JPH06188196A - Thermal cvd device and manufacture of film el element with it - Google Patents

Thermal cvd device and manufacture of film el element with it

Info

Publication number
JPH06188196A
JPH06188196A JP4336338A JP33633892A JPH06188196A JP H06188196 A JPH06188196 A JP H06188196A JP 4336338 A JP4336338 A JP 4336338A JP 33633892 A JP33633892 A JP 33633892A JP H06188196 A JPH06188196 A JP H06188196A
Authority
JP
Japan
Prior art keywords
raw material
tube
inner tube
reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4336338A
Other languages
Japanese (ja)
Inventor
Akiyoshi Mikami
明義 三上
Kosuke Terada
幸祐 寺田
Koichi Tanaka
康一 田中
Morihiro Kawarasaki
守弘 河原崎
Mikihiro Noma
幹弘 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4336338A priority Critical patent/JPH06188196A/en
Publication of JPH06188196A publication Critical patent/JPH06188196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To perform continuous growth without substrate movement within the same reactor, vacuum release and temperature rising/falling, relating to a light emission layer and an insulation layer that constitute a film EL element, and three-layer continuous growth of an insulation layer-light emission layer- insulation layer. CONSTITUTION:Relating to a thermal CVD device provided with a reactor of double-pipe structure consisting of a reactor inner tube 4 that surrounds a growth area provided with multiple substrates and a reactor outer tube 1 that, further, surrounds the inner tube 4. the outer tube 1 is connected to the reactor with at least one solid material supply path, and to introduce material gas from the outer tube 1 into the inside of the inner tube 4, the wall of the inner tube is provided with a gap or small hole that allows flow-in/out of gas. Thus, a thermal CVD device provided with, to directly introduce a material gas different from the material gas from the outside of the reactor to inside of the inner tube, at least one material gas introduction tube 7 and an exhaust part at part of between the reactor outer tube 1 and the inner tube 4, and manufacture of a thin film EL element using the device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光層薄膜と絶縁層薄膜
を同一反応炉内で連続成長して、薄膜EL素子を製造す
る熱CVD装置およびその製造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal CVD apparatus for producing a thin film EL element by continuously growing a light emitting layer thin film and an insulating layer thin film in the same reaction furnace, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、薄膜EL素子は少なくとも一方が
透明な電極間に絶縁層−発光層−絶縁層の三層を積層し
た、いわゆる二重絶縁構造が安定性、発光効率、信頼性
に優れており、該構造のELディスプレィが生産されて
いる。
2. Description of the Related Art Conventionally, a thin film EL element has a so-called double insulation structure in which three layers of an insulating layer, a light emitting layer and an insulating layer are laminated between electrodes, at least one of which is transparent, is excellent in stability, luminous efficiency and reliability. Therefore, an EL display having the structure is produced.

【0003】一般に、薄膜EL素子を製造する場合、絶
縁層と発光層の成長において、それらに最適な原料およ
び成長メカニズムが異なるために、まず絶縁層成長用C
VD装置で絶縁層を形成し、次に基板を取り出して発光
層成長用CVD装置に移して発光層を形成し、最後に再
び絶縁層成長用CVD装置に戻して第2絶縁層を形成す
る成長方法を用いる。
Generally, when a thin film EL device is manufactured, the optimum raw material and growth mechanism for the growth of the insulating layer and the light emitting layer are different.
Growth in which an insulating layer is formed by a VD apparatus, then the substrate is taken out and transferred to a CVD apparatus for growing a light emitting layer to form a light emitting layer, and finally returned to the CVD apparatus for growing an insulating layer to form a second insulating layer. Use the method.

【0004】例えば、本発明者らは、発光層の成長には
ZnSの水素または不活性ガス輸送法と、発光中心材料
のMnあるいは希土類元素のハロゲン輸送法を組み合わ
せたCVD技術で、原料ガスの濃度拡散流を利用する
と、成長した薄膜厚の均一性が優れていることを見い出
した(特開平1−289091、特開平3−20829
8)。 一方、Al23 、Ta25 などの絶縁層の
成長には金属アルコキシド系有機ガスの熱分解反応が簡
便で、良質の膜が得られる成長方法として知られてい
る。
For example, the inventors of the present invention used a CVD technique in which a hydrogen or inert gas transport method of ZnS and a halogen transport method of Mn as a luminescent center material or a rare earth element were combined to grow a light emitting layer. It has been found that the uniformity of the thickness of the grown thin film is excellent when the concentration diffusion flow is used (JP-A-1-2899091, JP-A-3-20829).
8). On the other hand, a thermal decomposition reaction of a metal alkoxide-based organic gas is simple for growing an insulating layer of Al 2 O 3 , Ta 2 O 5 or the like, and it is known as a growth method capable of obtaining a good quality film.

【0005】しかし、近年、大面積にわたり、結晶性や
膜厚が均一で、かつ量産性に優れた薄膜EL素子を製造
するために、同一装置内で、絶縁層と発光層とを連続し
て成長できる装置および製造方法が望まれ、かつ数々の
提案がなされている。
However, in recent years, in order to manufacture a thin film EL element having a uniform crystallinity and a uniform film thickness over a large area and being excellent in mass productivity, an insulating layer and a light emitting layer are continuously formed in the same apparatus. A device and a manufacturing method capable of growing are desired, and various proposals have been made.

【0006】例えば、原子層エピタキシー法(ALE
法)では同一反応炉内に基板を設置したまま、ガスの切
り替え操作により絶縁層−発光層の連続成長を可能にし
(特開昭55ー130896)、また、熱CVD装置と
プラズマCVD装置を一体化して基板を炉内で移動させ
る連続CVD炉が提案され(特開平3−13888
9)、さらに、発光層と絶縁層の原料導入管を分離する
ことで基板移動が不要な連続熱CVD装置も提案されて
いる(特開平4−021780)。
For example, the atomic layer epitaxy method (ALE
Method), it is possible to continuously grow an insulating layer and a light emitting layer by switching the gas while the substrate is installed in the same reaction furnace (Japanese Patent Laid-Open No. 55-130896), and a thermal CVD device and a plasma CVD device are integrated. A continuous CVD furnace has been proposed in which the substrate is moved and the substrate is moved in the furnace (JP-A-3-13888).
9) Furthermore, a continuous thermal CVD apparatus has been proposed in which the substrate is not required to be moved by separating the raw material introducing pipes for the light emitting layer and the insulating layer (JP-A-4-021780).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の成長方法や連続成長の装置および方法では以下のよ
うな問題がある。
However, the above-described conventional growth method and continuous growth apparatus and method have the following problems.

【0008】単原子層成長を利用するALE法は、成長
に通常20時間以上もの極めて長い時間を要する。ま
た、熱CVD装置とプラズマCVD装置を連結一体化し
た成長方法では、2つの装置内の基板の移動するための
装置間の連結の領域を必要とするので装置が大型化し、
かつ生産性が低下する。さらに、反応炉は同一で原料の
み分離して連続成長させる方法では絶縁層と発光層に最
適な成長メカニズムの違いにより、それぞれの成長原料
の最適な温度がかなり異なり、同一反応炉内で複雑な温
度設定を行わなければならず、やはり装置が大型化して
しまう。
The ALE method utilizing the monoatomic layer growth requires an extremely long time, usually 20 hours or more, for the growth. Further, in the growth method in which the thermal CVD device and the plasma CVD device are connected and integrated, a region for connection between the devices for moving the substrates in the two devices is required, and thus the device becomes large,
And productivity is reduced. Furthermore, in the method in which the reactors are the same and only the raw materials are separated for continuous growth, the optimum temperatures of the respective growth raw materials are considerably different due to the difference in the optimal growth mechanism for the insulating layer and the light emitting layer, and the complicated reaction in the same reactor Since the temperature must be set, the size of the device also increases.

【0009】さらに、成長材料の点でも問題がある。た
とえば、絶縁膜の成長には金属アルコキシド系有機ガス
原料が有効であるが、分子量が大きく拡散距離が小さい
ため、発光層形成に有利な濃度拡散流を利用した成長方
法では、膜厚の不均一性が著しくなり、絶縁膜形成の材
料として用いるには不適当である。よって、同一反応炉
内で絶縁層と発光層の両層ともに、結晶性や膜厚が均一
になるよう連続成長させることは非常に困難であった。
Further, there is a problem in terms of growth material. For example, a metal alkoxide-based organic gas raw material is effective for growth of an insulating film, but since the molecular weight is large and the diffusion distance is short, the growth method using a concentration diffusion flow advantageous for forming a light emitting layer causes uneven film thickness. Therefore, it is not suitable for use as a material for forming an insulating film. Therefore, it was very difficult to continuously grow both the insulating layer and the light emitting layer in the same reaction furnace so that the crystallinity and the film thickness would be uniform.

【0010】以上を鑑み、本発明は基板の装置間移動、
真空解除、装置内移動、設定温度の変更など生産性低下
の原因となる要因を極力に低減することで、同一反応炉
内での発光層−絶縁層の連続成長を、それぞれに最適な
成長方法で可能にし、量産性および大面積化に優れたC
VD装置を開発することを目的とする。
In view of the above, the present invention is directed to the movement of a substrate between devices,
Optimum growth method for continuous growth of light emitting layer-insulating layer in the same reaction furnace by reducing the factors that cause productivity decline such as releasing the vacuum, moving inside the apparatus, and changing the set temperature as much as possible. C, which has excellent mass productivity and large area
The purpose is to develop a VD device.

【0011】[0011]

【課題を解決するための手段】本発明は、本発明者らに
より以前になされた発明により、高品質の薄膜EL発光
層が熱CVD法により形成できるようになったこと、更
に、このための手段として原料ガス主流と成長領域を空
間的に分離して、膜厚の均一性を向上させることができ
たことに基づいている。
The present invention has made it possible to form a high-quality thin-film EL light emitting layer by a thermal CVD method by the invention previously made by the present inventors. It is based on the fact that the source gas main flow and the growth region are spatially separated as a means to improve the uniformity of the film thickness.

【0012】複数枚の基板を設置した成長領域を取り囲
む反応炉内管、および該内管を外側から更に囲む反応炉
外管から構成された二重管構造の反応をもつ熱CVD装
置において、該外管には少なくとも1つの固体原料供給
路を反応炉に接続し、外管から内管内部へ原料ガスを導
入するために、内管壁にガスの流出入が可能な間隙もし
くは小孔を設け、かつ、上記原料ガスとは異なる原料ガ
スを反応炉外部より内管内部に直接導入するために、少
なくとも1つの原料ガス導入管を設け、かつ、反応炉外
管と内管の間の一部に排気口を設けている熱CVD装置
である。
In a thermal CVD apparatus having a reaction of a double tube structure composed of a reaction furnace inner tube surrounding a growth region in which a plurality of substrates are installed, and a reaction furnace outer tube further surrounding the inner tube from the outside, At least one solid raw material supply path is connected to the reactor in the outer tube, and a gap or a small hole that allows gas to flow in and out is provided in the inner tube wall in order to introduce the raw material gas from the outer tube into the inner tube. In order to introduce a raw material gas different from the above-mentioned raw material gas into the inner pipe directly from the outside of the reaction furnace, at least one raw material gas introduction pipe is provided, and a part between the reaction furnace outer pipe and the inner pipe is provided. This is a thermal CVD apparatus in which an exhaust port is provided in the.

【0013】さらに、前記熱CVD装置において、さら
に、前記排気口とは別の内管内部より直接排気を行うた
めの第2の排気口が反応炉内管に接続され、第2の排気
口は外管をも貫通して設置され、排気が直接外部へなさ
れる。
Further, in the thermal CVD apparatus, a second exhaust port for directly exhausting gas from an inner pipe different from the exhaust port is connected to the reactor inner pipe, and the second exhaust port is It is also installed so that it penetrates through the outer tube, and exhaust air is directly emitted to the outside.

【0014】前記熱CVD装置を用い、反応炉外管に発
光層成長用の固体原料供給路を接続し、該供給路より供
給された原料ガスの化学的結合反応に基づいて、内管内
部への原料拡散流により発光体薄膜を基板上に成長する
工程と、内管内部への直接導入管より供給された絶縁層
成長用原料ガスの熱分解反応に基づいて、絶縁性薄膜を
基板上に成長する工程とを含み、それらを連続成長して
発光層と絶縁層とを積層して薄膜EL素子を製造する。
Using the thermal CVD apparatus, a solid raw material supply path for growing a light emitting layer is connected to the outer tube of the reaction furnace, and based on the chemical bonding reaction of the raw material gas supplied from the supply path, the inside of the inner tube is introduced. Based on the process of growing the phosphor thin film on the substrate by the raw material diffusion flow of and the thermal decomposition reaction of the raw material gas for insulating layer growth supplied from the direct introduction tube into the inner tube, the insulating thin film is formed on the substrate. And a step of growing, and successively growing them to laminate a light emitting layer and an insulating layer to manufacture a thin film EL element.

【0015】前記装置での発光層成長用原料としては母
体材料にはZnS、発光センター材料にはMnなど無機
化合物を用い、絶縁層成長用の原料としてAlあるいは
Taのメトキシドおよびエトキシドなどのアルコキシド
系有機ガスを用いる。
ZnS is used as the base material for the light emitting layer growth raw material in the above-mentioned device, and an inorganic compound such as Mn is used for the light emission center material. Al or Ta alkoxides such as methoxide and ethoxide are used as the raw material for the insulating layer growth. Organic gas is used.

【0016】尚、実際の成長に当たっては、成長領域の
設定温度は300〜700℃の範囲とし、内管内部への
有機ガス導入管から成長領域の温度は常温から300℃
の範囲、外管に設置する無機原料から成長領域までの温
度は700〜1100℃の範囲として反応炉全体の温度
分布を最適化する。
In actual growth, the temperature set in the growth region is set in the range of 300 to 700 ° C., and the temperature in the growth region from the organic gas introducing pipe into the inner pipe is from room temperature to 300 ° C.
, The temperature from the inorganic raw material installed in the outer tube to the growth region is in the range of 700 to 1100 ° C. to optimize the temperature distribution of the entire reaction furnace.

【0017】[0017]

【作用】本発明では、発光層と絶縁層をそれぞれに最適
な反応メカニズムによって成長することができ、しかも
前記反応は複雑な温度設定や基板の移動を伴うことな
く、同一反応炉内で行うことができる。
In the present invention, the light emitting layer and the insulating layer can be grown by the respective optimum reaction mechanisms, and the reaction is performed in the same reaction furnace without complicated temperature setting and substrate movement. You can

【0018】即ち、発光層の成長ではZnとSとが高い
蒸気圧を保持したままで成長領域へ供給されるため、原
料ガスの濃度拡散流を利用した成長が膜の均一性に優れ
ている。そこで、本発明では、外管から内管内部へ原料
ガスを導入するために、内管壁にガスの流出入が可能な
間隙もしくは小孔を設け、反応室内の原料ガスの主流を
遮蔽して、原料の濃度拡散のみによる基板への、すなわ
ち成長領域への原料供給を行う。よって、従来の減圧C
VD法において、供給律速反応によって生じていた膜厚
の不均一、さらには発光中心濃度の不均一も解消され
る。
That is, in the growth of the light emitting layer, since Zn and S are supplied to the growth region while maintaining a high vapor pressure, the growth utilizing the concentration diffusion flow of the source gas is excellent in film uniformity. . Therefore, in the present invention, in order to introduce the raw material gas from the outer tube into the inner tube, a gap or a small hole that allows the gas to flow in and out is provided in the inner tube wall to shield the main flow of the raw material gas in the reaction chamber. The raw material is supplied to the substrate, that is, to the growth region only by the concentration diffusion of the raw material. Therefore, conventional decompression C
In the VD method, the nonuniformity of the film thickness and the nonuniformity of the emission center concentration, which have been caused by the supply-controlled reaction, are also eliminated.

【0019】また、絶縁層の成長では金属アルコキシド
原料ガスの熱分解反応による方法が、膜厚の均一性に優
れているが、このためにはガス導入領域の温度を成長領
域における基板の温度に対して、かなり低い温度、例え
ば常温から300℃程度に温度設定を行わねばならな
い。そこで、本発明では、発光層とは距離的に離れ、し
かも反応炉内での複雑な温度設定を行うことない別の原
料導入管を設けている。よって、該原料導入管により、
反応炉内管に原料ガスを直接導入して成長することによ
り、膜厚の均一性に優れた絶縁層の形成を可能とした。
Further, in the growth of the insulating layer, the method by the thermal decomposition reaction of the metal alkoxide source gas is excellent in the uniformity of the film thickness. For this purpose, the temperature of the gas introduction region is set to the temperature of the substrate in the growth region. On the other hand, the temperature must be set to a considerably low temperature, for example, from room temperature to about 300 ° C. Therefore, in the present invention, another raw material introduction pipe is provided which is separated from the light emitting layer in distance and does not perform complicated temperature setting in the reaction furnace. Therefore, by the raw material introduction pipe,
By introducing the raw material gas directly into the reaction furnace tube and growing it, it was possible to form an insulating layer with excellent film thickness uniformity.

【0020】さらに、発光層と絶縁層とを連続して成長
するために、原料ガスの供給、排気の繰り返しによる原
料ガスの混合が起こり得る。これは、原料の十分な排気
が行われていないことに起因する。そこで、第2の排気
口を設け、発光層成長後と絶縁層成長後とで、主排気経
路を変え、かつ排気速度増す。しかも第2の排気口によ
り、発光層の原料供給路に絶縁層の原料ガスが混入しな
い構成にして、原料のガスぎれを向上させている。
Further, in order to continuously grow the light emitting layer and the insulating layer, the source gas may be mixed by repeatedly supplying and discharging the source gas. This is because the raw material is not sufficiently exhausted. Therefore, a second exhaust port is provided to change the main exhaust path between the growth of the light emitting layer and the growth of the insulating layer and increase the exhaust speed. Moreover, the second exhaust port is provided so that the raw material gas for the insulating layer is not mixed into the raw material supply passage for the light emitting layer, thereby improving the gas leakage of the raw material.

【0021】[0021]

【実施例】図1及び図2に、本発明の第1の連続CVD
装置の基本構造およびその装置を用いた製造方法を示
す。ここで、図1中には発光層を成長する際のガスの流
れを破線で示し、図2中には絶縁層を成長する際のガス
の流れを破線で示す。ガスの流れを図中に示した以外
は、図1と図2とは同一である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2, the first continuous CVD of the present invention.
A basic structure of an apparatus and a manufacturing method using the apparatus are shown. Here, the flow of gas when growing the light emitting layer is shown by a broken line in FIG. 1, and the flow of gas when growing an insulating layer is shown by a broken line in FIG. 1 and 2 are the same except that the flow of gas is shown in the figure.

【0022】図1および図2中、反応炉外管1は内径3
0cm、高さ1mの石英管で、上層部には発光層を成長
するための固体原料を設置する補助管2a、2bを取り
付ける。成長領域に設置した複数枚のガラス基板3(サ
イズ220mm×170mm)を囲むように石英製の内
管4があり、内管の側壁にはガスの流出入が可能な多数
のスリット5が空いている。排気は内管4と反応炉外管
1との間で下部に取り付けた排気口6により行い、発光
層を成長する際には、内管内部は原料ガスの濃度拡散流
以外にガスの流出入が存在しない領域とする。
In FIGS. 1 and 2, the reactor outer tube 1 has an inner diameter 3
A quartz tube having a height of 0 cm and a height of 1 m, and auxiliary tubes 2a and 2b for installing a solid material for growing a light emitting layer are attached to the upper layer. There is an inner tube 4 made of quartz so as to surround a plurality of glass substrates 3 (size 220 mm × 170 mm) installed in the growth region, and a large number of slits 5 through which gas can flow in and out are formed on the side wall of the inner tube. There is. Exhaust is performed through an exhaust port 6 attached to the lower portion between the inner tube 4 and the reactor outer tube 1, and when growing the light emitting layer, the inside of the inner tube is not only the concentration diffusion flow of the source gas but also the gas inflow and outflow. Is an area that does not exist.

【0023】絶縁層を成長するためには、内管4内へ直
接に原料ガスを導入する導入管7を内管下部に取り付け
る。この際の排気は、内管4側壁のスリット5を通過し
て、内管と外管との間に流出した分が排気口6より排気
される。スリットの幅は1〜10mmの範囲が適切であ
り、本実施例では3mmとした。
In order to grow the insulating layer, an introduction pipe 7 for directly introducing the raw material gas into the inner pipe 4 is attached to the lower portion of the inner pipe. At this time, the exhaust gas passes through the slit 5 on the side wall of the inner pipe 4, and the portion flowing out between the inner pipe and the outer pipe is exhausted from the exhaust port 6. The width of the slit is appropriately in the range of 1 to 10 mm, and in this embodiment, it is set to 3 mm.

【0024】上記装置を用いた薄膜EL素子の製造方法
を以下に説明する。
A method of manufacturing a thin film EL element using the above apparatus will be described below.

【0025】発光層の成長には、母体原料ZnSおよび
発光中心材料Mnを、それぞれ石英ボ−トに充填して高
温原料部8a、8bに設置し、それぞれH2 およびHC
lガスをガス導入管9a、9bから供給して、ガラス基
板上にZnS:Mn膜を成長した。成長圧力は0.1t
orr、原料温度はそれぞれ950℃および800℃と
し、1時間の成長を行うと膜厚0.8μmの発光層が得
られた。
In order to grow the light emitting layer, a base material ZnS and an emission center material Mn are filled in a quartz boat and placed in high temperature raw material parts 8a and 8b, respectively, and H 2 and HC are respectively supplied.
l gas was supplied from the gas introduction pipes 9a and 9b to grow a ZnS: Mn film on the glass substrate. Growth pressure is 0.1t
Orr and raw material temperatures were set to 950 ° C. and 800 ° C., respectively, and growth was carried out for 1 hour to obtain a light emitting layer having a film thickness of 0.8 μm.

【0026】前記ガラス基板(サイズ220mm×17
0mm)を10mmピッチで複数枚設置した場合、発光
層膜厚の不均一度は±2%以内であった。これにより、
本発明の第1の成長装置では均一性の向上が図れ、薄膜
ELパネルの大面積化に適することがわかった。
The glass substrate (size 220 mm × 17)
(0 mm) was placed at a pitch of 10 mm, the nonuniformity of the thickness of the light emitting layer was within ± 2%. This allows
It was found that the first growth apparatus of the present invention can improve the uniformity and is suitable for increasing the area of a thin film EL panel.

【0027】図5に上記成長で得られる基板温度と発光
強度の関係を測定した結果を示す。図5には、素子の発
光輝度は550℃で最大値をとり、300〜700℃の
範囲で薄膜成長が可能なことを示している。すなわち、
300℃以下では成長エネルギ−が不十分なために、Z
nとSが単体で分離して基板上には黒色のZnが形成さ
れ、700℃以上は使用したガラス基板が軟化するため
に不適当である。また、発光輝度は通常100Hz駆動
で100ft−L以上が要求されるため、この条件を満
足するためには、450〜600℃の範囲で成長温度を
設定することが望ましい。また、膜厚の均一性は基板温
度300〜700℃の範囲では、該温度にはほとんど依
存しないこともわかった。
FIG. 5 shows the result of measuring the relationship between the substrate temperature and the emission intensity obtained by the above growth. FIG. 5 shows that the emission luminance of the device takes a maximum value at 550 ° C., and thin film growth is possible in the range of 300 to 700 ° C. That is,
Since the growth energy is insufficient at 300 ° C or lower, Z
It is not suitable because n and S are separated as a single substance and black Zn is formed on the substrate, and the glass substrate used is softened at 700 ° C. or higher. Further, since the emission brightness is usually required to be 100 ft-L or more at 100 Hz driving, it is desirable to set the growth temperature in the range of 450 to 600 ° C. to satisfy this condition. It was also found that the uniformity of the film thickness hardly depends on the substrate temperature in the range of 300 to 700 ° C.

【0028】発光層の成長では無機化合物の化学反応を
利用しているために、原料設置部の温度の下限は該化合
物の分解温度で決定され、上限は石英反応管の耐熱性で
制限されるため、700〜1100℃の温度範囲が適し
ている。
Since the chemical reaction of the inorganic compound is used in the growth of the light emitting layer, the lower limit of the temperature of the raw material installation portion is determined by the decomposition temperature of the compound, and the upper limit is limited by the heat resistance of the quartz reaction tube. Therefore, the temperature range of 700 to 1100 ° C is suitable.

【0029】また、絶縁膜の成長には、温度制御が可能
な恒温層にAl(OC373の金属アルコキシドを原
料ガスとして入れ、Arキャリアガスをバブリングガス
として用いて絶縁層用ガス導入管7より反応炉内管内に
輸送し、Al23 膜を成長した。原料のガス流量は1
litter/minであり、基板温度は500℃に設
定した。成長時間20minで約0.2μm厚のAl2
3 膜が得られ、膜厚の不均一度は±7%であった。絶
縁層用の原料導入管の温度は、有機ガスの熱分解を成長
原理とするために、常温から300℃の範囲が適してい
る。
In order to grow the insulating film, a metal alkoxide of Al (OC 3 H 7 ) 3 is introduced as a source gas into a temperature-controlled constant temperature layer, and an Ar carrier gas is used as a bubbling gas to form an insulating layer gas. The Al 2 O 3 film was grown by being transported from the introduction tube 7 into the tube inside the reaction furnace. Raw material gas flow rate is 1
Litter / min, and the substrate temperature was set to 500 ° C. Al 2 about 0.2 μm thick with a growth time of 20 min
An O 3 film was obtained, and the nonuniformity of the film thickness was ± 7%. The temperature of the raw material introduction pipe for the insulating layer is preferably in the range of normal temperature to 300 ° C. because the growth principle is the thermal decomposition of organic gas.

【0030】次に、図3及び図4に、本発明の第2の熱
CVD装置の基本構造およびその装置を用いた製造方法
を示す。
Next, FIGS. 3 and 4 show a basic structure of a second thermal CVD apparatus of the present invention and a manufacturing method using the apparatus.

【0031】図3及び図4では、内管と外管を上部です
り合わせ接合により接続した上方側へ別の排気口10を
設けている。図3及び図4中、排気口10以外は図1及
び図2と同様の装置構造で、その薄膜EL素子の製造方
法も、第1の実施例と同様である。
In FIGS. 3 and 4, another exhaust port 10 is provided on the upper side where the inner pipe and the outer pipe are connected to each other by laminating and joining at the upper part. 3 and 4, the device structure is the same as that of FIGS. 1 and 2 except for the exhaust port 10, and the method of manufacturing the thin film EL element is also the same as that of the first embodiment.

【0032】該排気口10は、スリット5の幅が狭いた
め、またはその数が少ないために、図4中の破線で示す
ガスの流れの絶縁層の成長において、排気口6から十分
な排気速度が得られない場合に有効な装置構造である。
さらに、絶縁層を成長する場合、図3中の破線で示すガ
スの流れの発光層を成長する場合と比較して、絶縁層用
原料が発光層用原料と排気口10により分離されている
ため、連続成長による相互汚染を軽減するのに有効な装
置構造である。
Since the width of the slit 5 is small or the number of the slits 5 is small, the exhaust port 10 has a sufficient exhaust speed from the exhaust port 6 in the growth of the insulating layer of the gas flow shown by the broken line in FIG. This is an effective device structure when the above cannot be obtained.
Further, in the case of growing the insulating layer, the insulating layer raw material is separated from the light emitting layer raw material by the exhaust port 10 as compared with the case of growing the light emitting layer of the gas flow shown by the broken line in FIG. The device structure is effective in reducing cross contamination due to continuous growth.

【0033】<比較例>第1の比較例として、本発明の
第1の実施例に示す装置構造より、内管を除去した装置
構造で絶縁層、発光層を成長した。
<Comparative Example> As a first comparative example, an insulating layer and a light emitting layer were grown in a device structure in which the inner tube was removed from the device structure shown in the first embodiment of the present invention.

【0034】また、第2の比較例として、本発明の第1
の実施例に示す装置構造で、絶縁層成長用原料ガスを発
光層成長の場合と同様に外管から導入することにより、
絶縁層、発光層を成長した。
As a second comparative example, the first embodiment of the present invention
In the device structure shown in the example of, by introducing the source gas for insulating layer growth from the outer tube as in the case of light emitting layer growth,
An insulating layer and a light emitting layer were grown.

【0035】本発明による成長、第1および第2の比較
例による成長の膜厚分布測定の結果を表1(基板サイズ
220×170mm)に示す。
The results of the film thickness distribution measurement of the growth according to the present invention and the growth according to the first and second comparative examples are shown in Table 1 (substrate size 220 × 170 mm).

【0036】[0036]

【表1】 [Table 1]

【0037】内管を除去した場合(第1の比較例)では
絶縁層の膜厚はほとんど変化しないが、発光層の膜厚の
不均一度は±35%と著しく低下し、ガスの流れ方向に
分布が生じる事が分かった。
When the inner tube is removed (first comparative example), the film thickness of the insulating layer hardly changes, but the nonuniformity of the film thickness of the light emitting layer is significantly reduced to ± 35%, and the gas flow direction is reduced. It was found that there was a distribution in.

【0038】一方、内管を設置したまま絶縁層成長用の
原料ガスを発光層と同じく外管から導入した場合(第2
の比較例)では、基板の周囲から中央方向への絶縁層の
膜厚分布が著しく、膜厚の不均一度は±52%であっ
た。
On the other hand, when the source gas for growing the insulating layer is introduced from the outer tube as well as the light emitting layer while the inner tube is installed (second
Comparative Example), the film thickness distribution of the insulating layer from the periphery of the substrate toward the center was remarkable, and the nonuniformity of the film thickness was ± 52%.

【0039】[0039]

【発明の効果】本装置によれば、EL薄膜を構成する発
光層と絶縁層、さらには絶縁層−発光層−絶縁層の3層
連続形成において、同一反応炉内で基板の移動、真空開
放、温度昇降など行うことなく連続成長が可能となる。
According to the present invention, when the light emitting layer and the insulating layer which form the EL thin film, and further the three layers of the insulating layer, the light emitting layer and the insulating layer are continuously formed, the substrate is moved and the vacuum is released in the same reaction furnace. Moreover, continuous growth is possible without raising or lowering the temperature.

【0040】よって、大面積にわたり均一な膜厚が得ら
れ、薄膜EL素子の生産効率が改善され、低コスト化お
よび高品質化に有効である。
Therefore, a uniform film thickness can be obtained over a large area, the production efficiency of the thin film EL element is improved, and it is effective for cost reduction and quality improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の二重管構造連続CVD装置の基
本構造を示す概略図で、発光層を成長する際のガスの流
れを示す。
FIG. 1 is a schematic diagram showing the basic structure of a first double-tube structure continuous CVD apparatus of the present invention, showing a gas flow when a light emitting layer is grown.

【図2】本発明の第1の二重管構造連続CVD装置の基
本構造を示す概略図で、絶縁層を成長する際のガスの流
れを示す。
FIG. 2 is a schematic diagram showing the basic structure of the first double-tube structure continuous CVD apparatus of the present invention, showing a gas flow when an insulating layer is grown.

【図3】本発明の第2の二重管構造連続CVD装置の基
本構造を示す概略図で、発光層を成長する際のガスの流
れを示す。
FIG. 3 is a schematic view showing a basic structure of a second continuous CVD apparatus having a double tube structure of the present invention, showing a gas flow when growing a light emitting layer.

【図4】本発明の第1の二重管構造連続CVD装置の基
本構造を示す概略図で、絶縁層を成長する際のガスの流
れを示す。
FIG. 4 is a schematic diagram showing the basic structure of the first double-tube structure continuous CVD apparatus of the present invention, showing a gas flow when an insulating layer is grown.

【図5】発光輝度の成長温度依存性を測定したグラフで
ある。
FIG. 5 is a graph in which the growth temperature dependence of emission brightness is measured.

【符号の説明】[Explanation of symbols]

1 反応炉外管 2a 固体原料を設置する第1の補助管 2b 固体原料を設置する第2の補助管 3 ガラス基板 4 反応炉内管 5 スリット 6 排気口 7 絶縁層用原料ガス導入管 8a 第1の高温原料部 8b 第2の高温原料部 9a 第1の発光層用キャリアガス導入管 9b 第2の発光層用キャリアガス導入管 10 排気口 1 Reactor Outer Tube 2a First Auxiliary Tube for Installing Solid Source 2b Second Auxiliary Tube for Installing Solid Source 3 Glass Substrate 4 Reactor Inner Tube 5 Slit 6 Exhaust Port 7 Insulating Layer Material Gas Introducing Tube 8a 1 high temperature raw material part 8b 2nd high temperature raw material part 9a 1st light emitting layer carrier gas introducing pipe 9b 2nd light emitting layer carrier gas introducing pipe 10 exhaust port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河原崎 守弘 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 野間 幹弘 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Morihiro Kawarazaki 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Mikihiro Noma 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Osaka Within the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の基板を設置した成長領域を取り
囲む反応炉内管、および該内管を外側から更に囲む反応
炉外管から構成された二重管構造の反応炉をもつ熱CV
D装置において、 該外管には少なくとも1つの固体原料供給路を反応炉に
接続し、外管から内管内部へ原料ガスを導入するため
に、内管壁にガスの流出入が可能な間隙もしくは小孔を
設け、 かつ、上記原料ガスとは異なる原料ガスを反応炉外部よ
り内管内部に直接導入するために、少なくとも1つの原
料ガス導入管を設け、 かつ、反応炉外管と内管の間の一部に排気口を設けてい
ることを特徴とする熱CVD装置。
1. A thermal CV having a reaction furnace having a double-tube structure composed of a reactor inner tube surrounding a growth region where a plurality of substrates are installed, and a reactor outer tube further surrounding the inner tube from the outside.
In the apparatus D, at least one solid raw material supply path is connected to the reaction furnace in the outer tube, and a gap through which gas can flow in and out of the inner tube wall for introducing the raw material gas from the outer tube into the inner tube. Alternatively, at least one raw material gas introduction pipe is provided for providing a small hole and directly introducing a raw material gas different from the above raw material gas into the inner pipe from the outside of the reaction furnace, and the outer pipe and inner pipe of the reaction furnace. The thermal CVD apparatus is characterized in that an exhaust port is provided in a part of the space.
【請求項2】 請求項1記載の熱CVD装置において、 前記排気口とは別に内管内部より直接排気を行うための
第2の排気口を反応炉内管に接続し、第2の排気口は外
管をも貫通して設置し、排気が直接外部へなされること
を特徴とする熱CVD装置。
2. The thermal CVD apparatus according to claim 1, wherein, apart from the exhaust port, a second exhaust port for directly exhausting from the inside of the inner pipe is connected to the reactor inner pipe, and the second exhaust port is provided. Is a thermal CVD apparatus that is installed so that it also penetrates the outer tube, and exhaust is directly performed to the outside.
【請求項3】 請求項1もしくは請求項2記載の熱CV
D装置を用い、 反応炉外管に発光層成長用の固体原料供給路を接続し、
該供給路より供給された原料ガスの化学的結合反応によ
り、内管内部への濃度拡散流により発光体薄膜を基板上
に成長する工程と、 内管内部への直接導入管より供給された絶縁層成長用原
料ガスの熱分解反応により絶縁性薄膜を基板上に成長す
る工程とを含み、 それらを連続成長して発光層と絶縁層とを積層すること
を特徴とする薄膜EL素子の製造方法。
3. The thermal CV according to claim 1 or 2.
D device is used to connect a solid material supply path for growing a light emitting layer to the outer tube of the reaction furnace,
The step of growing the phosphor thin film on the substrate by the concentration diffusion flow into the inner tube by the chemical bonding reaction of the raw material gas supplied from the supply path, and the insulation supplied from the direct introduction tube into the inner tube. A step of growing an insulating thin film on a substrate by a thermal decomposition reaction of a raw material gas for layer growth, and continuously growing them to laminate a light emitting layer and an insulating layer. .
【請求項4】 発光層成長用原料として、母体材料には
ZnS、発光中心材料にはMnなど無機化合物を用い、
絶縁層成長用の原料としてAlあるいはTaのメトキシ
ドおよびエトキシドなどのアルコキシド系有機ガスを用
いることを特徴とする請求項3記載の薄膜EL素子の製
造方法。
4. An inorganic compound such as ZnS is used as a base material and Mn is used as an emission center material as a raw material for growing a light emitting layer,
4. The method of manufacturing a thin film EL element according to claim 3, wherein an alkoxide-based organic gas such as methoxide and ethoxide of Al or Ta is used as a raw material for growing the insulating layer.
JP4336338A 1992-12-16 1992-12-16 Thermal cvd device and manufacture of film el element with it Pending JPH06188196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4336338A JPH06188196A (en) 1992-12-16 1992-12-16 Thermal cvd device and manufacture of film el element with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336338A JPH06188196A (en) 1992-12-16 1992-12-16 Thermal cvd device and manufacture of film el element with it

Publications (1)

Publication Number Publication Date
JPH06188196A true JPH06188196A (en) 1994-07-08

Family

ID=18298094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336338A Pending JPH06188196A (en) 1992-12-16 1992-12-16 Thermal cvd device and manufacture of film el element with it

Country Status (1)

Country Link
JP (1) JPH06188196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095560A1 (en) * 2005-03-10 2006-09-14 Tokyo Electron Limited Method of substrate treatment, recording medium and substrate treating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095560A1 (en) * 2005-03-10 2006-09-14 Tokyo Electron Limited Method of substrate treatment, recording medium and substrate treating apparatus

Similar Documents

Publication Publication Date Title
EP1741807B1 (en) Apparatus for production of crystal of group iii element nitride and process for producing crystal of group iii element nitride
JPH0818902B2 (en) Vapor phase growth equipment
US7118928B2 (en) Method of forming a semiconductor phosphor layer by metalorganic chemical vapor deposition for use in light-emitting devices
US5116640A (en) Process for preparing an electroluminescent device
US5223305A (en) Apparatus for vapor deposition
JPH06188196A (en) Thermal cvd device and manufacture of film el element with it
JPH0744069B2 (en) Method for manufacturing electroluminescent device
US5372839A (en) Process for preparing an electroluminescent film
EP0437355B1 (en) Process and apparatus for preparing a thin film electroluminescent device
JPH0793194B2 (en) Method for manufacturing electroluminescent thin film
JPH02152191A (en) Vapor deposition method of electroluminescent luminous membrane
CN1732551B (en) Field emission-type electron source and method of producing the same
JPH0674416B2 (en) Fluorescent material thin film manufacturing method and manufacturing apparatus
JP6030907B2 (en) Method for producing group III nitride
JP2642829B2 (en) Semiconductor manufacturing equipment
JPH056792A (en) Manufacture of phosphor thin film
JP4701403B2 (en) Sublimation purification equipment for organic compounds
JPS5916393A (en) Blue light emitting element
JPH0574920B2 (en)
JPH09283006A (en) Cold cathode
JPH03105898A (en) Organic el device
JPH05242967A (en) Manufacture of thin-film el element
JPH0322391A (en) Manufacture of color el element
Miller A halide transport chemical vapor deposition reactor system for deposition of ZnS: Mn electroluminescent phosphors
JPH0334290A (en) Manufacture of color el element