JPH06188114A - Non-oriented magnetic steel plate for low core loss - Google Patents

Non-oriented magnetic steel plate for low core loss

Info

Publication number
JPH06188114A
JPH06188114A JP4337271A JP33727192A JPH06188114A JP H06188114 A JPH06188114 A JP H06188114A JP 4337271 A JP4337271 A JP 4337271A JP 33727192 A JP33727192 A JP 33727192A JP H06188114 A JPH06188114 A JP H06188114A
Authority
JP
Japan
Prior art keywords
iron loss
steel plate
rolled
core loss
oriented magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4337271A
Other languages
Japanese (ja)
Other versions
JP2752872B2 (en
Inventor
Yoshinari Muro
吉成 室
Takashi Obara
隆史 小原
Minoru Takashima
高島  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4337271A priority Critical patent/JP2752872B2/en
Publication of JPH06188114A publication Critical patent/JPH06188114A/en
Application granted granted Critical
Publication of JP2752872B2 publication Critical patent/JP2752872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a non-oriented magnetic steel plate for low core loss by specifying the average interval between a recessed section and a projecting section of the surface of the steel plate. CONSTITUTION:A steel containing 0.004% C, 3.18% Si, 0.22% Mn, 0.019% P, 0.0015% S, 0.61% Al, 0.0018% N, 0.0015% O, and with the balance of Fe and unavoidable impurity is hot-rolled into sheet steel and is annealed. After descaling, the sheet steel is cold-rolled. The cold-rolled sheet steel may be ground chemically with a (90% H2O2 + 10$ HF) solution, or electrolytically with a (phosphoric acid + saturated chromic acid) solution, or mechanically with emery paper. At that time, the average interval Sm between a recessed section and a projecting section on the external surface of the sheet steel should meet the expression. By this method, a non-oriented magnetic steel plate for lower core loss than the conventional one can be obtained with the same material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、商用周波数はいうま
でもなく、高周波数領域における鉄損特性にの優れた無
方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent iron loss characteristics in a high frequency region, not to mention commercial frequencies.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、鉄損レベルに応じ
て、JIS 2552に等級毎に規定されている。相対的に鉄損
の大きい低Si系の低級品は、低コストであることから家
電製品等の小型機器に多く用いられている。一方、鉄損
の低い高Si系は、低鉄損化の効果が大きい発電機等の大
型機器に用いられている。ところで近年、電気機器にお
いては、小型、大型を問わず、省エネルギーの要求が高
まり、無方向性電磁鋼板の特性、特に鉄損特性の向上が
望まれている。
2. Description of the Related Art Non-oriented electrical steel sheets are specified for each grade in JIS 2552 according to the iron loss level. Low-Si low-grade products, which have relatively large iron loss, are often used for small appliances such as home appliances because of their low cost. On the other hand, the high Si type with low iron loss is used for large equipment such as generators, which has a large effect of reducing iron loss. By the way, in recent years, in electrical equipment, whether small or large, there is an increasing demand for energy saving, and it is desired to improve the characteristics of the non-oriented electrical steel sheet, particularly the iron loss characteristics.

【0003】従来、無方向性電磁鋼板の鉄損を低減する
技術としては、(1) SiあるいはAl含有量を高める、(2)
鋼中の不純物(C,S,O等)を低減又は無害化する、
(3) 仕上げ焼鈍後の結晶粒径を最適化する、(4) 冷延圧
下率を調節する、(5) 表面酸化を抑制する、(6) 製品板
の表面粗度を小さくする、等の方法が採用されてきた。
こうした低鉄損化の努力により、無方向性電磁鋼板の特
性は年々向上してきたが、最近では、より一層の鉄損特
性の改善が望まれている。
Conventionally, as a technique for reducing the iron loss of a non-oriented electrical steel sheet, (1) increasing the Si or Al content, (2)
Reduce or detoxify impurities (C, S, O, etc.) in steel,
(3) Optimize the grain size after finish annealing, (4) adjust cold rolling reduction, (5) suppress surface oxidation, (6) reduce surface roughness of product sheet, etc. The method has been adopted.
Due to such efforts to reduce the iron loss, the properties of the non-oriented electrical steel sheet have been improved year by year, but recently, further improvement of the iron loss properties is desired.

【0004】しかしながら、上記(1) の方法では、低鉄
損化は比較的容易ではあるものの、その反面で磁束密度
が低下するという欠点があることから、単にグレード変
更という結果にしかならない。また上記(2) の方法は、
非常に重要な方法ではあるが、現状における工程生産の
観点からは、もはや技術的に到達し得る最高レベルまで
達しており、製鋼技術の進歩なしにはこの方法による鉄
損向上の余地はあまりないといえる。さらに上記(3),
(4), (5) についても、これまでの努力により、(3),
(4)については最適化が図られ、また(5) の焼鈍雰囲気
低露点化については十分なレベルまで達している。従っ
て、これらの製造工程の改良による低鉄損化はあまり期
待できない。一方、上記(6) の方法については、これま
でRaを指標として対策が講じられ、現状の圧延機でブラ
イトロールを用いて圧延した場合には、Raは概略 0.2〜
0.4μm の範囲に入る。
However, in the above method (1), although it is relatively easy to reduce the iron loss, there is a drawback that the magnetic flux density is lowered on the other hand, so that the result is merely a grade change. The method of (2) above is
Although it is a very important method, from the viewpoint of process production in the present situation, it has reached the highest level that can be reached technically, and there is not much room for improving iron loss by this method without progress in steelmaking technology. Can be said. Further above (3),
As for (4) and (5), due to the efforts so far, (3),
Optimization has been achieved for (4), and the dew point of the annealing atmosphere in (5) has reached a sufficient level. Therefore, low iron loss due to improvement of these manufacturing processes cannot be expected. On the other hand, with regard to the method of (6) above, measures have been taken so far using Ra as an index, and when rolling with a bright roll on the current rolling mill, Ra is approximately 0.2 to
It is in the range of 0.4 μm.

【0005】磁気特性に及ぼす表面粗度の影響について
は、従来から良く研究されていて、たとえば特公昭58-1
0445号公報及び特公昭58-10446号公報では、中心線平均
粗さRa<0.4 μm とすれば、優れた鉄損が得られるとさ
れている。この理由は、たとえばセミプロセスのダル材
(Ra≒1μm )でよく見られるように、表面の粗度が大
きくなる圧延を行った場合には、表面近傍が内部に比べ
てより複雑な変形を受け、その結果表面細粒が生成す
る、ようなことがないためと考えられ、従って、Raを小
さくするにつれて表面細粒は減少し、鉄損特性は向上す
る。
The influence of surface roughness on the magnetic properties has been well studied in the past, for example, Japanese Patent Publication No. 58-1.
According to JP-A-0445 and JP-B-58-10446, excellent core loss can be obtained if the center line average roughness Ra <0.4 μm. The reason for this is that, as is often seen with, for example, semi-processed dull material (Ra ≈ 1 μm), when rolling with a high surface roughness, the vicinity of the surface undergoes more complicated deformation than the inside. As a result, it is considered that surface fine grains are not generated. Therefore, as Ra is decreased, the surface fine grains are decreased and the iron loss characteristics are improved.

【0006】ところで、上掲した特公昭58-10445号公報
及び特公昭58-10446号公報では、Raを 0.4μm よりさら
に低減すると一層低鉄損となる旨が述べられているが、
発明者らの知見によれば、Raが 0.4μm 程度までは鉄損
は安定して低減するものの、0.4 μm 以下の範囲では必
ずしも鉄損が低下するわけではなく、ほぼ横ばいの状態
となることが判明した。このように、表面粗度に関して
も、一層の低鉄損化の決め手とはなっていないのが現状
である。
By the way, Japanese Patent Publication No. 58-10445 and Japanese Patent Publication No. 58-10446 mentioned above indicate that further reduction of Ra below 0.4 μm results in further lower iron loss.
According to the knowledge of the inventors, the iron loss stably decreases until Ra is about 0.4 μm, but the iron loss does not always decrease in the range of 0.4 μm or less, and the iron loss is almost leveled off. found. As described above, in terms of the surface roughness, the present situation is that it is not the deciding factor for further lowering the iron loss.

【0007】[0007]

【発明が解決しようとする課題】そこで発明者らは、無
方向性電磁鋼板の一層の低鉄損化を図るべく、表面粗度
と磁気特性との関係について鋭意研究を重ねたところ、
Raの小さい領域(表面細粒が発生しない領域)において
鉄損の一層の低減を図るためには、表面凹凸の平均間隔
Sm を制御する必要があることの知見を得た。この発明
は、上記の知見に立脚するものである。
Therefore, the inventors of the present invention have conducted extensive studies on the relationship between the surface roughness and the magnetic properties in order to further reduce the iron loss of the non-oriented electrical steel sheet.
It was found that it is necessary to control the average interval Sm of the surface irregularities in order to further reduce the iron loss in the region where Ra is small (the region where surface fine particles are not generated). The present invention is based on the above findings.

【0008】[0008]

【課題を解決するための手段】すなわちこの発明は、Si
+Al:4wt%(以下単に%で示す)以下を含有する組成
になる無方向性電磁鋼板であって、該鋼板表面における
凹凸の平均間隔Sm が、次式
Means for Solving the Problems That is, the present invention is based on Si
+ Al: a non-oriented electrical steel sheet having a composition containing 4 wt% (hereinafter simply referred to as%) or less, wherein the average spacing Sm of the irregularities on the surface of the steel sheet is

【数2】 を満足することからなる鉄損の優れた無方向性電磁鋼板
である。
[Equation 2] Is a non-oriented electrical steel sheet with excellent iron loss.

【0009】以下、この発明を由来するに至った実験結
果について説明する。C:0.004 %、Si:3.18%、Mn:
0.22%、P:0.019 %、S:0.0015%、Al:0.61%、
N:0.0018%及びO:0.0015%を含み、残部Fe及び不可
避的不純物の組成になる鋼スラブを、通常の熱延工程に
より2mm厚の熱延板とし、この熱延板を1000℃,30sの
条件で焼鈍したのち、脱スケール後、冷間圧延によって
0.5mm 厚の冷延板とした。この冷延板をそのまま、ある
いは(90%H2O2+10%HF)液による化学研磨又は(りん
酸+飽和クロム酸)液による電解研磨又は#320 〜#15
00エメリー紙による機械研磨を施したのち、1000℃,30
sの条件で焼鈍した。かくして得られた焼鈍板の鉄損値
について調べた結果を、Ra又はSm との関係でそれぞれ
図1及び図2に示す。
The experimental results that led to the invention will be described below. C: 0.004%, Si: 3.18%, Mn:
0.22%, P: 0.019%, S: 0.0015%, Al: 0.61%,
A steel slab containing N: 0.0018% and O: 0.0015% and having a composition of balance Fe and unavoidable impurities was formed into a hot-rolled sheet with a thickness of 2 mm by a normal hot-rolling process. After annealing under the conditions, descaling and cold rolling
A cold rolled sheet with a thickness of 0.5 mm was used. This cold rolled sheet as it is, or chemical polishing with (90% H 2 O 2 + 10% HF) solution or electrolytic polishing with (phosphoric acid + saturated chromic acid) solution or # 320 to # 15
00 After mechanical polishing with emery paper, 1000 ℃, 30
Annealed under the condition of s. The results of examining the iron loss value of the thus obtained annealed plate are shown in FIGS. 1 and 2 in relation to Ra or Sm, respectively.

【0010】ここで、表面凹凸の平均間隔Sm とは、測
定長さ間にある山の間隔をそれぞれSm i としたとき、
次式
Here, the average spacing Sm of the surface irregularities means that when the spacing between the peaks between the measurement lengths is Sm i ,
The following formula

【数3】 で示される値であり、また山数とは、断面曲線の平均線
に平行で±0.05μm 離れたレベルに引いた2本のピーク
カウントレベルと曲線が交差する2点間において、上側
のピークカウントレベルと曲線が交差する点が1回以上
存在するとき、1山としてこの山数を測定長さ間におい
て求めた数である(図3参照)。
[Equation 3] Is the value indicated by, and the number of peaks is the upper peak count between the two peak count levels and the two points where the curve crosses parallel to the average line of the cross-section curve and is separated by ± 0.05 μm. When there is a point at which the level and the curve intersect one or more times, this is the number obtained as one peak during the measurement length (see FIG. 3).

【0011】図1、図2から明らかなように、一般に表
面粗度の評価に用いられているRaと鉄損との間には、か
かる 0.5μm 以下程度の領域では、特に相関と認められ
なかったのに対し、Sm とは強い相関が認められ、特に
Sm を100 μm 以上とすることによって鉄損が著しく低
減することが判明した。
As is clear from FIGS. 1 and 2, there is no particular correlation between Ra and iron loss, which are generally used for surface roughness evaluation, in the region of 0.5 μm or less. On the other hand, a strong correlation was observed with Sm, and it was found that iron loss was remarkably reduced by setting Sm to 100 μm or more.

【0012】Raを数μm から 0.4〜0.5 μm 程度まで下
げるにつれて鉄損が向上したのは、表面細粒が減少する
ためと考えられるが、Raが 0.4〜0.5 μm より小さい領
域では、もはや表面細粒は減少せず、鉄損はRaとは直接
関係がなくなる。そして図2に示したようにSm と強い
相関を呈するようになる。このことは、Sm に関連する
別の要因が鉄損に影響を及ぼしていることを意味してい
る。この要因については、まだ不明ではあるが、Sm の
意味するところは山間の平均間隔であるから、Sm が大
きいとき鉄損が低減するのは、山の間隔が広がる、すな
わち小さなでこぼこが減少することにより、表面におけ
る磁壁移動の抵抗が小さくなることによるものと推定さ
れる。
The reason why the iron loss improved as Ra was lowered from several μm to about 0.4 to 0.5 μm is thought to be that the surface fine grains decreased. Grain is not reduced, and iron loss is not directly related to Ra. Then, as shown in FIG. 2, it has a strong correlation with Sm. This means that another factor related to Sm influences iron loss. Although this factor is still unknown, the meaning of Sm is the average interval between mountains, so the iron loss decreases when Sm is large because the interval between mountains increases, that is, the small unevenness decreases. It is estimated that this is because the resistance of domain wall movement on the surface is reduced.

【0013】従来から、鉄損低減のため表面粗度Raを下
げる努力がなされてきており、通常製品のRaは、ダル材
を除いて概略、 0.2〜0.5 μm の範囲に管理されてい
る。しかしながら、それ以上Raを下げても有意な鉄損低
減につながらないため、鉄損低減のための表面粗度の改
善は、これ以上なされていないのが実状であった。なお
従来の表面粗度調整によるSm は、だいたい20〜50μm
程度であった。これに対して、発明者らは、Raとは別の
表面粗度パラメータSm に想到し、このSm によって表
面粗度を管理することによって、鉄損特性の一層の向上
を図り得ることを新たに見い出し、この発明を完成した
ものである。
In the past, efforts have been made to reduce the surface roughness Ra in order to reduce iron loss, and the Ra of a normal product is generally controlled within the range of 0.2 to 0.5 μm except for the dull material. However, further reduction of Ra does not lead to a significant reduction in iron loss, and therefore the actual situation is that no further improvement in surface roughness has been made to reduce iron loss. The Sm obtained by the conventional surface roughness adjustment is about 20 to 50 μm.
It was about. On the other hand, the inventors newly arrived at the idea of a surface roughness parameter Sm different from Ra, and by controlling the surface roughness by this Sm, it is possible to further improve the iron loss characteristics. Found and completed this invention.

【0014】[0014]

【作用】この発明において、素材の成分組成を前記の範
囲に限定した理由は、次のとおりである。 Si+Al:4%以下 Si, Alはいずれも、鉄損改善に有効な元素であるが、合
計量が4%を超えると冷間圧延が困難となるので、合計
量で4%以下の範囲に限定した。なお下限について特に
限定していないのは、この発明が成分と本質的に関係が
ないためであり、上限付きでSi+Alを規定したのは、電
磁鋼板の用途に限定するためである。
In the present invention, the reason why the component composition of the raw material is limited to the above range is as follows. Si + Al: 4% or less Si and Al are both effective elements for improving iron loss, but if the total amount exceeds 4%, cold rolling becomes difficult, so the total amount is limited to 4% or less. did. The lower limit is not particularly limited because the present invention is essentially unrelated to the components, and the reason why Si + Al is specified with an upper limit is to limit the use to electrical steel sheets.

【0015】またこの発明において、Sm を 100μm 以
上に限定したのは、前掲図2から明らかなように、Sm
が通常の20〜50μm の場合に比べ、 100μm 以上とする
うことによって、明確な鉄損の低減が認められるからで
ある。
In the present invention, the Sm is limited to 100 μm or more, as is apparent from FIG.
This is because a reduction in iron loss is clearly recognized by setting the thickness to 100 μm or more, compared to the usual case of 20 to 50 μm.

【0016】次に、この発明に従う無方向性電磁鋼板の
製造工程について具体的に説明する。転炉−脱ガス装置
等によって、所定の成分組成の溶鋼を溶製したのち、連
続鋳造又は造塊−分塊圧延によってスラブとし、ついで
加熱後、熱間圧延を経て熱延板とする。この熱延板は必
要に応じ熱延板焼鈍を施してもよい。その後、脱スケー
ルを施してから、1回又は中間焼鈍を挟む2回以上の冷
間圧延を施したのち、仕上げ焼鈍に供する。なお、セミ
プロセス材の場合には引き続いて軽圧下が加えられ製品
となる。
Next, the manufacturing process of the non-oriented electrical steel sheet according to the present invention will be specifically described. A molten steel having a predetermined component composition is melted by a converter-degassing device or the like, and then continuously cast or ingot-slab-rolled to form a slab, which is then heated and then hot-rolled to form a hot-rolled sheet. The hot rolled sheet may be annealed as necessary. Then, after descaling, cold rolling is performed once or twice or more with intermediate annealing sandwiched between them, and then subjected to finish annealing. In the case of a semi-processed material, light reduction is subsequently applied to obtain a product.

【0017】ここに、製品板表面のSm を現状の20〜50
μm より大きくする手段としては、仕上げ焼鈍前の圧延
を、小径ロール(たとえば 100mmφ以下のもの)を用い
た低速圧延(たとえば 100m/min 以下)とする方法が
とりわけ有利である。その他の方法としては、仕上げ焼
鈍前の冷延板又は仕上げ焼鈍板に化学研磨又は電解研磨
を施す方法、仕上げ焼鈍前の冷延板に弾性砥石や不織布
ロール等による機械研磨を施す方法、仕上げ焼鈍前の圧
延又はセミプロセス材の軽圧延を超ブライトロール(た
とえばロール表面のSm ≧ 100μm )を用いたオイルレ
スで行う方法等が挙げられる。要は、製品板地鉄表面の
Sm を 100μm 以上に制御することが重要である。
Here, the Sm of the product plate surface is 20 to 50% of the current value.
As a means for increasing the thickness to more than μm, a method in which the rolling before finish annealing is a low speed rolling (for example, 100 m / min or less) using a small diameter roll (for example, 100 mmφ or less) is particularly advantageous. Other methods include chemical polishing or electrolytic polishing of cold-rolled sheet or finish-annealed sheet before finish annealing, method of mechanically polishing the cold-rolled sheet before finish annealing with an elastic grindstone or a non-woven fabric roll, finish annealing. Examples include a method of performing the previous rolling or the light rolling of the semi-processed material without using oil using a super bright roll (for example, Sm ≧ 100 μm on the roll surface). In short, it is important to control the Sm of the surface of the product steel sheet to 100 μm or more.

【0018】[0018]

【実施例】実施例1 C:0.003 %、Si:1.81%、Mn:0.19%、P:0.021
%、S:0.0022%、Al:0.34%、N:0.0017%及びO:
0.0017%を含み、残部は実質的にFeの組成になる鋼スラ
ブを、通常の熱間圧延で2mm厚の熱延板とし、 980℃,
30sの熱延板焼鈍を施したのち、脱スケール後、冷間圧
延によって0.35mm厚の冷延板とし、ついで(90%H2O2
10%HF)液を用いて化学研磨としたものと冷延板をその
まま、(30%H2+70%N2) dry雰囲気にて 900℃, 20s
の焼鈍を施した。また、冷延板をそのまま焼鈍した後、
上記と同様な化学研磨を施したものも作成した。得られ
た各鋼板のSm, Ra 及び鉄損について調べた結果を、表
1に示す。
EXAMPLES Example 1 C: 0.003%, Si: 1.81%, Mn: 0.19%, P: 0.021
%, S: 0.0022%, Al: 0.34%, N: 0.0017% and O:
A steel slab containing 0.0017% with the balance being essentially Fe is formed into a hot-rolled sheet with a thickness of 2 mm by ordinary hot rolling.
After hot-rolled sheet annealing for 30 s, after descaling, cold-rolled to 0.35 mm thick cold-rolled sheet, then (90% H 2 O 2 +
(30% H 2 + 70% N 2 ) dry atmosphere, 900 ° C, 20s
Was annealed. Also, after annealing the cold rolled sheet as it is,
A product subjected to the same chemical polishing as above was also prepared. Table 1 shows the results of examining Sm, Ra and iron loss of each of the obtained steel sheets.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、Raを単に低減し
ただけでは鉄損の低減は不十分で、Sm を 100μm 以上
にすることによって初めて十分満足いく鉄損の低減が達
成されている。
As is apparent from Table 1, reduction of iron loss is not sufficient by simply reducing Ra, and sufficient reduction of iron loss is achieved only by setting Sm to 100 μm or more.

【0021】実施例2 C:0.003 %、Si:0.12%、Mn:0.26%、P:0.075
%、S:0.0038%、Al:0.001 %、N:0.0022%及び
O:0.0135%を含み、残部は実質的にFeの組成になる鋼
スラブを、通常の熱間圧延で2.5 mm厚の熱延板としたの
ち、脱スケールし、ついで冷間圧延によって0.40mm厚の
冷延板としたのち、 750℃, 15sの条件で焼鈍を施し
た。その後、通常の冷間圧延条件(ロール径 500mmφ、
速度 600 mpm)で0.20mm厚としたものと65mmφの小径ロ
ールを用い、30 mpmの低速で0.20mm厚に圧延したものと
を、 800℃, 10sの条件で焼鈍した。得られた各鋼板の
Sm, Ra 及び鉄損について調べた結果を、表2に示す。
Example 2 C: 0.003%, Si: 0.12%, Mn: 0.26%, P: 0.075
%, S: 0.0038%, Al: 0.001%, N: 0.0022%, and O: 0.0135%, the balance being a steel slab having a substantially Fe composition, hot rolled to a thickness of 2.5 mm by ordinary hot rolling. After being formed into a plate, it was descaled, and then cold rolled into a 0.40 mm-thick cold rolled plate, which was then annealed at 750 ° C. for 15 s. After that, normal cold rolling conditions (roll diameter 500mmφ,
A 0.20 mm thick roll at a speed of 600 mpm) and a 0.20 mm thick roll rolled at a low speed of 30 mpm using a small diameter roll of 65 mmφ were annealed at 800 ° C. for 10 s. Table 2 shows the results of examining Sm, Ra and iron loss of each of the obtained steel sheets.

【0022】[0022]

【表2】 [Table 2]

【0023】同表から明らかなように、Sm を100 μm
以上にすれば、商用周波数の場合は勿論のこと、高周波
においても顕著な鉄損改善効果が認められる。この理由
は、高周波領域では磁束がより多く流れる表面の状態が
鉄損に大きく影響するためと思われる。
As is clear from the table, Sm is 100 μm
According to the above, a remarkable iron loss improving effect is recognized not only in the commercial frequency but also in the high frequency. The reason for this seems to be that the state of the surface where more magnetic flux flows in the high-frequency region has a large effect on iron loss.

【0024】[0024]

【発明の効果】かくしてこの発明に従い、これまで表面
粗度の指標として用いられてきたRaに替えて、Sm を採
用し、このSm を 100μm 以上に制御することによっ
て、同一素材で従来よりも一層鉄損の優れた無方向性電
磁鋼板を得ることができる。またこの発明によれば、鋼
板表面が改善されるので、磁束の流れがより表面に集ま
る高周波領域で一層の低鉄損化を達成できる。
As described above, according to the present invention, Sm is adopted instead of Ra, which has been used as an index of surface roughness, and the Sm is controlled to 100 μm or more. A non-oriented electrical steel sheet with excellent iron loss can be obtained. Further, according to the present invention, since the surface of the steel sheet is improved, further reduction of iron loss can be achieved in the high frequency region where the flow of magnetic flux concentrates on the surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】Sm と鉄損との関係を示すグラフである。FIG. 1 is a graph showing the relationship between Sm and iron loss.

【図2】Raと鉄損との関係を示すグラフである。FIG. 2 is a graph showing the relationship between Ra and iron loss.

【図3】Sm の概念を説明した図である。FIG. 3 is a diagram illustrating the concept of Sm.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si+Al:4wt%以下を含有する組成にな
る無方向性電磁鋼板であって、外鋼板表面における凹凸
の平均間隔Sm が、次式 【数1】 を満足することを特徴とする鉄損の優れた無方向性電磁
鋼板。
1. A non-oriented electrical steel sheet having a composition containing Si + Al: 4 wt% or less, wherein the average spacing Sm of the irregularities on the surface of the outer steel sheet is expressed by the following formula: A non-oriented electrical steel sheet with excellent iron loss, which satisfies:
JP4337271A 1992-12-17 1992-12-17 Non-oriented electrical steel sheet with excellent iron loss Expired - Fee Related JP2752872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4337271A JP2752872B2 (en) 1992-12-17 1992-12-17 Non-oriented electrical steel sheet with excellent iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337271A JP2752872B2 (en) 1992-12-17 1992-12-17 Non-oriented electrical steel sheet with excellent iron loss

Publications (2)

Publication Number Publication Date
JPH06188114A true JPH06188114A (en) 1994-07-08
JP2752872B2 JP2752872B2 (en) 1998-05-18

Family

ID=18307044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337271A Expired - Fee Related JP2752872B2 (en) 1992-12-17 1992-12-17 Non-oriented electrical steel sheet with excellent iron loss

Country Status (1)

Country Link
JP (1) JP2752872B2 (en)

Also Published As

Publication number Publication date
JP2752872B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
CN104451378A (en) Oriented silicon steel with excellent magnetic property and production method of oriented silicon steel
CN111133118B (en) Grain-oriented electromagnetic steel sheet
JPWO2020067236A1 (en) Manufacturing method of grain-oriented electrical steel sheet and cold rolling equipment
JP4192822B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP4280004B2 (en) Semi-processed non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JPH02173209A (en) Cold rolling method for grain oriented silicon steel sheet
JP2599867B2 (en) Method for manufacturing low iron loss grain-oriented silicon steel sheet
JP2014208895A (en) Method of producing grain oriented electrical steel
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JP2752872B2 (en) Non-oriented electrical steel sheet with excellent iron loss
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2003253334A (en) Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property and stamping property
JP7338812B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2773948B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties and surface properties
US5074931A (en) Method of hot rolling continuously cast grain oriented electrical steel slab
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP3671516B2 (en) Method for producing hot-rolled steel sheet with excellent pickling and surface properties
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH07278665A (en) Manufacture of non-oriented silicon steel sheet with high magnetic flux density
JPS5830925B2 (en) Manufacturing method for low-grade electrical steel sheets
JP2562255B2 (en) Stable manufacturing method of ultra-high-silicon electrical steel sheet with controlled surface properties
JPH11229036A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JPS61238919A (en) Manufacture of cold rolled deep drawing steel sheet having low anisotropy in plane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees