JPH06187637A - Magnetic recording medium, its production and magnetic recording device - Google Patents

Magnetic recording medium, its production and magnetic recording device

Info

Publication number
JPH06187637A
JPH06187637A JP33832392A JP33832392A JPH06187637A JP H06187637 A JPH06187637 A JP H06187637A JP 33832392 A JP33832392 A JP 33832392A JP 33832392 A JP33832392 A JP 33832392A JP H06187637 A JPH06187637 A JP H06187637A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
magnetic
substrate
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33832392A
Other languages
Japanese (ja)
Inventor
Shinan Yaku
四男 屋久
Yoshihiro Shiroishi
芳博 城石
Yuzuru Hosoe
譲 細江
Masatoshi Takeshita
正敏 竹下
Akira Ishikawa
石川  晃
Akira Ozaki
明 尾嵜
Tomoo Yamamoto
朋生 山本
Yukio Kato
幸男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33832392A priority Critical patent/JPH06187637A/en
Priority to US08/155,515 priority patent/US5750230A/en
Publication of JPH06187637A publication Critical patent/JPH06187637A/en
Priority to US08/944,472 priority patent/US6057021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a recording medium having high reliability suitable for high-density recording by forming a magnetic recording medium in such a manner that the wavelength spectrum of surface roughness shows the max. in each of several wavelength regions. CONSTITUTION:Both surfaces of a 130mmphi NiP-plated Al-Mg alloy substrate 11 rotating at 500rpm in the direction of arrow A in the figure are in contact with polishing cloths 12, 12' pressed with polyurethane press rollers 13, 13'. A slurry-state complex abrasive powder 14, 14' consisting of 10wt.% diamond powder having 1mum average particle size and CeO2 having 0.1mum average particle size dispersed in a hydrophilic solvent is supplied through nozzles 15, 15' to between the substrate and the polishing cloth. The polishing cloth 12, 12' is traveled in the direction of arrow B at 1cm/sec speed and moved back and forth by three times in the direction of arrow C to polish the whole surface of the substrate 11. Thus, a substrate for a magnetic disk is obtd. The obtd. magnetic recording medium has such a surface state that wavelength spectrum of surface roughness shows the max. in each of several regions of wavelength between 1nm and 200mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリジッド型磁気ディスク
装置などに用いる磁気記録媒体およびその製造方法およ
び磁気記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in a rigid type magnetic disk device and the like, a method of manufacturing the same, and a magnetic storage device.

【0002】[0002]

【従来の技術】磁気記録の高密度化に対応するため、酸
化鉄薄膜,窒化鉄薄膜,磁性合金薄膜などの薄膜磁性層
を記録層とする磁気記録媒体の研究開発が進められてい
る。これら薄膜媒体は非磁性基体上にスパッタリング
法,真空蒸着法,メッキ法,イオンプレーティング法等
の手法により形成されることが多い。これらは膜厚が小
さいこと、保磁力や磁化が大きいことなどの理由により
高記録密度化に適していると言える。近年情報量の増加
に伴い磁気記憶装置には益々の大容量化が要求される一
方、小型化の要求も強い。これに対応するために、磁気
記録媒体は高記録密度化,高信頼化が不可欠である。し
かし、薄膜磁性層を記録層とする磁気記録媒体は、表面
が平滑なため磁性層に異方性が付きにくい点,磁気特性
が均一になりにくい点,磁気ヘッドと磁気記録媒体が吸
着しやすい点、およびCSS(コンタクト/スタート/
ストップ)特性に劣る点が問題であった。磁気記録媒体
にとって、上記問題点を克服することは、高記録密度
化,高信頼化を実現するうえで極めて重要である。
2. Description of the Related Art In order to cope with high density of magnetic recording, research and development of a magnetic recording medium using a thin film magnetic layer such as an iron oxide thin film, an iron nitride thin film and a magnetic alloy thin film as a recording layer is under way. These thin film media are often formed on a non-magnetic substrate by a method such as a sputtering method, a vacuum deposition method, a plating method or an ion plating method. It can be said that these are suitable for increasing the recording density because of their small film thickness and large coercive force and magnetization. With the increase in the amount of information in recent years, magnetic storage devices are required to have larger capacities and smaller sizes. In order to deal with this, high recording density and high reliability of the magnetic recording medium are indispensable. However, a magnetic recording medium having a thin-film magnetic layer as a recording layer has a smooth surface, so that the magnetic layer is less likely to have anisotropy, the magnetic characteristics are less likely to be uniform, and the magnetic head and the magnetic recording medium are easily attracted to each other. Point, and CSS (contact / start /
The problem was that the (stop) characteristics were inferior. Overcoming the above-mentioned problems is extremely important for a magnetic recording medium in order to realize high recording density and high reliability.

【0003】従来の磁気記録媒体では、上記問題点を解
決するため、非磁性基板表面に研摩加工を施し多数の研
摩痕を形成する手法(特開昭63−42027 号公報,特開昭
63−121123号公報,特開平2−31326号公報)や、粒径の
異なる複数種の砥粒を用いて非磁性基板表面に2段階の
研摩加工を施す手法(特開平1−162229 号公報)等が提
案されている。
In the conventional magnetic recording medium, in order to solve the above-mentioned problems, a method of polishing a non-magnetic substrate surface to form a large number of polishing marks (Japanese Patent Laid-Open Nos. 63-42027 and 63-42027).
63-121123, JP-A-2-31326), or a method of performing two-step polishing on the surface of a non-magnetic substrate using a plurality of types of abrasive grains having different grain sizes (JP-A-1-162229). Etc. have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、本発明者らの
検討によると、上記の非磁性基板表面に研摩加工を施し
多数の研摩痕を形成する従来技術に成る磁気記録媒体の
場合には、磁気記録媒体の表面粗さの波長スペクトルが
波長1nm以上200μm以下の領域にただ一つの極大
値しか持たないことが明らかとなった。これは砥粒とし
てただ1種の研摩剤を用いているため、ある場合には研
摩痕が大きすぎて耐摺動特性には優れるものの、磁気特
性改善の効果が小さかったり、またある場合には逆に、
研摩痕が小さく磁気特性改善の効果には優れるものの、
耐摺動特性に劣る場合が多く、磁気特性と耐摺動特性を
両立することが困難であるという問題があった。一方、
粒径の異なる砥粒を用いて非磁性基板表面に2段階の研
摩加工を施す別の従来技術の場合には、工程が多くなり
生産性が悪くなるという問題があった。
However, according to the study by the present inventors, in the case of the conventional magnetic recording medium in which a large number of polishing marks are formed by polishing the surface of the non-magnetic substrate, It was revealed that the wavelength spectrum of the surface roughness of the magnetic recording medium has only one maximum value in the region of wavelength 1 nm or more and 200 μm or less. This is because only one type of abrasive is used as the abrasive grains, so in some cases the abrasion marks are too large and the sliding resistance is excellent, but the effect of improving the magnetic characteristics is small, and in some cases vice versa,
Although it has a small polishing mark and is excellent in improving the magnetic properties,
In many cases, the sliding resistance is inferior, and there is a problem that it is difficult to satisfy both the magnetic characteristics and the sliding resistance. on the other hand,
In the case of another conventional technique in which the non-magnetic substrate surface is subjected to two-step polishing using abrasive grains having different grain sizes, there is a problem that the number of processes is increased and the productivity is deteriorated.

【0005】本発明の目的は、非磁性基板表面を複数種
の研摩剤から成る複合砥粒を用いた研摩、もしくは磁気
記録媒体表面をエッチング等の処理により、磁気記録媒
体の表面粗さの波長スペクトルが波長1nm以上200
μm以下の領域の複数箇所に極大値を持たせることによ
り、磁気特性と耐摺動特性を両立する高密度記録に適し
た信頼性の高い磁気記録媒体およびその製造方法、およ
び信頼性の高い大容量磁気記憶装置を提供することにあ
る。
An object of the present invention is to polish the surface of a non-magnetic substrate with a composite abrasive grain composed of plural kinds of abrasives, or to etch the surface of a magnetic recording medium to obtain a wavelength of surface roughness of the magnetic recording medium. The spectrum has a wavelength of 1 nm or more 200
A magnetic recording medium having a high reliability suitable for high-density recording having both magnetic characteristics and anti-sliding characteristics and a method of manufacturing the same, and a large high reliability It is to provide a capacitive magnetic storage device.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、磁気記録媒体の表面粗さの波長スペクト
ルが波長1nm以上200μm以下の複数箇所の領域に
それぞれ極大値を持たせものである。
In order to achieve the above-mentioned object, the present invention is one in which the wavelength spectrum of the surface roughness of a magnetic recording medium has a maximum value in each of a plurality of regions having a wavelength of 1 nm or more and 200 μm or less. Is.

【0007】上記表面粗さの波長スペクトルの極大値が
存在する少なくとも1箇所の領域が、波長1nm以上5
0nm以下の範囲、もしくは波長50nm以上5μm以
下の範囲、もしくは波長5μm以上200μm以下の範
囲を少なくとも含むことが望ましい。これは非磁性基板
表面を複数種の研摩剤から成る複合砥粒を用いて研摩す
る工程を含むことにより一つの工程で同時に達成する
か、または少なくとも一つの研摩剤で研摩した後に、磁
性層を形成した後、あるいは磁性層および保護被覆層を
形成した後に上記磁気記録媒体表面をエッチング等の処
理により突起を形成することで達成される。
At least one region where the maximum value of the wavelength spectrum of the above surface roughness exists has a wavelength of 1 nm or more.
It is desirable to include at least a range of 0 nm or less, a wavelength of 50 nm or more and 5 μm or less, or a wavelength of 5 μm or more and 200 μm or less. This is accomplished in one step at the same time by including polishing the non-magnetic substrate surface with a composite abrasive consisting of multiple abrasives, or after polishing with at least one abrasive, the magnetic layer is This is achieved by forming projections on the surface of the magnetic recording medium after the formation, or after forming the magnetic layer and the protective coating layer, by a treatment such as etching.

【0008】磁気記録媒体の表面上に形成される傷は上
記磁気記録媒体の円周方向に略平行なもの、円周方向に
2度以上45度以下斜行しているもの、孤立した突起状
のもののいずれでも良く、さらにはこれら二つ以上が共
存しても良い。
The scratches formed on the surface of the magnetic recording medium are substantially parallel to the circumferential direction of the magnetic recording medium, oblique to the circumferential direction of 2 degrees to 45 degrees, and isolated protrusions. Any of these may be used, and further, two or more of these may coexist.

【0009】複合砥粒は組成の異なる複数種の研摩剤を
含むことが好ましい。さらに複合砥粒はモース硬度8以
上の研摩剤とモース硬度7以下の研摩剤を同時に含めば
なお好ましい。モース硬度8以上の研摩剤は、例えば、
ダイヤモンド,Al23,SiC等、モース硬度7以下
の研摩剤は、例えば、Cr23,SiO2,Fe23,C
eO2,MgO 等が挙げられるが、その他の組成の研摩
剤でもよい。複合砥粒は平均粒径が異なる複数種の研摩
剤を含むものでも良く、平均粒径0.5μm以上5μm
以下の研摩剤と平均粒径0.01μm以上0.5μm以下
の研摩剤を同時に含む場合、なお好ましい。複合砥粒に
含まれる一つの研摩剤の含有量は、複合砥粒の総量を1
00wt%として、1wt%以上99wt%以下とする
ことが望ましい。
The composite abrasive grain preferably contains a plurality of types of abrasives having different compositions. Further, it is more preferable that the composite abrasive grains simultaneously contain an abrasive having a Mohs hardness of 8 or more and an abrasive having a Mohs hardness of 7 or less. Abrasives with a Mohs hardness of 8 or higher include, for example:
Abrasives having a Mohs hardness of 7 or less, such as diamond, Al 2 O 3 and SiC, are, for example, Cr 2 O 3 , SiO 2 , Fe 2 O 3 and C.
Examples thereof include eO 2 and MgO, but abrasives having other compositions may be used. The composite abrasive may contain a plurality of types of abrasives having different average particle diameters, and the average particle diameter is 0.5 μm or more and 5 μm or more.
It is more preferable when the following abrasives and the abrasives having an average particle size of 0.01 μm or more and 0.5 μm or less are contained at the same time. The content of one abrasive contained in the composite abrasive is the total amount of the composite abrasive is 1
It is desirable that the content of 00 wt% be 1 wt% or more and 99 wt% or less.

【0010】また磁気記録媒体表面に孤立した突起を形
成する手法は、パターンニングしたマスクあるいは粒子
マスク等を用いてアルゴン,酸素,窒素等でプラズマエ
ッチングしたり、保護被覆層形成時に被覆層が部分的に
異常成長するように材料,成膜条件を選定して行なって
も良い。
The method for forming isolated protrusions on the surface of the magnetic recording medium is plasma etching with argon, oxygen, nitrogen or the like using a patterned mask or a particle mask, or the covering layer is partially formed when the protective covering layer is formed. The material and film forming conditions may be selected so that the abnormal growth occurs.

【0011】このような磁気記録媒体と、磁気コアの一
部に金属磁性合金または磁気抵抗効果素子を含み実質的
にジルコニアもしくはアルミナチタンカーバイドもしく
はフェライトを磁気コアの主たる成分とする磁気ヘッド
を組み合わせることにより、記憶容量が従来に比べて
1.5 倍以上大きく、且つ信頼性の高い磁気記憶装置を
作製できる。特に磁性層を複数層有する磁気記録媒体
と、磁気コアの一部に磁気抵抗効果素子を含む磁気ヘッ
ドを組み合わせることにより、記憶容量が従来に比べて
2倍以上大きく、且つ信頼性の高い磁気記憶装置を作製
できる。
Combining such a magnetic recording medium with a magnetic head containing a magnetic metal alloy or a magnetoresistive effect element in a part of the magnetic core and substantially using zirconia, alumina titanium carbide or ferrite as a main component of the magnetic core. As a result, it is possible to manufacture a highly reliable magnetic storage device having a storage capacity larger than that of the conventional one by 1.5 times or more. In particular, by combining a magnetic recording medium having a plurality of magnetic layers with a magnetic head including a magnetoresistive effect element in a part of a magnetic core, the storage capacity is more than twice as large as the conventional one, and the magnetic storage is highly reliable. A device can be made.

【0012】[0012]

【作用】非磁性基板表面に形成した多数の研摩痕が磁気
特性向上に与える効果は、磁性層の結晶配向性を揃える
ことにより磁気異方性を付与し、記録面全体の磁気特性
を均一にする点である。したがって、この目的のために
は、磁性層の結晶粒と同程度の大きさ、すなわち、数n
mから数十nmの波長の比較的小さい研摩痕が効果的で
ある。研摩痕が大きすぎると磁気特性向上に与える効果
は少ない。
The effect of a large number of polishing marks formed on the surface of the non-magnetic substrate on improving the magnetic properties is that the magnetic anisotropy is imparted by aligning the crystal orientation of the magnetic layer to make the magnetic properties uniform over the entire recording surface. That is the point. Therefore, for this purpose, it is as large as the crystal grains of the magnetic layer, that is, a few n
A relatively small polishing mark having a wavelength of m to several tens of nm is effective. If the polishing marks are too large, there is little effect on improving the magnetic properties.

【0013】一方、非磁性基板表面に形成した多数の研
摩痕が耐摺動特性向上に与える効果は、磁気ヘッドと磁
気記録媒体が接するときの、真実接触面積を小さくし、
両者が粘着することを防ぐ点、さらにCSS時の摩擦係
数を低く押さえる点である。したがって、この目的のた
めには、磁気記録媒体表面の形状はできるだけ粗な方が
良く、すなわち、数十nm以上の波長の比較的大きい研
摩痕もしくは突起が効果的である。研摩痕が小さすぎる
と耐摺動特性向上に与える効果は少ない。
On the other hand, the large number of polishing marks formed on the surface of the non-magnetic substrate have the effect of improving the anti-sliding property by reducing the true contact area when the magnetic head and the magnetic recording medium come into contact with each other.
It is to prevent both from sticking together, and to keep the friction coefficient at CSS low. Therefore, for this purpose, the shape of the surface of the magnetic recording medium should be as rough as possible, that is, a relatively large polishing mark or protrusion having a wavelength of several tens nm or more is effective. If the polishing marks are too small, there is little effect on improving the sliding resistance.

【0014】しかし、砥粒としてただ1種の研摩剤を用
いて非磁性基板表面に研摩加工を施す場合には、磁気特
性には優れるものの耐摺動特性に劣ったり、またある場
合は、耐摺動特性には優れるものの磁気特性に劣るとい
った、磁気特性と耐摺動特性の両立が困難であることが
明らかになった。これは、ただ1種の大きさの研摩痕し
か形成できないため、ある場合は研摩痕が小さすぎた
り、またある場合は研摩痕が大きすぎることによる。こ
の磁気記録媒体の表面粗さの波長成分をフーリエ解析し
たところ、波長1nm以上200μm以下の領域にただ
一つの極大値しか持たないことが判明した。また一方、
粒径の異なる砥粒を用いて非磁性基板表面に2段階の研
摩加工を施す場合にも、磁気特性と耐摺動特性を両立す
ることが可能となるが、工程が多くなり生産性が悪くな
るという問題があった。
However, when the surface of a non-magnetic substrate is polished by using only one type of abrasive as abrasive grains, the magnetic characteristics are excellent but the sliding resistance is inferior. It was revealed that it is difficult to achieve both magnetic properties and anti-sliding properties, such as excellent sliding properties but poor magnetic properties. This is because, in some cases, the polishing mark is too small, and in some cases, the polishing mark is too large, because only one size of the polishing mark can be formed. Fourier analysis of the wavelength component of the surface roughness of this magnetic recording medium revealed that it had only one maximum value in the region of wavelength of 1 nm or more and 200 μm or less. On the other hand,
It is possible to achieve both magnetic properties and anti-sliding properties even when two-step polishing is performed on the surface of a non-magnetic substrate using abrasive grains with different grain sizes, but the number of processes increases and productivity is poor. There was a problem of becoming.

【0015】これに対し本発明者らの検討によれば、磁
気記録媒体の表面粗さの波長スペクトルを複数の波長領
域で極大を持たせることによって、磁気特性と耐摺動特
性を両立することが可能となる。すなわち、磁気特性向
上に好適な比較的小さな研摩痕として1nm以上50n
m以下の波長をもたせることが重要である。波長1nm
以下では磁性層の結晶粒より過度に小さいため好ましく
なく、50nm以上では磁性層の結晶粒より過度に大き
いため好ましくないからである。
On the other hand, according to the studies made by the present inventors, the wavelength characteristics of the surface roughness of the magnetic recording medium are maximized in a plurality of wavelength regions to achieve both magnetic characteristics and anti-sliding characteristics. Is possible. That is, as a comparatively small polishing mark suitable for improving magnetic characteristics, 1 nm or more and 50 n
It is important to have a wavelength of m or less. Wavelength 1 nm
This is because below is not preferable because it is excessively smaller than the crystal grains of the magnetic layer, and above 50 nm it is not preferable because it is excessively larger than the crystal grains of the magnetic layer.

【0016】一方耐摺動特性向上に好適な、比較的大き
な研摩痕としては50nm以上5μm以下の波長をもつ
ことが重要である。波長50nm以下では研摩痕が小さ
すぎて磁気ヘッドと磁気記録媒体接触時の面積が大きく
なり摩擦係数が大きいため好ましくなく、波長5μm以
上では研摩痕が大きすぎて磁気ヘッド浮上特性を劣化さ
せるため好ましくないからである。また、耐摺動特性向
上に好適な、比較的大きな孤立した突起を設ける別の場
合は5μm以上200μm以下の波長をもつことが重要
である。波長5μm以下では突起が微細すぎるため形成
そのものが困難であり、波長200μm以上では突起が
磁気ヘッドの大きさと比べて無視できないくらい大き
く、磁気ヘッド浮上特性を劣化させるため好ましくない
からである。
On the other hand, it is important to have a wavelength of 50 nm or more and 5 μm or less as a relatively large polishing mark suitable for improving the sliding resistance. When the wavelength is 50 nm or less, it is not preferable because the abrasion mark is too small and the area of contact between the magnetic head and the magnetic recording medium is large and the friction coefficient is large, and when the wavelength is 5 μm or more, the abrasion mark is too large and the floating characteristics of the magnetic head are deteriorated. Because there is no. Further, in the case of providing relatively large isolated protrusions suitable for improving the sliding resistance, it is important to have a wavelength of 5 μm or more and 200 μm or less. This is because when the wavelength is 5 μm or less, the protrusion itself is too fine to form, and when the wavelength is 200 μm or more, the protrusion is too large to be ignored compared with the size of the magnetic head, which deteriorates the flying characteristics of the magnetic head, which is not preferable.

【0017】これらは非磁性基板表面を複数種の研摩剤
から成る複合砥粒を用いて研摩することによって一つの
工程で同時に達成するか、磁気記録媒体表面にエッチン
グ等の処理により突起を形成することで達成される。磁
気記録媒体の表面上に形成される傷は磁気記録媒体の円
周方向に略平行なもの、円周方向に2度以上45度以下
斜行しているもの、孤立した突起状のもののいずれでも
磁気特性と耐摺動特性を両立できるので良い。さらには
これら二つ以上が共存する場合、磁気特性と耐摺動特性
を制御し易くなるので好ましい。円周方向に斜行した傷
の場合、角度が2度以下では斜行の効果が得られないた
め好ましくなく、45度以上では、磁性層の結晶配向性
を円周方向に揃える効果が減少するため好ましくない。
These can be achieved at the same time in one step by polishing the surface of the non-magnetic substrate with a composite abrasive grain composed of plural kinds of abrasives, or by forming a projection on the surface of the magnetic recording medium by a treatment such as etching. Can be achieved. The scratches formed on the surface of the magnetic recording medium may be substantially parallel to the circumferential direction of the magnetic recording medium, oblique to the circumferential direction of 2 degrees or more and 45 degrees or less, or isolated protrusions. It is good because both magnetic properties and sliding resistance properties can be achieved at the same time. Furthermore, when these two or more coexist, it is easy to control the magnetic characteristics and the sliding resistance, which is preferable. In the case of scratches skewed in the circumferential direction, the effect of skewing cannot be obtained if the angle is 2 degrees or less, and if the angle is 45 degrees or more, the effect of aligning the crystal orientation of the magnetic layer in the circumferential direction decreases. Therefore, it is not preferable.

【0018】組成の異なる複数種の研摩剤を使用すれ
ば、それぞれの研摩剤の持つ研摩特性を個別に活かすこ
とができるため好ましい。すなわちモース硬度8以上の
研摩剤、例えばダイヤモンド,Al23,SiC等は硬
度が高いため大きい研摩痕を形成でき、モース硬度7以
下の研摩剤、例えば、Cr23,SiO2,Fe23
CeO2,MgO 等は硬度が比較的低いため小さい研摩
痕を形成できる。したがって組成の異なる両研摩剤を同
時に使用すればなお好ましい。なお、その他の組成の研
摩剤を使用しても良い。
It is preferable to use a plurality of types of abrasives having different compositions because the polishing characteristics of each abrasive can be utilized individually. That is, since abrasives having a Mohs hardness of 8 or more, such as diamond, Al 2 O 3 , and SiC, have a high hardness, large scratches can be formed, and abrasives having a Mohs hardness of 7 or less, such as Cr 2 O 3 , SiO 2 , and Fe. 2 O 3 ,
Since CeO 2 , MgO and the like have relatively low hardness, small polishing marks can be formed. Therefore, it is more preferable to use both abrasives having different compositions at the same time. In addition, an abrasive having other composition may be used.

【0019】複合砥粒は平均粒径が異なる複数種の研摩
剤で構成しても良く、平均粒径0.5μm以上5μm以下
の研摩剤と平均粒径0.01μm以上0.5μm以下の研
摩剤を同時に含む場合、磁気特性向上に好適な比較的小
さな研摩痕と耐摺動特性向上に好適な比較的大きな研摩
痕とを一つの工程で同時に形成することができるため好
ましい。磁気特性向上に好適な比較的小さな研摩痕を形
成するには平均粒径0.01μm以上0.5μm以下の研
摩剤が好ましい。なぜなら、平均粒径0.01μm以下では
実効的に研摩作用が得られないため好ましくなく、0.
5μm 以上では研摩痕が大きくなりすぎるため好まし
くないからである。
The composite abrasive grains may be composed of a plurality of types of abrasives having different average particle sizes, and an abrasive having an average particle size of 0.5 μm or more and 5 μm or less and an abrasive having an average particle size of 0.01 μm or more and 0.5 μm or less. It is preferable to simultaneously include a relatively small polishing mark suitable for improving the magnetic properties and a relatively large polishing mark suitable for improving the sliding resistance property in one step. An abrasive having an average particle size of 0.01 μm or more and 0.5 μm or less is preferable in order to form relatively small polishing marks suitable for improving magnetic properties. The reason is that when the average particle diameter is 0.01 μm or less, the polishing action cannot be effectively obtained, which is not preferable.
This is because if it is 5 μm or more, the polishing mark becomes too large, which is not preferable.

【0020】耐摺動特性向上に好適な比較的大きな研摩
痕を形成するには平均粒径0.5 μm以上5μm以下
の研摩剤が好ましい。なぜなら、平均粒径0.5μm
以下では研摩痕が小さくなりすぎるため好ましくなく、
5μm以上では研摩痕が大きくなりすぎ、磁気ヘッド浮
上特性を劣化させるため好ましくないからである。平均
粒径が異なる複数種の研摩剤は、組成が同一のものでも
組成が異なるものでも、それぞれ効果が得られる。
An abrasive having an average particle size of 0.5 μm or more and 5 μm or less is preferable in order to form a relatively large polishing mark suitable for improving the sliding resistance. Because the average particle size is 0.5 μm
The following is not preferable because the polishing marks become too small,
This is because if it is 5 μm or more, the polishing mark becomes too large and the flying characteristics of the magnetic head are deteriorated, which is not preferable. A plurality of types of abrasives having different average particle diameters have the same effect even if they have the same composition or different compositions.

【0021】複合砥粒に含まれる一つの研摩剤の含有量
は、複合砥粒の総量を100wt%として、1wt%以
上99wt%以下とすることが望ましい。含有量が1w
t%以下では実効的に研摩作用が得られないため好まし
くなく、含有量が99wt%を超えると他の含有研摩剤
の含有量が1wt%以下となるため複数種以上の研摩剤
を複合する効果が小さくなるので好ましくない。なお、
研摩に際しては研摩剤を研摩布に固着させた状態で行な
っても、研摩布と研摩剤が遊離した状態で行なっても、
同様の効果が得られる。
The content of one abrasive contained in the composite abrasive grains is preferably 1 wt% or more and 99 wt% or less, with the total amount of the composite abrasive grains being 100 wt%. Content is 1w
If it is t% or less, the polishing action cannot be effectively obtained, which is not preferable, and if the content exceeds 99 wt%, the content of other contained abrasives becomes 1 wt% or less, so that the effect of combining a plurality of kinds of abrasives is obtained. Is small, which is not preferable. In addition,
When polishing, either with the polishing agent fixed to the polishing cloth or with the polishing cloth and the polishing agent separated,
The same effect can be obtained.

【0022】本発明より成る磁気記録媒体と、磁気コア
の一部に金属磁性合金または磁気抵抗効果素子を含み実
質的にジルコニアもしくはアルミナチタンカーバイドも
しくはフェライトを磁気コアの主たる成分とする磁気ヘ
ッドを組み合わせることにより、信頼性の高い大容量の
磁気記憶装置を作製できるため好ましい。ジルコニア,
アルミナチタンカーバイド、およびフェライトは0.0
05cal/sec/cm/deg以上の熱伝導率をもち熱歪,潤
滑剤の熱揮発の発生が少ないため耐摺動特性が向上する
ためである。特に磁性層を複数層有する磁気記録媒体
と、磁気コアの一部に磁気抵抗効果素子を含む磁気ヘッ
ドを組み合わせることにより、媒体ノイズを小さくで
き、しかも信号再生能力を高くすることができるため、
従来に比べて記憶容量が2倍以上大きく、且つ、信頼性
の高い磁気記憶装置を作製できる。
A magnetic recording medium according to the present invention is combined with a magnetic head including a magnetic metal alloy or a magnetoresistive effect element in a part of a magnetic core and substantially containing zirconia, alumina titanium carbide or ferrite as a main component of the magnetic core. This is preferable because a highly reliable large-capacity magnetic storage device can be manufactured. Zirconia,
Alumina titanium carbide and ferrite are 0.0
This is because the anti-sliding property is improved because it has a thermal conductivity of 05 cal / sec / cm / deg or more and less thermal strain and thermal volatilization of the lubricant. In particular, by combining a magnetic recording medium having a plurality of magnetic layers and a magnetic head including a magnetoresistive effect element in a part of a magnetic core, medium noise can be reduced and signal reproduction capability can be increased.
It is possible to manufacture a highly reliable magnetic storage device having a storage capacity that is at least twice as large as the conventional one.

【0023】[0023]

【実施例】【Example】

〈実施例1〉図1は本発明の実施例1の研摩装置の説明
図である。
<Embodiment 1> FIG. 1 is an explanatory view of a polishing apparatus according to Embodiment 1 of the present invention.

【0024】矢印Aの方向に100〜1000rpmで
回転している非磁性基板11の表裏両面に研摩布12,
12′を加圧ローラ13,13′で0.1〜10kgf の
力で押しつける。研摩布12,12′は矢印Bの方向に
0.01〜10cm/secの速度で走行し基板面には新しい
研摩布が供給され、また研摩布12,12′は同時に矢
印Cの方向に往復運動し、基板面全面を研摩できる。砥
粒14、14′はノズル15,15′を介して基板面と
研摩布間に供給される。
A polishing cloth 12 is formed on both the front and back surfaces of the non-magnetic substrate 11 rotating at 100 to 1000 rpm in the direction of arrow A.
12 'is pressed by the pressure rollers 13 and 13' with a force of 0.1 to 10 kgf. The polishing cloths 12 and 12 'run in the direction of arrow B at a speed of 0.01 to 10 cm / sec, and new polishing cloth is supplied to the substrate surface, and the polishing cloths 12 and 12' simultaneously reciprocate in the direction of arrow C. You can move and polish the entire surface of the substrate. The abrasive grains 14 and 14 'are supplied between the substrate surface and the polishing cloth through nozzles 15 and 15'.

【0025】次に、本実施例について説明する。矢印A
の方向に500rpm で回転させた130mmφのNiPメ
ッキAl−Mg合金基板11の表裏両面にポリエステル
織布から成る研摩布12,12′をポリウレタン系の加
圧ローラ13,13′で2.5kgf の力で押しつけ、平
均粒径1μmのダイヤモンド10wt%と平均粒径0.
1μm のCeO290wt% を親水性溶媒に分散させ
たスラリ状の複合砥粒14、14′をノズル15,1
5′を介して基板面と研摩布間に供給しながら、研摩布
12,12′を矢印Bの方向に1cm/sec の速度で走行
させ、矢印Cの方向に3回往復運動させ基板面全面を研
摩して、磁気ディスク用基板とした。この基板上に形成
された傷は基板の円周方向とほぼ平行であった。
Next, this embodiment will be described. Arrow A
The polishing cloths 12 and 12 'made of polyester woven cloth on both sides of the NiP-plated Al-Mg alloy substrate 11 of 130 mmφ rotated at 500 rpm in the direction of the direction of 2.5 kgf with polyurethane pressure rollers 13 and 13'. Pressed with 10 wt% diamond with an average particle size of 1 μm and an average particle size of 0.1.
1 μm CeO 2 90 wt% slurry-like composite abrasive particles 14 and 14 ′ dispersed in a hydrophilic solvent are used to form nozzles 15 and 1.
While supplying the polishing cloth 12 and 12 'between the substrate surface and the polishing cloth via 5', the polishing cloth 12 and 12 'are made to run at a speed of 1 cm / sec in the direction of arrow B, and reciprocated three times in the direction of arrow C to make the entire surface of the substrate. Was polished to obtain a magnetic disk substrate. The scratches formed on this substrate were substantially parallel to the circumferential direction of the substrate.

【0026】次に、得られた磁気ディスク用基板を用い
図2に示す構造の磁気記録媒体を形成した。すなわち、
非磁性基板21上にDCマグネトロンスパッタ法で、基
板温度250℃,アルゴンガス圧1mTorr,投入電力3
W/cm2 で膜厚50nmのCr下地層22,22′,膜
厚50nmのCo0.87Cr0.10Ta0.03磁性層23,2
3′を形成した後、C保護被覆層24,24′をDCマ
グネトロンスパッタ法で、基板温度250℃,アルゴン
ガス圧5mTorr,投入電力10W/cm2 で30nm形成
し、末端にOH基を含む吸着基を有するパーフルオロア
ルキルポリエーテル系潤滑層25,25′を5nm設け
て磁気記録媒体とした。
Next, using the obtained magnetic disk substrate, a magnetic recording medium having the structure shown in FIG. 2 was formed. That is,
DC magnetron sputtering method on non-magnetic substrate 21, substrate temperature 250 ° C., argon gas pressure 1 mTorr, input power 3
W / cm 2 Cr underlayer 22, 22 with a thickness of 50nm in ', Co with a thickness of 50nm 0. 87 Cr 0. 10 Ta 0. 03 magnetic layer 23,2
After forming 3 ', a C protective coating layer 24, 24' is formed by DC magnetron sputtering at a substrate temperature of 250 ° C., an argon gas pressure of 5 mTorr, and an input power of 10 W / cm 2 to 30 nm, and an adsorption containing an OH group at the end. A perfluoroalkylpolyether-based lubricating layer 25, 25 'having a group was provided to a thickness of 5 nm to obtain a magnetic recording medium.

【0027】〈実施例2〉次に、図1に示す研摩装置の
説明図でさらに別の実施例について説明する。
<Embodiment 2> Next, still another embodiment will be described with reference to the drawing of the polishing apparatus shown in FIG.

【0028】矢印Aと逆方向に600rpm で回転させた
95mmφのアモルファスカーボン基板11の表裏両面に
ポリアミド織布から成る研摩布12,12′をポリウレ
タン系の加圧ローラ13,13′で2kgfの力で押しつ
け、平均粒径0.75μm のダイヤモンド15wt%と
平均粒径0.25μm のCr2385wt%を親油性溶
媒に分散させたスラリ状の複合砥粒14、14′をノズ
ル15,15′を介して基板面と研摩布間に供給しなが
ら、研摩布12,12′を矢印Bの方向に0.5cm/sec
の速度で走行させ、矢印Cの方向に3回往復運動させ基
板面全面を研摩して、磁気ディスク用基板とした。この
基板上に形成された傷は基板の円周方向とほぼ平行であ
った。
Abrasive cloths 12, 12 'made of polyamide woven cloth are applied on both sides of a 95 mmφ amorphous carbon substrate 11 rotated at 600 rpm in the direction opposite to arrow A by a polyurethane pressure roller 13, 13' with a force of 2 kgf. Slurry composite abrasive grains 14, 14 'in which 15 wt% diamond having an average grain size of 0.75 μm and 85 wt% Cr 2 O 3 having an average grain size of 0.25 μm are dispersed in a nozzle 15, 15 While feeding between the substrate surface and the polishing cloth through the ‘′, the polishing cloth 12, 12 ′ is 0.5 cm / sec in the direction of arrow B.
Was run at a speed of 3, and was reciprocated three times in the direction of arrow C to polish the entire surface of the substrate to obtain a magnetic disk substrate. The scratches formed on this substrate were substantially parallel to the circumferential direction of the substrate.

【0029】次に、得られた磁気ディスク用基板を用い
図2に示す構造の磁気記録媒体を実施例1と同条件で形
成した。
Next, using the obtained magnetic disk substrate, a magnetic recording medium having the structure shown in FIG. 2 was formed under the same conditions as in Example 1.

【0030】〈実施例3〉次に、図1に示す研摩装置の
説明図でさらに別の実施例について説明する。
<Embodiment 3> Next, still another embodiment will be described with reference to the drawing of the polishing apparatus shown in FIG.

【0031】矢印Aの方向に600rpm で回転させた6
5mmφのチタン合金基板11の表裏両面にセルロース織
布から成る研摩布12,12′をポリウレタン系の加圧
ローラ13,13′で2kgfの力で押しつけ、平均粒径
0.75μm のダイヤモンド10wt%,平均粒径0.
7μmのAl235wt%,平均粒径0.25μmのC
eO245wt% 、および平均粒径0.1μmのSiO2
40wt%を親油性溶媒に分散させたスラリ状の複合砥
粒14,14′をノズル15,15′を介して基板面と
研摩布間に供給しながら、研摩布12,12′を矢印B
の方向に0.5cm/sec の速度で走行させ、矢印Cの方
向に4回往復運動させ基板面全面を研摩して、磁気ディ
スク用基板とした。この基板上に形成された傷は基板の
円周方向とほぼ平行であった。
6 rotated in the direction of arrow A at 600 rpm
Abrasive cloths 12 and 12 'made of cellulose woven cloth were pressed on both surfaces of a 5 mmφ titanium alloy substrate 11 with a polyurethane pressure roller 13 and 13' with a force of 2 kgf, and 10 wt% of diamond having an average particle diameter of 0.75 μm, Average particle size of 0.
7 μm Al 2 O 3 5 wt%, C with an average particle size of 0.25 μm
eO 2 45 wt% and SiO 2 having an average particle size of 0.1 μm
While supplying slurry-like composite abrasive grains 14 and 14 'in which 40 wt% is dispersed in a lipophilic solvent through the nozzles 15 and 15' between the substrate surface and the polishing cloth, the polishing cloths 12 and 12 'are indicated by arrow B.
In the direction of 0.5 cm / sec and reciprocated four times in the direction of arrow C to polish the entire surface of the substrate to obtain a magnetic disk substrate. The scratches formed on this substrate were substantially parallel to the circumferential direction of the substrate.

【0032】次に、得られた磁気ディスク用基板を用い
図2に示す構造の磁気記録媒体を実施例1と同条件で形
成した。
Next, using the obtained magnetic disk substrate, a magnetic recording medium having the structure shown in FIG. 2 was formed under the same conditions as in Example 1.

【0033】〈実施例4〉次に、図1に示す研摩装置の
説明図でさらに別の実施例について説明する。
<Fourth Embodiment> Next, still another embodiment will be described with reference to FIG.

【0034】矢印Aの方向に50rpm で回転させた13
0mmφのNiPメッキAl−Mg合金基板11の表裏両
面にポリエステル織布から成る研摩布12,12’をポ
リウレタン系の加圧ローラ13,13′で2.5kgf の
力で押しつけ、平均粒径1μmのダイヤモンド10wt
%と平均粒径0.1μmのCeO290wt%を親水性溶
媒に分散させたスラリ状の複合砥粒14,14′をノズ
ル15,15′を介して基板面と研摩布間に供給しなが
ら、研摩布12,12′を矢印Bの方向に100cm/se
c の速度で走行させ、矢印Cの方向に50回往復運動さ
せ基板面全面を研摩して、磁気ディスク用基板とした。
この基板上に形成された傷は基板の円周方向と約15度
の角度を有した。
13 rotated in the direction of arrow A at 50 rpm
Polishing cloths 12 and 12 'made of polyester woven cloth are pressed on both front and back surfaces of a 0 mmφ NiP-plated Al-Mg alloy substrate 11 with polyurethane pressure rollers 13 and 13' with a force of 2.5 kgf to obtain an average particle diameter of 1 μm. Diamond 10wt
%, And 90 wt% CeO 2 having an average particle size of 0.1 μm dispersed in a hydrophilic solvent while supplying slurry-like composite abrasive grains 14, 14 ′ through nozzles 15, 15 ′ between the substrate surface and the polishing cloth. , Polishing cloth 12, 12 'in the direction of arrow B at 100 cm / se
It was run at a speed of c and reciprocated 50 times in the direction of arrow C to polish the entire surface of the substrate to obtain a magnetic disk substrate.
The scratch formed on this substrate had an angle of about 15 degrees with the circumferential direction of the substrate.

【0035】次に、得られた磁気ディスク用基板を用い
図2に示す構造の磁気記録媒体を実施例1と同条件で形
成した。
Next, using the obtained magnetic disk substrate, a magnetic recording medium having the structure shown in FIG. 2 was formed under the same conditions as in Example 1.

【0036】〈実施例5〉次に、図1に示す研摩装置の
説明図でさらに別の実施例について説明する。
<Embodiment 5> Next, still another embodiment will be described with reference to the drawing of the polishing apparatus shown in FIG.

【0037】矢印Aの方向に500rpm で回転させた4
8mmφのNiPメッキAl−Mg合金基板11の表裏両
面にポリエステル織布から成る研摩布12,12′をポ
リウレタン系の加圧ローラ13,13′で2.5kgf の
力で押しつけ、平均粒径1μmのダイヤモンド10wt
%と平均粒径0.1μmのCeO290wt%を親水性溶
媒に分散させたスラリ状の複合砥粒14,14′をノズ
ル15,15′を介して基板面と研摩布間に供給しなが
ら、研摩布12,12′を矢印Bの方向に1cm/sec の
速度で走行させ、矢印Cの方向に3回往復運動させ基板
面全面を研摩して、磁気ディスク用基板とした。この基
板上に形成された傷は基板の円周方向とほぼ平行であっ
た。
4 rotated in the direction of arrow A at 500 rpm
Polishing cloths 12 and 12 'made of polyester woven cloth are pressed against the front and back surfaces of an NiP plated Al-Mg alloy substrate 11 of 8 mm in diameter with a pressure roller of polyurethane type 13 and 13' with a force of 2.5 kgf to obtain an average particle diameter of 1 μm. Diamond 10wt
%, And 90 wt% CeO 2 having an average particle size of 0.1 μm dispersed in a hydrophilic solvent while supplying slurry-like composite abrasive grains 14, 14 ′ through nozzles 15, 15 ′ between the substrate surface and the polishing cloth. The polishing cloths 12 and 12 'were run in the direction of arrow B at a speed of 1 cm / sec, and reciprocated three times in the direction of arrow C to polish the entire surface of the substrate to obtain a magnetic disk substrate. The scratches formed on this substrate were substantially parallel to the circumferential direction of the substrate.

【0038】次に、得られた磁気ディスク用基板を用い
図2に示す構造の磁気記録媒体を形成した。すなわち、
非磁性基板21上にDCマグネトロンスパッタ法で、基
板温度250℃,アルゴンガス圧1mTorr,投入電力3
W/cm2 で膜厚50nmのCr下地層22,22′,膜
厚50nmのCo0.87Cr0.10Ta0.03磁性層23,2
3′を形成した後、C保護被覆層24,24′をDCマ
グネトロンスパッタ法で、基板温度250℃,アルゴン
ガス圧5mTorr,投入電力10W/cm2 で30nm形成
した。次に、平均粒径3μmのテフロン粒子をマスクと
して用い、C保護被覆層24,24′を酸素プラズマで
10nmエッチングし孤立した突起を形成した。最後
に、末端にOH基を含む吸着基を有するパーフルオロア
ルキルポリエーテル系潤滑層25,25′を5nm設け
て磁気記録媒体とした。
Next, a magnetic recording medium having the structure shown in FIG. 2 was formed using the obtained magnetic disk substrate. That is,
DC magnetron sputtering method on non-magnetic substrate 21, substrate temperature 250 ° C., argon gas pressure 1 mTorr, input power 3
W / cm 2 Cr underlayer 22, 22 with a thickness of 50nm in ', Co with a thickness of 50nm 0. 87 Cr 0. 10 Ta 0. 03 magnetic layer 23,2
After forming 3 ', the C protective coating layers 24, 24' were formed by DC magnetron sputtering at a substrate temperature of 250 ° C., an argon gas pressure of 5 mTorr and an input power of 10 W / cm 2 to a thickness of 30 nm. Next, using Teflon particles having an average particle diameter of 3 μm as a mask, the C protective coating layers 24 and 24 ′ were etched by oxygen plasma for 10 nm to form isolated protrusions. Finally, a perfluoroalkylpolyether-based lubricating layer 25, 25 'having an adsorption group containing an OH group at the end was provided to a thickness of 5 nm to obtain a magnetic recording medium.

【0039】〈実施例6〉次に、図1に示す研摩装置の
説明図でさらに別の実施例について説明する。
<Embodiment 6> Next, still another embodiment will be described with reference to the drawing of the polishing apparatus shown in FIG.

【0040】矢印Aと逆方向に550rpm で回転させた
34mmφのNiPメッキAl−Mg合金基板11の表裏
両面にセルロース織布から成る研摩布12,12′をポ
リウレタン系の加圧ローラ13,13′で1.8kgf の
力で押しつけ、平均粒径 0.75μm のダイヤモンド
20wt%,平均粒径0.25μmのCeO250wt
%、および平均粒径0.1μmのSiO230wt%を親
油性溶媒に分散させたスラリ状の複合砥粒14,14′
をノズル15,15′を介して基板面と研摩布間に供給
しながら、研摩布12,12′を矢印Bの方向に0.5c
m/secの速度で走行させ、矢印Cの方向に4回往復運動
させ基板面全面を研摩して、磁気ディスク用基板とし
た。この基板上に形成された傷は基板の円周方向とほぼ
平行であった。
Polishing cloths 12, 12 'made of cellulose woven cloth are attached on both front and back sides of a 34 mmφ NiP-plated Al-Mg alloy substrate 11 rotated at 550 rpm in the direction opposite to the arrow A, and polyurethane pressure rollers 13, 13' are used. With a force of 1.8 kgf, 20 wt% diamond with an average grain size of 0.75 μm, 50 wt% CeO 2 with an average grain size of 0.25 μm
%, And 30 wt% SiO 2 having an average particle size of 0.1 μm dispersed in a lipophilic solvent, slurry-like composite abrasive grains 14, 14 ′
Is supplied between the substrate surface and the polishing cloth through the nozzles 15 and 15 ', while the polishing cloth 12, 12' is moved in the direction of arrow B by 0.5c.
It was run at a speed of m / sec, reciprocated four times in the direction of arrow C, and the entire surface of the substrate was polished to obtain a magnetic disk substrate. The scratches formed on this substrate were substantially parallel to the circumferential direction of the substrate.

【0041】次に、得られた磁気ディスク用基板を用
い、図3に示す構造の磁気記録媒体を形成した。すなわ
ち、非磁性基板31上にDCマグネトロンスパッタ法
で、基板温度250℃,アルゴンガス圧1mTorr,投入
電力3W/cm2 で膜厚50nmのCr下地層32,3
2′,膜厚15nmのCo0.87Cr0.10Ta0.03第1の
磁性層33,33′,膜厚5nmのCr中間層34,3
4′,膜厚15nmのCo0.87Cr0.10Ta0.03第2の
磁性層35,35′を形成した後、C保護被覆層36,
36′をDCマグネトロンスパッタ法で、基板温度25
0℃,アルゴンガス圧5mTorr,投入電力10W/cm2
で30nm形成し、末端にOH基を含む吸着基を有する
パーフルオロアルキルポリエーテル系潤滑層37,3
7′を5nm設けて磁気記録媒体とした。
Next, using the obtained magnetic disk substrate, a magnetic recording medium having the structure shown in FIG. 3 was formed. That is, by using a DC magnetron sputtering method on a non-magnetic substrate 31, a substrate temperature of 250 ° C., an argon gas pressure of 1 mTorr, an applied power of 3 W / cm 2 , and a thickness of 50 nm of Cr underlayers 32, 3.
2 ', Co having a thickness of 15nm 0. 87 Cr 0. 10 Ta 0. 03 first magnetic layer 33, 33', having a thickness of 5 nm Cr intermediate layer 34,3
4 ', Co having a thickness of 15nm 0. 87 Cr 0. 10 Ta 0. 03 second magnetic layer 35, 35' after forming a, C protective coating layer 36,
36 'by DC magnetron sputtering method at substrate temperature 25
0 ℃, Argon gas pressure 5mTorr, Input power 10W / cm 2
With a thickness of 30 nm and having an adsorbing group containing an OH group at the end, a perfluoroalkylpolyether lubricating layer 37, 3
7'of 5 nm was provided to make a magnetic recording medium.

【0042】〈比較例1〉次に、図1に示す研摩装置の
説明図で比較例について説明する。
<Comparative Example 1> Next, a comparative example will be described with reference to FIG.

【0043】矢印Aの方向に500rpm で回転させた1
30mmφのNiPメッキAl−Mg合金基板11の表裏
両面にポリエステル織布から成る研摩布12,12′を
ポリウレタン系の加圧ローラ13,13′で2.5kgf
の力で押しつけ、平均粒径0.2μmのダイヤモンドを親
水性溶媒に分散させたスラリ状の砥粒14,14′をノ
ズル15,15′を介して基板面と研摩布間に供給しな
がら、研摩布12,12′を矢印Bの方向に1cm/sec の
速度で走行させ、矢印Cの方向に3回往復運動させ基板
面全面を研摩して、磁気ディスク用基板とした。
1 rotated in the direction of arrow A at 500 rpm
Polishing cloth 12, 12 'made of polyester woven cloth on both front and back surfaces of a NiP-plated Al-Mg alloy substrate 11 of 30 mmφ, and 2.5 kgf of polyurethane pressure rollers 13, 13'.
The abrasive grains 14 and 14 'in which diamond having an average grain size of 0.2 μm is dispersed in a hydrophilic solvent are pressed between the substrate surface and the polishing cloth through nozzles 15 and 15', and polishing is performed. The cloths 12 and 12 'were run in the direction of arrow B at a speed of 1 cm / sec, and reciprocated three times in the direction of arrow C to polish the entire surface of the substrate to obtain a magnetic disk substrate.

【0044】次に、得られた磁気ディスク用基板を用い
図2に示す構造の磁気記録媒体を実施例1と同条件で形
成した。
Next, using the obtained magnetic disk substrate, a magnetic recording medium having the structure shown in FIG. 2 was formed under the same conditions as in Example 1.

【0045】〈比較例2〉次に、図1に示す研摩装置の
説明図で比較例について説明する。
<Comparative Example 2> Next, a comparative example will be described with reference to FIG.

【0046】矢印Aの方向に500rpm で回転させた1
30mmφのNiPメッキAl−Mg合金基板11の表裏
両面にポリエステル織布から成る研摩布12,12′を
ポリウレタン系の加圧ローラ13,13′で2.5kgf
の力で押しつけ、平均粒径3μmのダイヤモンドを親水
性溶媒に分散させたスラリ状の砥粒14,14′をノズ
ル15,15′を介して基板面と研摩布間に供給しなが
ら、研摩布12,12′を矢印Bの方向に1cm/sec の速
度で走行させ、矢印Cの方向に3回往復運動させ基板面
全面を研摩して、磁気ディスク用基板とした。
1 rotated in the direction of arrow A at 500 rpm
Polishing cloth 12, 12 'made of polyester woven cloth on both front and back surfaces of a NiP-plated Al-Mg alloy substrate 11 of 30 mmφ, and 2.5 kgf of polyurethane pressure rollers 13, 13'.
The abrasive cloth is pressed against the abrasive cloth with an average particle diameter of 3 μm in a hydrophilic solvent and slurry-like abrasive particles 14 and 14 ′ are supplied between the substrate surface and the abrasive cloth through nozzles 15 and 15 ′. 12, 12 'were run in the direction of arrow B at a speed of 1 cm / sec, and reciprocated three times in the direction of arrow C to polish the entire surface of the substrate to obtain a magnetic disk substrate.

【0047】次に、得られた磁気ディスク用基板を用い
図2に示す構造の磁気記録媒体を実施例1と同条件で形
成した。
Next, using the obtained magnetic disk substrate, a magnetic recording medium having the structure shown in FIG. 2 was formed under the same conditions as in Example 1.

【0048】〈実施例7〉次に、上記実施例1〜6,比
較例1,2の磁気記録媒体の表面粗さを、STM(走査
型トンネル顕微鏡)および触針式表面粗さ計で測定し、
波形をフーリエ解析した。各磁気記録媒体の波長1nm
以上200μm以下の領域に存在した極大値の波長の中
央値を表1に示す。
Example 7 Next, the surface roughness of the magnetic recording media of Examples 1 to 6 and Comparative Examples 1 and 2 was measured with an STM (scanning tunneling microscope) and a stylus type surface roughness meter. Then
The waveform was Fourier analyzed. Wavelength of each magnetic recording medium is 1 nm
Table 1 shows the median values of the maximum wavelengths existing in the region of 200 μm or less.

【0049】[0049]

【表1】 [Table 1]

【0050】表1に示すように実施例1〜6の磁気記録
媒体は波長1nm以上200μm以下の領域に複数の極
大値をもつのに対し、比較例1,2の磁気記録媒体は、
波長1nm以上200μm以下の領域に一つの極大値し
かもたなかった。
As shown in Table 1, the magnetic recording media of Examples 1 to 6 have a plurality of maximum values in the wavelength range of 1 nm to 200 μm, while the magnetic recording media of Comparative Examples 1 and 2 are:
There was only one maximum in the wavelength range of 1 nm to 200 μm.

【0051】さらに実施例1〜6,比較例1,2の磁気
記録媒体について、NiFe合金を磁極材とし、コア部
をジルコニアを主たる成分とする非磁性材料とした薄膜
磁気ヘッドを組み合わせて図4に示す磁気記憶装置を作
製し、記録再生特性およびCSS特性を評価した。図4
において、401,402,403,404は本発明よ
り成る磁気記録媒体、405,406,407,40
8,409,410,411は磁気ヘッド、412は可
動式ヘッドアーム、413はボイスコイルモータ、41
4は制御回路、415は位置決め検出回路、416はヘ
ッド選択スイッチ、417は記録再生回路、418はコ
ントローラである。記録再生特性としては65kFCI
の信号を記録再生したときの装置S/Nおよび装置S/N
25dB以上が可能な最大面記録密度を、CSS特性として
はCSS1万回時の磁気ヘッドと磁気記録媒体の摩擦係
数および障害が発生するまでのCSS回数を採用した。
結果を表2に示す。
Further, the magnetic recording media of Examples 1 to 6 and Comparative Examples 1 and 2 were combined with a thin film magnetic head in which a NiFe alloy was used as a magnetic pole material and a core portion was made of a non-magnetic material containing zirconia as a main component. The magnetic storage device shown in 1 was manufactured, and the recording / reproducing characteristics and the CSS characteristics were evaluated. Figure 4
, 401, 402, 403, 404 are magnetic recording media according to the present invention, and 405, 406, 407, 40.
8, 409, 410, 411 are magnetic heads, 412 is a movable head arm, 413 is a voice coil motor, 41
Reference numeral 4 is a control circuit, 415 is a positioning detection circuit, 416 is a head selection switch, 417 is a recording / reproducing circuit, and 418 is a controller. 65kFCI as recording / reproducing characteristics
S / N and S / N when recording and reproducing the signal
The maximum areal recording density capable of 25 dB or more was adopted as the CSS characteristics, and the coefficient of friction between the magnetic head and the magnetic recording medium at CSS 10,000 times and the number of CSS times until failure occurred.
The results are shown in Table 2.

【0052】[0052]

【表2】 [Table 2]

【0053】表2に示すように実施例1〜6の磁気記録
媒体は記録再生特性,CSS特性共に高く、比較例1,
2に比べて格段に優れていることが明らかとなった。
As shown in Table 2, the magnetic recording media of Examples 1 to 6 have high recording / reproducing characteristics and CSS characteristics.
It became clear that it was significantly superior to 2.

【0054】〈実施例8〉次に上記実施例1〜6,比較
例1,2の磁気記録媒体について、磁気抵抗効果素子を
再生部に含み、コア部をアルミナチタンカーバイドを主
たる成分とする非磁性材料とした記録再生分離型磁気ヘ
ッドを組み合わせて図4に示す磁気記憶装置を作製し、
実施例7と同様の手法で記録再生特性およびCSS特性
を評価した。結果を表3に示す。
<Example 8> Next, regarding the magnetic recording media of Examples 1 to 6 and Comparative Examples 1 and 2, the magnetoresistive effect element was included in the reproducing portion, and the core portion was made of alumina titanium carbide as a main component. By combining the recording / reproducing separated type magnetic head made of a magnetic material, the magnetic storage device shown in FIG.
Recording / reproducing characteristics and CSS characteristics were evaluated by the same method as in Example 7. The results are shown in Table 3.

【0055】[0055]

【表3】 [Table 3]

【0056】表3に示すように、実施例1〜6の磁気記
録媒体は記録再生特性,CSS特性共に高く、比較例
1,2に比べて格段に優れていることが明らかとなっ
た。実施例1〜6の磁気記録媒体と磁気抵抗効果素子を
再生部に含む記録再生分離型磁気ヘッドとの組み合わせ
では、磁気ヘッドの浮上が安定しているため、磁気ヘッ
ド通電時の異常放電が著しく抑制されること等により信
頼性の高い磁気記憶装置を提供できる。磁気抵抗効果素
子の表面にC,ZrO2,Al23 等の層を設けると、
装置の信頼性をさらに向上できるので好ましい。特に、
磁性層を複数層含む磁気記録媒体との組み合わせにする
と、高い装置S/Nが得られるので最も好ましい。
As shown in Table 3, it was revealed that the magnetic recording media of Examples 1 to 6 had excellent recording and reproducing characteristics and CSS characteristics, and were significantly superior to Comparative Examples 1 and 2. In the combination of the magnetic recording media of Examples 1 to 6 and the recording / reproducing separated type magnetic head including the magnetoresistive effect element in the reproducing portion, since the flying of the magnetic head is stable, the abnormal discharge when the magnetic head is energized is remarkable. A magnetic storage device with high reliability can be provided by being suppressed. When a layer of C, ZrO 2 , Al 2 O 3 or the like is provided on the surface of the magnetoresistive element,
It is preferable because the reliability of the device can be further improved. In particular,
The combination with a magnetic recording medium including a plurality of magnetic layers is most preferable because a high device S / N can be obtained.

【0057】ここで、非磁性基板11,21,31には
NiPメッキAl合金,チタン合金,強化ガラス,結晶
化ガラス,プラスチック,アモルファスカーボン,セラ
ミクス,表面ガラスコートセラミクス,シリコン等一般
に磁気ディスク用基板として知られているものはどれで
も用いることができる。また、非磁性基板11の回転方
向A,研摩布送り方向Bは、いずれか、または両方が逆
向きであっても良い。研摩布12,12′の幅は、非磁
性基板11の半径より小さい幅,同じ幅、または大きい
幅のいずれであっても良い。加圧ローラ13,13′の
幅は、研摩布12,12′の幅と同じ幅か、小さい幅の
ものを使用する必要がある。砥粒14,14′は研摩剤
のみでも良いが、親水性、または親油性溶媒中に分散さ
せスラリ状にしたものでも良い。下地層22,22′,
32,32′および中間層34,34′にはCr,M
o,W,Cr−Ti,Cr−Si,Cr−W,C等、磁
性層23,23′,33,33′,35,35′にはC
o−Ni,Co−Ni−Cr,Co−Ni−Zr,Co
−Ni−Pt,Co−Cr,Co−Cr−Ta,Co−
Cr−Pt,Co−Cr−Pt−Si等、また保護被覆
層24,24′,36,36′にはC,炭化物,窒化
物,酸化物,硼化物等を用いることができ、いずれの組
み合わせでも同様の効果が得られる。また、下地層,磁
性層,保護被覆層を絶数層で構成してもよい。
The non-magnetic substrates 11, 21 and 31 are NiP-plated Al alloy, titanium alloy, tempered glass, crystallized glass, plastic, amorphous carbon, ceramics, surface glass coat ceramics, silicon, etc. Any of those known as can be used. Further, either or both of the rotation direction A of the non-magnetic substrate 11 and the polishing cloth feed direction B may be opposite. The width of the polishing cloths 12 and 12 ′ may be smaller than the radius of the non-magnetic substrate 11, the same width, or a large width. The width of the pressure rollers 13, 13 'should be the same as or smaller than the width of the polishing cloth 12, 12'. The abrasive grains 14 and 14 ′ may be only an abrasive, but may be a slurry prepared by dispersing them in a hydrophilic or lipophilic solvent. Underlying layers 22, 22 ',
32, 32 'and intermediate layers 34, 34' include Cr, M
o, W, Cr-Ti, Cr-Si, Cr-W, C, etc., in the magnetic layers 23, 23 ', 33, 33', 35, 35 '.
o-Ni, Co-Ni-Cr, Co-Ni-Zr, Co
-Ni-Pt, Co-Cr, Co-Cr-Ta, Co-
Cr-Pt, Co-Cr-Pt-Si, etc., and C, carbides, nitrides, oxides, borides, etc. can be used for the protective coating layers 24, 24 ', 36, 36', and any combination thereof can be used. However, the same effect can be obtained. Further, the underlayer, the magnetic layer, and the protective coating layer may be composed of an infinite number of layers.

【0058】[0058]

【発明の効果】本発明によれば、磁気特性と耐摺動特性
が両立できるため、高密度記録に適した信頼性の高い磁
気記録媒体、その製造方法および磁気記憶装置が得られ
る。
According to the present invention, since both magnetic characteristics and anti-sliding characteristics can be achieved at the same time, a highly reliable magnetic recording medium suitable for high density recording, a manufacturing method thereof and a magnetic storage device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における研摩装置の説明図。FIG. 1 is an explanatory diagram of a polishing device according to a first embodiment of the present invention.

【図2】本発明の実施例1における磁気記録媒体の断面
図。
FIG. 2 is a sectional view of the magnetic recording medium according to the first embodiment of the present invention.

【図3】本発明の実施例6における磁気記録媒体の断面
図。
FIG. 3 is a sectional view of a magnetic recording medium in Example 6 of the present invention.

【図4】本発明の実施例7における磁気記憶装置のブロ
ック図。
FIG. 4 is a block diagram of a magnetic storage device according to a seventh embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21…非磁性基板、22,22′…下地層、23,2
3′…磁性層、24,24′…保護被覆層、25,2
5′…潤滑層。
21 ... Non-magnetic substrate, 22, 22 '... Underlayer, 23, 2
3 '... magnetic layer, 24, 24' ... protective coating layer, 25, 2
5 '... lubrication layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹下 正敏 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 石川 晃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 尾嵜 明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山本 朋生 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 加藤 幸男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masatoshi Takeshita Masatoshi Takeshita 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Akira Ishikawa 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Akira Ozaki 1-280, Higashi Koikekubo, Kokubunji City, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor, Tomoo Yamamoto 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Center, Ltd. ( 72) Inventor Yukio Kato 1-280, Higashi Koigokubo, Kokubunji City, Tokyo Inside Hitachi Central Research Laboratory

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板上に少なくとも一層の磁性層を
有する磁気記録媒体において、前記磁気記録媒体の表面
粗さの波長スペクトルが波長1nm以上200μm以下
の複数箇所の領域にそれぞれ極大値を持つことを特徴と
する磁気記録媒体。
1. A magnetic recording medium having at least one magnetic layer on a non-magnetic substrate, wherein the wavelength spectrum of the surface roughness of the magnetic recording medium has a maximum value in each of a plurality of regions having a wavelength of 1 nm or more and 200 μm or less. A magnetic recording medium characterized by the above.
【請求項2】請求項1において、上記磁気記録媒体の表
面粗さの波長スペクトルの極大値が存在する少なくとも
1箇所の領域が波長1nm以上50nm以下の範囲であ
る磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein at least one region where the maximum value of the wavelength spectrum of the surface roughness of the magnetic recording medium is present is in the range of 1 nm to 50 nm.
【請求項3】請求項1において、上記磁気記録媒体の表
面粗さの波長スペクトルの極大値が存在する少なくとも
1箇所の領域が波長50nm以上5μm以下の範囲であ
る磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein at least one region where the maximum value of the wavelength spectrum of the surface roughness of the magnetic recording medium is present is in the range of wavelength 50 nm or more and 5 μm or less.
【請求項4】請求項1において、上記磁気記録媒体の表
面粗さの波長スペクトルの極大値が存在する少なくとも
1箇所の領域が波長5μm以上200μm以下の範囲で
ある磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein at least one region where the maximum value of the wavelength spectrum of the surface roughness of the magnetic recording medium is present is in the range of wavelength 5 μm or more and 200 μm or less.
【請求項5】請求項1,2,3または4において、上記
磁気記録媒体の表面上に該磁気記録媒体の円周方向に略
平行な傷を有する磁気記録媒体。
5. The magnetic recording medium according to claim 1, 2, 3 or 4, wherein the surface of the magnetic recording medium has scratches substantially parallel to the circumferential direction of the magnetic recording medium.
【請求項6】請求項1,2,3,4または5において、
上記磁気記録媒体の表面上に該磁気記録媒体の円周方向
に斜行する傷を有する磁気記録媒体。
6. The method according to claim 1, 2, 3, 4 or 5.
A magnetic recording medium having scratches on the surface of the magnetic recording medium, the scratches being oblique in the circumferential direction of the magnetic recording medium.
【請求項7】請求項1,2,3,4,5または6におい
て、上記磁気記録媒体の表面上に孤立した突起を有する
磁気記録媒体。
7. A magnetic recording medium according to claim 1, 2, 3, 4, 5 or 6, which has isolated protrusions on the surface of the magnetic recording medium.
【請求項8】請求項7において、上記磁気記録媒体の表
面上に孤立した突起は上記磁気記録媒体の表面に処理を
施して形成したものである磁気記録媒体。
8. The magnetic recording medium according to claim 7, wherein the protrusions isolated on the surface of the magnetic recording medium are formed by treating the surface of the magnetic recording medium.
【請求項9】非磁性基板上に少なくとも一層の磁性層を
形成する工程を有する磁気記録媒体の製造方法におい
て、前記工程の前工程として非磁性基板表面を複数種の
研摩剤から成る複合砥粒を用いて研摩する工程を含む磁
気記録媒体の製造方法。
9. A method of manufacturing a magnetic recording medium, comprising a step of forming at least one magnetic layer on a non-magnetic substrate, wherein the surface of the non-magnetic substrate comprises a plurality of abrasives as a pre-step of the step. A method for manufacturing a magnetic recording medium, comprising the step of polishing using a magnetic recording medium.
【請求項10】請求項9において、上記複合砥粒は組成
の異なる複数種の研摩剤を含む磁気記録媒体の製造方
法。
10. The method of manufacturing a magnetic recording medium according to claim 9, wherein the composite abrasive grain contains a plurality of types of abrasives having different compositions.
【請求項11】請求項9または10において、上記複合
砥粒はモース硬度8以上の研摩剤とモース硬度7以下の
研摩剤を同時に含む磁気記録媒体の製造方法。
11. The method for producing a magnetic recording medium according to claim 9, wherein the composite abrasive grains simultaneously contain an abrasive having a Mohs hardness of 8 or more and an abrasive having a Mohs hardness of 7 or less.
【請求項12】請求項11において、上記モース硬度8
以上の研摩剤はダイヤモンド,Al23,SiCである
磁気記録媒体の製造方法。
12. The Mohs hardness 8 according to claim 11.
The above abrasives are diamond, Al 2 O 3 , and SiC in the method of manufacturing a magnetic recording medium.
【請求項13】請求項11において、上記モース硬度7
以下の研摩剤はCr23,SiO2,Fe23,Ce
2,MgOである磁気記録媒体の製造方法。
13. The Mohs hardness according to claim 11,
The following abrasives are Cr 2 O 3 , SiO 2 , Fe 2 O 3 , Ce.
A method of manufacturing a magnetic recording medium that is O 2 or MgO.
【請求項14】請求項9,10,11,12または13
において、上記複合砥粒は平均粒径が異なる複数種の研
摩剤を含む磁気記録媒体の製造方法。
14. A method according to claim 9, 10, 11, 12 or 13.
In the method for producing a magnetic recording medium, the composite abrasive grain contains a plurality of types of abrasives having different average grain sizes.
【請求項15】請求項14において、上記複合砥粒は平
均粒径0.5μm 以上5μm以下の研摩剤と平均粒径
0.01μm以上0.5μm以下の研摩剤を同時に含む磁
気記録媒体の製造方法。
15. The method for producing a magnetic recording medium according to claim 14, wherein the composite abrasive grains include an abrasive having an average particle size of 0.5 μm or more and 5 μm or less and an abrasive having an average particle size of 0.01 μm or more and 0.5 μm or less at the same time. Method.
【請求項16】請求項9,10,11,12,13,1
4または15において、上記複合砥粒に含まれる一つの
研摩剤の含有量は、複合砥粒の総量を100wt%とし
て、1wt%以上99wt%以下である磁気記録媒体の
製造方法。
16. A method according to claim 9, 10, 11, 12, 13, 1.
4 or 15, the content of one abrasive contained in the composite abrasive grains is 1 wt% or more and 99 wt% or less, with the total amount of the composite abrasive grains being 100 wt%.
【請求項17】請求項1ないし16のいずれかにおい
て、上記金属磁性合金を少なくとも磁気コアの一部とし
て含む磁気ヘッドとを含む磁気記憶装置。
17. A magnetic memory device according to claim 1, further comprising a magnetic head including the metal magnetic alloy as at least a part of a magnetic core.
【請求項18】請求項1ないし16のいずれかにおい
て、磁気抵抗効果素子を磁気コアの一部として含む磁気
ヘッドとを含む磁気記憶装置。
18. A magnetic storage device according to claim 1, further comprising a magnetic head including a magnetoresistive effect element as a part of a magnetic core.
【請求項19】上記磁気記録媒体は複数層の磁性層を有
する請求項18に記載の磁気記憶装置。
19. The magnetic storage device according to claim 18, wherein the magnetic recording medium has a plurality of magnetic layers.
【請求項20】請求項17,18または19において、
上記磁気ヘッドのコア材が実質的にジルコニアもしくは
アルミナチタンカーバイドもしくはフェライトを主たる
成分とする磁気記憶装置。
20. The method according to claim 17, 18 or 19,
A magnetic storage device in which the core material of the above magnetic head substantially contains zirconia, alumina titanium carbide, or ferrite as a main component.
JP33832392A 1992-11-20 1992-12-18 Magnetic recording medium, its production and magnetic recording device Pending JPH06187637A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33832392A JPH06187637A (en) 1992-12-18 1992-12-18 Magnetic recording medium, its production and magnetic recording device
US08/155,515 US5750230A (en) 1992-11-20 1993-11-22 Magnetic recording media and magnetic recording system using the same
US08/944,472 US6057021A (en) 1992-11-20 1997-10-06 Magnetic recording media and magnetic recording system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33832392A JPH06187637A (en) 1992-12-18 1992-12-18 Magnetic recording medium, its production and magnetic recording device

Publications (1)

Publication Number Publication Date
JPH06187637A true JPH06187637A (en) 1994-07-08

Family

ID=18317066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33832392A Pending JPH06187637A (en) 1992-11-20 1992-12-18 Magnetic recording medium, its production and magnetic recording device

Country Status (1)

Country Link
JP (1) JPH06187637A (en)

Similar Documents

Publication Publication Date Title
US5750230A (en) Magnetic recording media and magnetic recording system using the same
US6972135B2 (en) Texturing of magnetic disk substrates
KR0130768B1 (en) Magnetic recording media for longitudinal recording
JP4428835B2 (en) Magnetic recording medium and method for manufacturing the same
US5605733A (en) Magnetic recording medium, method for its production, and system for its use
JPH0660368A (en) Magnetic recording medium and its production
JPH08180407A (en) Manufacture of textured magnetic storage disk
US5849386A (en) Magnetic recording medium having a prelayer
JP3554476B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JPH06187637A (en) Magnetic recording medium, its production and magnetic recording device
KR20060049836A (en) Manufacturing method for perpendicular magnetic recording disk
US20020150795A1 (en) Magnetic recording medium, its production process and magnetic recording device
US20100020441A1 (en) Method and manufacture process for exchange decoupled first magnetic layer
JP2003296925A (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording device
JPH06243451A (en) Magnetic recording medium and magnetic recorder
JP3600767B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JP2002032909A (en) Substrate for magnetic recording medium, magnetic recording medium, method for manufacturing substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP4333663B2 (en) Magnetic recording medium
JP4333563B2 (en) Magnetic recording medium and manufacturing method thereof
JP3869380B2 (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP4333531B2 (en) Magnetic recording medium
JP2003059034A (en) Glass substrate for magnetic recording medium, and the magnetic recording medium
Kogure et al. Isotropic thin film texture for alternative substrates
JP4333597B2 (en) Magnetic recording medium
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder