08 eV. An example of the light source is a helium-neon laser. As the growth chamber (FIG. 3), a growth chamber having the sample holder of the present invention (FIG. 1) and the conventional sample holder (FIG. 2) is prepared. A Si substrate is mounted on each holder, and the Si (111) surface is vacuum-treated to have a diameter of 200
Si clusters (growth seeds) having a thickness of 1 nm were attached at a rate of 1 per 1 micrometer square to obtain a needle-shaped crystal growth substrate.
Use the heater to set the temperature of the substrate on each sample holder to 3
The temperature is set to 00 ° C., the light source of the sample holder of the present invention is turned on, the growth chamber pressure is set to 2 × 10 4 Pa, and silane chloride (SiCl 4 ) as a growth raw material is supplied as hydrogen as a carrier gas from a gas supply port at 5 cc / min. Supply with (H 2 ) for 3 minutes. Then, SEM the sample surface on the conventional sample holder.
No needle crystals were observed as a result of observation. On the other hand, when the surface of the sample on the sample holder of the present invention was observed by SEM, needle crystals having a diameter of about 200 nm were recognized.

【0019】[0019]

【発明の効果】本発明によれば、比較的低温においても
高速、安定、かつ持続的に、針状結晶を成長させること
ができる。
According to the present invention, acicular crystals can be grown rapidly, stably and continuously even at a relatively low temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の針状結晶成長装置の試料ホルダー部分
の断面構造図である。
FIG. 1 is a cross-sectional structural diagram of a sample holder portion of an acicular crystal growth apparatus of the present invention.

【図2】従来の針状結晶成長装置の試料ホルダー部分の
断面構造図である。
FIG. 2 is a cross-sectional structural diagram of a sample holder portion of a conventional needle-shaped crystal growth device.

【図3】針状結晶成長装置の成長室(試料ホルダー部分
を含む)の概略断面図である。
FIG. 3 is a schematic cross-sectional view of a growth chamber (including a sample holder portion) of a needle crystal growth apparatus.

【符号の説明】[Explanation of symbols]

101…試料ホルダー、102…試料(結晶成長の基
板)、103…光を透過し熱を遮蔽する試料ホルダーの
光照射窓、104…基板母体のバンドギャップより小さ
なエネルギーの光量子を放射する光源。201…試料ホ
ルダー、202…試料、203…ヒーター。301…結
晶成長室、302…試料ホルダー、303…ガス供給
口、304…排気口。
101 ... Sample holder, 102 ... Sample (crystal growth substrate), 103 ... Light irradiation window of sample holder that transmits light and shields heat, 104 ... Light source that emits photons with energy smaller than the band gap of the substrate matrix. 201 ... Sample holder, 202 ... Sample, 203 ... Heater. 301 ... Crystal growth chamber, 302 ... Sample holder, 303 ... Gas supply port, 304 ... Exhaust port.

フロントページの続き (72)発明者 藤崎 芳久 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 小野 哲郎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Yoshihisa Fujisaki 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Tetsuro Ono 1-280 Higashi Koikeku, Tokyo Kokubunji City Inside Hitachi Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料基板の裏側(すなわち、成長表面の反
対側)に、基板母体材料のバンドギャップよりも小さな
エネルギーを有する光量子を放射する光源を備えたこと
を特徴とする結晶成長装置。
1. A crystal growth apparatus comprising a light source for emitting photons having an energy smaller than a band gap of a substrate host material, on the back side of a sample substrate (that is, on the opposite side of a growth surface).
【請求項2】上記光源は、上記試料基板のホルダー内部
に配置されていることを特徴とする請求項1記載の結晶
成長装置。
2. The crystal growth apparatus according to claim 1, wherein the light source is arranged inside a holder of the sample substrate.
JP33998392A 1992-12-21 1992-12-21 Crystal growth device Pending JPH06188203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33998392A JPH06188203A (en) 1992-12-21 1992-12-21 Crystal growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33998392A JPH06188203A (en) 1992-12-21 1992-12-21 Crystal growth device

Publications (1)

Publication Number Publication Date
JPH06188203A true JPH06188203A (en) 1994-07-08

Family

ID=18332626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33998392A Pending JPH06188203A (en) 1992-12-21 1992-12-21 Crystal growth device

Country Status (1)

Country Link
JP (1) JPH06188203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376345B1 (en) 1998-07-24 2002-04-23 Hitachi Ltd. Process for manufacturing semiconductor integrated circuit device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376345B1 (en) 1998-07-24 2002-04-23 Hitachi Ltd. Process for manufacturing semiconductor integrated circuit device
US6458674B1 (en) 1998-07-24 2002-10-01 Hitachi, Ltd. Process for manufacturing semiconductor integrated circuit device
US6531400B2 (en) 1998-07-24 2003-03-11 Hitachi, Ltd. Process for manufacturing semiconductor integrated circuit device
US6800557B2 (en) 1998-07-24 2004-10-05 Renesas Technology Corp. Process for manufacturing semiconductor integrated circuit device
US7510970B2 (en) 1998-07-24 2009-03-31 Renesas Technology Corp. Process for manufacturing semiconductor integrated circuit device
US7659201B2 (en) 1998-07-24 2010-02-09 Renesas Technology Corp. Process for manufacturing semiconductor integrated circuit device
US8129275B2 (en) 1998-07-24 2012-03-06 Renesas Electronics Corporation Process for manufacturing semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US20070296060A1 (en) Method for Forming P-Type Semiconductor Region, and Semiconductor Element
JPH08172055A (en) Method and equipment for growing nitride semiconductor crystal
JPH06188203A (en) Crystal growth device
Iga et al. Carbon reduction in GaAs films grown by laser‐assisted metalorganic molecular beam epitaxy
JPH09266218A (en) Method to reduce resistance of p-type compound semiconductor
JPS62222633A (en) Manufacture of semiconductor element
JP3077781B2 (en) Method for growing indium gallium nitride
JPS58119630A (en) Molecular beam crystal growth method
JPH11135436A (en) Formation of compound semiconductor film
JP3182584B2 (en) Compound thin film forming method
JPH03173418A (en) Modification of surface and surface modifying device
JPH0351675B2 (en)
Coronado et al. Photoassisted metalorganic molecular beam epitaxy of ZnSe
JP3141441B2 (en) Method of forming SiC crystal film by laser
CN113337887B (en) Application of laser-assisted MPCVD method in enhancing SiV color center of single crystal diamond and single crystal diamond with SiV color center
Perna et al. Photoluminescence analysis of laser-deposited CdS films
JPH0630339B2 (en) Method for producing GaAs single crystal
JPH04207020A (en) Device and method for manufacturing semiconductor
JP3642385B2 (en) Vapor growth of diamond thin films.
JPH0431391A (en) Epitaxial growth
JP3028657B2 (en) Method for producing single-crystal SiC thin film
JPS62150708A (en) Formation of surface optically pumped thin film
JP3725113B2 (en) Nanodevice fabrication method and apparatus
Simpson et al. Preferential (111) orientation of ZnSe on (100) GaAs deposited by laser-induced MOCVD
JPS62269311A (en) Method for doping on crystal