JPH06186223A - Decantation device and thermal decomposition-infrared spectral analysis method for sample - Google Patents

Decantation device and thermal decomposition-infrared spectral analysis method for sample

Info

Publication number
JPH06186223A
JPH06186223A JP35388892A JP35388892A JPH06186223A JP H06186223 A JPH06186223 A JP H06186223A JP 35388892 A JP35388892 A JP 35388892A JP 35388892 A JP35388892 A JP 35388892A JP H06186223 A JPH06186223 A JP H06186223A
Authority
JP
Japan
Prior art keywords
sample
container
disc
small
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35388892A
Other languages
Japanese (ja)
Inventor
Yasuo Takahashi
靖男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35388892A priority Critical patent/JPH06186223A/en
Publication of JPH06186223A publication Critical patent/JPH06186223A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the inclination operation of a container with the same amount of precision as manual operation by providing a retention arm and a rotary handle at the center of two large and small discs which are in contact with each other on the circumferential surface. CONSTITUTION:It is desirable that the ratio of diameter of a large disc E to that of a small disc F with extremely different radii of curvature should be 10:1-100:1. The discs E and F are in contact at the side surfaces with each other. Then, when a handle G at the center of the disc F is rotated to rotate the disc F, the disc E with a large diameter than that of the disc F gradually and smoothly rotates. The slow rotary motion is transferred to a container retention tool C which retains a container B being provided at the tip of a retention arm J by the retention arm J. Therefore, the rotation of the handle G causes the container B to be inclined slowly and smoothly and hence a supernatant liquid to flow out quietly and to be separated from a precipitate. Namely, arbitrary rotary control of the handle G enables the container B to be inclined at arbitrary speed and angle and hence achieving the same amount of decantation of a sample as that by manual operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】[Industrial applications]

(第一の発明)本発明の第一の発明は、化学分析や化学
合成において、沈澱物と上澄液との分離操作の際に使用
される試料のデカンテーション装置に関する。 (第二の発明)本発明の第二の発明は、熱分解−赤外分
光分析法に関し、更に詳しくは、熱分解物の凝集及び補
集方法の改良に関する。
(First Invention) The first invention of the present invention relates to a decantation device for a sample used in a separation operation of a precipitate and a supernatant in a chemical analysis or a chemical synthesis. (Second invention) The second invention of the present invention relates to a thermal decomposition-infrared spectroscopic analysis method, and more specifically to improvement of a method for aggregating and collecting thermal decomposition products.

【0002】[0002]

【従来の技術】[Prior art]

(第一の発明)化学分析や化学合成等の際に、沈澱物と
上澄液とを濾紙等の分離部材を使用しないで分離する操
作を行う場合がある。従来、この様な場合には、ビーカ
ー等の容器を手に持ち、手操作によってゆるやかに振動
を与えないように徐々に静かに容器を傾斜させていき、
上澄液と沈澱物が再び混ざらない様にして沈澱物と上澄
液とを分離する、所謂デカンテーションと呼ばれる操作
が行われる。現在までに、この傾斜動作を機械的に行な
うことの出来るデカンテーション装置という機械・器具
は製作及び販売されておらず、専ら上記の様な手操作に
よっている。しかしながら、この手操作は、傾斜操作の
中断や振動を極力なくさなければならない点や、傾斜速
度や傾斜角度の制御に対する難しさの点から熟練を要す
るという問題がある。又、凝視しながら操作を行う必要
がある為、操作する者の顔と容器とが接近し易く、有害
な化学薬品を取り扱う場合には、その蒸気を吸い込んで
しまうという危険性もある。更には、手操作では一人で
一個しか処理することが出来ず、効率的でない等の問題
もある。
(First invention) At the time of chemical analysis or chemical synthesis, an operation of separating the precipitate from the supernatant without using a separating member such as filter paper may be performed. Conventionally, in such a case, hold a container such as a beaker in your hand, and gently tilt the container gently so as not to give vibration gently by hand.
An operation called so-called decantation is performed in which the precipitate and the supernatant are separated so that the supernatant and the precipitate are not mixed again. Until now, no decantation device or machine that can mechanically perform this tilting operation has been manufactured and sold, and the decantation device is exclusively operated by hand as described above. However, this manual operation has a problem that skill is required because interruption of the tilting operation and vibration must be minimized and difficulty in controlling the tilting speed and the tilting angle. Further, since it is necessary to perform the operation while gazing, the operator's face and the container are easily approached, and when handling harmful chemicals, there is a risk of inhaling the vapor. Further, there is also a problem that it is not efficient because only one person can process it manually.

【0003】(第二の発明)従来、熱分解−赤外分光分
析法は、ポリマー等を熱分解してその分解生成物を赤外
分光法で分析する方法であるが、この際の熱分解操作
は、試験管内で実施されている。熱分解用に供される試
験管には蓋はなく、熱分解により発生した蒸気は管壁に
凝縮させているが、この場合、管壁は自然の空冷以外に
は特に冷却されることはない。しかしながら、上記した
従来の方法では、下記の様な欠点があった。 (1)従来法の熱分解−赤外分光分析法では、管壁を、
自然の空冷以外には特に冷却していない為、揮散し易い
微量物質の凝縮・捕集が極めて困難であり、これらの物
質の分析は困難である。又、従来法で用いられている熱
分解用の試験管は蓋を有していない為、揮散し易い微量
物質の分析を更に困難としている。 (2)従来法の熱分解−赤外分光分析法では、熱分解容
器として、試験管等のガラス器具が使われている為、例
えば、これに低沸点有機溶剤を滴下して強制的に冷却し
ようとすると、ガラスが破損し易く、自然の空冷しか出
来ないという問題があった。
(Second invention) Conventionally, the thermal decomposition-infrared spectroscopic analysis method is a method in which a polymer or the like is thermally decomposed and the decomposition product is analyzed by infrared spectroscopic method. The operation is carried out in a test tube. There is no lid on the test tube used for thermal decomposition, and the vapor generated by thermal decomposition is condensed on the tube wall, but in this case, the tube wall is not particularly cooled except by natural air cooling. . However, the above-mentioned conventional method has the following drawbacks. (1) In the conventional pyrolysis-infrared spectroscopy, the tube wall is
Since it is not cooled except for natural air cooling, it is extremely difficult to condense and collect trace substances that easily volatilize, and it is difficult to analyze these substances. Further, since the test tube for thermal decomposition used in the conventional method does not have a lid, it is more difficult to analyze a trace substance that easily volatilizes. (2) In conventional thermal decomposition-infrared spectroscopy, glass instruments such as test tubes are used as thermal decomposition vessels. For example, a low boiling point organic solvent is dripped into this and forcedly cooled. However, there is a problem that the glass is easily broken and only natural air cooling can be performed.

【0004】[0004]

【発明が解決しようとしている課題】[Problems to be Solved by the Invention]

(第一の発明)従って、本発明の目的は、これらの従来
技術の問題点を解決し、容器の傾斜動作を従来の手操作
と同等に精密に制御して行うことの出来る試料のデカン
テーション装置を提供するものである。 (第二の発明)従って、本発明の目的は、上記の従来法
の試料の熱分解過程における問題点を解決し、従来より
も高感度な熱分解−赤外分光分析法を提供することにあ
る。
(First Invention) Therefore, an object of the present invention is to solve these problems of the prior art, and to perform decantation of a sample capable of precisely controlling the tilting operation of a container as well as the conventional manual operation. A device is provided. (Second invention) Therefore, an object of the present invention is to solve the above-mentioned problems in the thermal decomposition process of a sample of the conventional method, and to provide a thermal decomposition-infrared spectroscopic analysis method with higher sensitivity than before. is there.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(第一の発明)本発明の目的は、下記の本発明によって
達成される。即ち、本発明は、曲率の顕著に異なる円周
を有する大小2つの円盤及び/又は扇形盤が互いにその
円周面で接しており、且つ小さい盤の中心には小さい盤
を回転させる為のハンドル又はモーターを有し、且つ大
きい盤の中心に設けられた回転支持部に保持腕が固着さ
れており、該保持腕の先端に容器保持具が設置されてい
ることを特徴とする試料のデカンテーション装置であ
る。
(First Invention) The object of the present invention is achieved by the following invention. That is, according to the present invention, two large and small discs and / or fan-shaped discs having circles with markedly different curvatures are in contact with each other on their circumferential surfaces, and a handle for rotating a small disc at the center of a small disc. Alternatively, a decantation of a sample, which has a motor and has a holding arm fixed to a rotation support portion provided at the center of a large board, and a container holder is installed at a tip of the holding arm. It is a device.

【0006】(第二の発明)上記の目的は、下記の本発
明によって達成される。即ち、本発明は、試料を蓋のあ
る熱分解容器に入れ加熱し、該熱分解蒸気を冷却装置又
は冷却剤を用いて冷却捕集して凝集物とした後、該凝縮
物を赤外分光分析装置により分析することを特徴とする
熱分解−赤外分光分析法である。
(Second Invention) The above object is achieved by the present invention described below. That is, according to the present invention, a sample is placed in a pyrolysis container with a lid and heated, and the pyrolysis vapor is cooled and collected using a cooling device or a coolant to form an aggregate, and then the condensate is subjected to infrared spectroscopy. It is a thermal decomposition-infrared spectroscopic analysis method characterized by being analyzed by an analyzer.

【0007】[0007]

【作用】[Action]

(第一の発明)本発明者は、上記従来技術の問題点を解
決すべく鋭意検討の結果、曲率の顕著に異なる大小二つ
のゴム等の弾性体の円盤及び/又は扇形盤を使用するこ
とにより、容器の傾斜速度及び角度を手操作と同等に制
御することが出来る簡便な装置が得られることを知見し
て本発明に至った。
(First Invention) As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventor uses two elastic discs and / or fan-shaped discs of large and small rubbers having remarkably different curvatures. According to the present invention, it was found that a simple device capable of controlling the tilting speed and the angle of the container in the same manner as the manual operation can be obtained.

【0008】(第二の発明)本発明者は、上記の従来技
術の問題点を解決すべく鋭意研究の結果、冷却装置又は
冷却剤を用いて強制的に熱分解蒸気を凝縮・補集し、効
率的に凝集させてこれを分析試料とすることにより、上
記した従来法の(1)及び(2)の欠点をなくすことが
出来ることを知見して本発明に至った。この結果、揮散
し易い微量物質の分析も可能となり、従来法よりも高感
度な分析が出来る。
(Second Invention) As a result of intensive research to solve the above-mentioned problems of the prior art, the present inventor forcibly condenses and collects the pyrolysis vapor by using a cooling device or a coolant. The present invention has been completed by finding that it is possible to eliminate the drawbacks of the above-mentioned conventional methods (1) and (2) by efficiently aggregating and using this as an analysis sample. As a result, it becomes possible to analyze trace substances that easily volatilize, and it is possible to perform analysis with higher sensitivity than conventional methods.

【0009】[0009]

【好ましい実施態様】次に、本発明の好ましい実施態様
を挙げて本発明を詳細に説明する。 (第一の発明)図1は、本発明の試料のデカンテーショ
ン装置の一例を示す概略斜視図であるが、これに基づい
て本発明を説明する。図中、Aは試料、Bはその容器、
Cは容器保持具、Dは回転支持部、Eはゴム等の弾性体
の大きい円盤を示し、又、Fはゴム製の小円盤、Gは小
円盤を回す為のハンドル又は電動モーター、Hは支柱、
Iは振動伝達防止用ゴム台、Jは容器保持具Cと回転支
持部Dとを接続する保持腕を示す。E及びFは共にゴム
等の弾性体の円盤又は扇形盤であるが、本発明では、そ
の曲率が顕著に異なることを特徴とする。即ち、Eの大
円盤とFの小円盤の直径の比が、好ましくは1:1〜1
000:1、より好ましくは10:1〜100:1であ
る。又、これらの円盤を構成する材料としては、回転の
際の振動を吸収し、滑らかに回転することが出来るもの
であればいずれのものでもよい。例えば、各種のジエン
系ゴムの他、ウレタンゴム及びシリコンゴム等の非ジエ
ン系等のゴム、又はエラストマー等の弾性体が好ましく
用いられる。本発明において特に好ましくは、耐久性及
び経済性の点からウレタンゴムを使用することが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in detail with reference to preferred embodiments of the present invention. (First Invention) FIG. 1 is a schematic perspective view showing an example of the sample decantation apparatus of the present invention, and the present invention will be described based on this. In the figure, A is a sample, B is the container,
C is a container holder, D is a rotation support part, E is a large disk of elastic material such as rubber, F is a small disk made of rubber, G is a handle or electric motor for rotating the small disk, and H is Props,
Reference numeral I denotes a rubber stand for preventing vibration transmission, and J denotes a holding arm that connects the container holder C and the rotation support portion D. Both E and F are discs or fan-shaped discs made of an elastic material such as rubber, but the present invention is characterized in that their curvatures are significantly different. That is, the ratio of the diameters of the large disc of E and the small disc of F is preferably 1: 1 to 1
000: 1, more preferably 10: 1 to 100: 1. Further, as a material forming these disks, any material may be used as long as it can absorb vibration during rotation and can rotate smoothly. For example, in addition to various diene rubbers, non-diene rubbers such as urethane rubber and silicone rubber, or elastic bodies such as elastomers are preferably used. In the present invention, it is particularly preferable to use urethane rubber from the viewpoint of durability and economy.

【0010】図1に示した様に、小円盤Fの中心にはハ
ンドルGが設けられており、ハンドルGを手動又は電動
モーター等で回すことにより、ハンドルGを任意の速度
で回転させることが出来る構成となっている。又、図1
に示した様に大円盤Eと小円盤Fの両円盤は互いにその
側面で接している。この結果、先ず、ハンドルGを回し
小円盤Fを回転させると、前述した様に大円盤Eの直径
が小円盤Fの直径と比べてかなり大きい為、これに接す
る大円盤Eがゆっくり、滑らかに回転することになる。
例えば、大円盤Eと小円盤Fの直径の比が50:1の場
合には、小円盤Fが1回転すると大円盤Eは、0.02
回転し、ゆっくりと滑らかに回る。
As shown in FIG. 1, a handle G is provided at the center of the small disc F, and the handle G can be rotated at an arbitrary speed by rotating the handle G manually or by an electric motor. It can be configured. Moreover, FIG.
As shown in FIG. 2, the large disk E and the small disk F are in contact with each other at their side surfaces. As a result, first, when the small disc F is rotated by turning the handle G, the diameter of the large disc E is considerably larger than the diameter of the small disc F as described above. It will rotate.
For example, when the diameter ratio of the large disc E and the small disc F is 50: 1, when the small disc F makes one rotation, the large disc E becomes 0.02.
Rotate and spin slowly and smoothly.

【0011】次に、図1に示した様に、大円盤Eの中心
には回転支持部Dが設けられており、大円盤Eのゆっく
りとした回転運動は、回転支持部Dに固着されている保
持腕Jを介して、保持腕Jの先端に設けられている容器
保持具Cへと伝達されるていく。又、容器保持具Cの上
には容器Bがしっかりと保持されている。従って、ハン
ドルGを回すことにより大円盤Eが、ゆっくり、滑らか
に回転すると、これに応じて容器Bがゆっくり、滑らか
に傾斜し、上澄み液が静かに流れ出て沈澱物ときれいに
分かれる。即ち、ハンドルGの回転を任意に制御するこ
とによって、任意の速度及び任意の角度で容器Bを傾斜
させることが出来る為、従来の手操作と同等に試料のデ
カンテーションが可能となる。更に好ましい態様として
は、回転支持部Dの下部にこれと接続して振動伝達防止
用ゴム台Iを設けておけば、より回転の際の振動が防止
され、容器を静かに傾けることが可能となる。
Next, as shown in FIG. 1, a rotation support portion D is provided at the center of the large disc E, and the slow rotational movement of the large disc E is fixed to the rotation support portion D. It is transmitted to the container holder C provided at the tip of the holding arm J via the holding arm J. Further, the container B is firmly held on the container holder C. Therefore, when the large disc E is rotated slowly and smoothly by turning the handle G, the container B is slowly and smoothly inclined accordingly, and the supernatant liquid gently flows out to be separated into precipitates cleanly. That is, by arbitrarily controlling the rotation of the handle G, the container B can be tilted at an arbitrary speed and an arbitrary angle, so that the sample can be decanted in the same manner as the conventional manual operation. In a further preferred embodiment, if a vibration transmission preventing rubber base I is provided under the rotation support portion D so as to be connected to the rotation support portion D, vibration during rotation can be further prevented and the container can be gently tilted. Become.

【0012】(第二の発明)以下、本発明の第二の発明
の好ましい実施態様を挙げて本発明を詳細に説明する。
本発明は、試料の熱分解蒸気を強制的に、冷却装置又は
冷却剤を用いて冷却捕集した後、凝縮物を赤外分光分析
装置により分析することを特徴とする。熱分解の方法と
しては、試料を、蓋のある熱分解容器に入れ、これを加
熱手段により加熱して熱分解する。この際に使用される
試料の熱分解容器としては、蓋のある磁製、金属製、石
英製、硬質ガラス製等の耐熱性容器がよい。例えば、市
販の各種のルツボや、分光光度計用のセル等でも役に立
つ容器を見い出すことが出来る。
(Second Invention) The present invention will be described in detail below with reference to preferred embodiments of the second invention of the present invention.
The present invention is characterized in that the pyrolysis vapor of a sample is forcibly cooled and collected by using a cooling device or a cooling agent, and then the condensate is analyzed by an infrared spectroscopic analysis device. As a method of thermal decomposition, a sample is put in a thermal decomposition container having a lid, and this is heated by a heating means to be thermally decomposed. As a thermal decomposition container for the sample used at this time, a heat-resistant container such as a porcelain, a metal, quartz, or hard glass with a lid is preferable. For example, it is possible to find useful containers in various types of commercially available crucibles, cells for spectrophotometers, and the like.

【0013】又、試料を加熱する方法としては、ホット
プレート等の電気式加熱装置、高周波誘導式加熱装置、
赤外線、レーザー光線、電子線及びX線等、いずれの手
段も用いることが出来る。例えば、加熱装置としてレー
ザー光線を使用すれば、試料の微小部を熱分解すること
が出来る為、少量の試料しかサンプリング出来ない事情
がある場合においても、有効な分析が可能となる。熱分
解の際の好ましい分解温度は、分析する対象試料により
適宜異なるが、100〜2000℃の範囲で加熱する。
又、試料を熱分解する際の雰囲気は、分析する対象試料
により、空気、乾燥空気及び不活性ガス等から適宜選択
される。この際の圧力も、常圧、加圧及び減圧のいずれ
でもよい。
As a method for heating the sample, an electric heating device such as a hot plate, a high frequency induction heating device,
Any means such as infrared ray, laser beam, electron beam and X-ray can be used. For example, when a laser beam is used as the heating device, a minute portion of the sample can be thermally decomposed, so that effective analysis can be performed even in the case where only a small amount of sample can be sampled. A preferable decomposition temperature at the time of thermal decomposition varies depending on the sample to be analyzed, but heating is performed in the range of 100 to 2000 ° C.
The atmosphere for pyrolyzing the sample is appropriately selected from air, dry air, inert gas, etc., depending on the sample to be analyzed. The pressure at this time may be normal pressure, increased pressure, or reduced pressure.

【0014】本発明においては、熱分解の際に、熱分解
容器の蓋又は壁側を電子式冷却装置及び冷却剤等で冷却
し、熱分解ガスを強制的に凝縮させる。蓋や壁側の冷却
方法としては、電子式冷却装置を用いる方法、又は、ア
セトン等の低沸点溶剤を蓋へ滴下し、蒸発潜熱を利用し
て冷やす方法等が好ましく用いられる。
In the present invention, at the time of pyrolysis, the lid or wall side of the pyrolysis vessel is cooled by an electronic cooling device, a coolant, etc., and the pyrolysis gas is forcibly condensed. As a method for cooling the lid or the wall side, a method using an electronic cooling device, a method of dropping a low boiling point solvent such as acetone on the lid and cooling by utilizing latent heat of vaporization is preferably used.

【0015】次に、蓋等に凝縮した凝集物をかきとり、
これを試料としてフィルム法や錠剤法等の通常の赤外分
光分析を行う。又、蓋の材質が赤外光をよく反射するも
のであれば、そのまま、普通反射法、高感度反射法、多
重反射法等の各種反射法で赤外分光分析を行う。更に、
臭化カリウムの様な赤外透過材料を蓋として用いる場合
には、これをそのまま用いて透過法で赤外分光分析する
ことも出来る。
Next, scrape off the condensed agglomerates on a lid or the like,
Using this as a sample, ordinary infrared spectroscopic analysis such as a film method or a tablet method is performed. If the material of the lid reflects infrared light well, infrared spectroscopic analysis is performed as it is by various reflection methods such as ordinary reflection method, high sensitivity reflection method and multiple reflection method. Furthermore,
When an infrared transmitting material such as potassium bromide is used as the lid, it can be used as it is for infrared spectroscopic analysis by a transmission method.

【0016】[0016]

【実施例】次に、好ましい実施例を挙げて本発明を更に
詳細に説明する。 <実施例1>図2に本発明のデカンテーション装置の別
の態様を示した。かかる装置は、容器保持具Cを複数個
備えている為、一度に多数の容器を静かにゆっくりと傾
斜することが出来る。この結果、一度に多量のデカンテ
ーションを行うことが可能となる為、効率のよい分離処
理が出来る。
The present invention will be described in more detail with reference to the following preferred examples. <Embodiment 1> FIG. 2 shows another embodiment of the decantation apparatus of the present invention. Since such a device includes a plurality of container holders C, it is possible to gently and slowly incline a large number of containers at one time. As a result, a large amount of decantation can be performed at one time, and efficient separation processing can be performed.

【0017】<実施例2>図3に本発明のデカンテーシ
ョン装置の別の態様を示した。かかる装置は、図3に示
す様に、大円盤Eの形状を扇形とした結果、大円盤Eの
中心に設けられている回転支持部Dが、図1及び図2に
示した装置と異なり、装置の下部に位置することになる
為、傾斜の支点及び容器の重心が低くなる。この結果、
沈澱物への振動の伝わりがより小さくなり、デカンテー
ションがより完全に出来る。この場合にも、図3に示し
た様に、回転支持部Dの下部にこれと接続して振動伝達
防止用ゴム台Iを設けれておけば、回転の際の振動がよ
り防止され、容器を静かに傾けることが可能となる。
<Embodiment 2> FIG. 3 shows another embodiment of the decantation apparatus of the present invention. As shown in FIG. 3, the apparatus has a fan-shaped large disc E. As a result, the rotation support portion D provided at the center of the large disc E differs from the apparatuses shown in FIGS. 1 and 2. Since it is located at the bottom of the device, the tilt fulcrum and the center of gravity of the container are lowered. As a result,
The transmission of vibrations to the precipitate is smaller and decantation is more complete. Also in this case, as shown in FIG. 3, if a vibration transmission preventing rubber base I is provided under the rotation support portion D so as to be connected to the rotation support portion D, vibration during rotation can be further prevented, and the container can be prevented. It is possible to tilt it quietly.

【0018】(第二の発明) <実施例3>試料として、アミノ基を含むと思われる物
質を30mlの蓋ある磁製ルツボに入れる。次に、試料
を入れた磁性ルツボをホットプレートで、200〜60
0℃に加熱し、試料の熱分解を行う。次に、蓋へ冷却媒
としてアセトンを滴下して冷却する。この結果、蓋の裏
側に凝縮した物質をかきとり、通常の透過法で赤外分光
分析する。この結果、1675cm−1付近のピークに
よって酸アミドを確認し、このことから、元の試料の中
にアミノ基が含まれていたことが分かった。
(Second invention) <Example 3> As a sample, a substance suspected of containing an amino group is placed in a porcelain crucible having a lid of 30 ml. Next, the magnetic crucible containing the sample is put on a hot plate for 200 to 60
The sample is pyrolyzed by heating to 0 ° C. Next, acetone is dropped as a cooling medium on the lid to cool it. As a result, the substance condensed on the back side of the lid is scraped off and subjected to infrared spectroscopic analysis by a usual transmission method. As a result, an acid amide was confirmed by a peak near 1675 cm −1 , which showed that the original sample contained an amino group.

【0019】[0019]

【発明の効果】【The invention's effect】

(第一の発明)以上説明した様にデカンテーション装置
を本発明のように構成することにより、手の震え等の振
動を伝えることなく、静かにゆっくりと容器を傾けるこ
とが出来る為、一度に多量のデカンテーションを、迅
速、安全に実施することが可能である。
(First invention) By configuring the decantation device as in the present invention as described above, it is possible to gently and slowly incline the container without transmitting vibration such as shaking of the hand. It is possible to perform a large amount of decantation quickly and safely.

【0020】(第二の発明)以上説明した様に本発明に
よれば、熱分解蒸気を、冷却装置、又は冷却剤を用いる
冷却によって効率よく凝集・捕集し、これを分析試料と
して赤外分光分析することにより、従来法では揮散して
しまい易かった微量物質を、高感度且つ簡便に赤外分光
分析法で検出することが出来る。更に、加熱方法とし
て、レーザー光線等を用いれば、試料の微小部の熱分解
が可能となり、赤外分光分析が行える。又、本発明に使
用される熱分解容器は、磁製又は金属製等の耐熱容器で
ある為、冷却に際し低沸点溶剤等の冷却剤を滴下しても
破損する心配がなく、操作の安全性及び経済性にも優れ
る。
(Second invention) As described above, according to the present invention, the pyrolysis vapor is efficiently aggregated and collected by cooling using a cooling device or a cooling agent, and this is used as an analysis sample in infrared rays. By performing the spectroscopic analysis, it is possible to detect a trace substance, which was easily volatilized by the conventional method, with high sensitivity and easily by the infrared spectroscopic analysis method. Furthermore, if a laser beam or the like is used as a heating method, it becomes possible to thermally decompose a minute portion of the sample and perform infrared spectroscopic analysis. Further, since the thermal decomposition container used in the present invention is a heat-resistant container such as a porcelain or a metal, there is no risk of damage even if a cooling agent such as a low boiling point solvent is dropped during cooling, and operational safety. It is also economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の発明の試料のデカンテーション
装置の概略斜視図である。
FIG. 1 is a schematic perspective view of a decantation apparatus for a sample according to a first aspect of the present invention.

【図2】本発明の第一の発明の別の態様の試料のデカン
テーション装置の概略斜視図である。
FIG. 2 is a schematic perspective view of a sample decantation apparatus according to another aspect of the first aspect of the present invention.

【図3】本発明の第一の発明の別の態様の試料のデカン
テーション装置の概略斜視図である。
FIG. 3 is a schematic perspective view of a sample decantation apparatus according to another aspect of the first aspect of the present invention.

【符号の説明】[Explanation of symbols]

A:試料 B:容器 C:容器保持具 D:回転支持部 E:大きい円盤又は扇形盤 F:小円盤 G:ハンドル又はモーター H:支柱 I:振動伝達防止用ゴム台 J:保持腕 A: Sample B: Container C: Container holder D: Rotating support E: Large disk or fan disk F: Small disk G: Handle or motor H: Strut I: Vibration prevention rubber stand J: Holding arm

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 曲率の顕著に異なる円周を有する大小2
つの円盤及び/又は扇形盤が互いにその円周面で接して
おり、且つ小さい盤の中心には小さい盤を回転させる為
のハンドル又はモーターを有し、且つ大きい盤の中心に
設けられた回転支持部に保持腕が固着されており、該保
持腕の先端に容器保持具が設置されていることを特徴と
する試料のデカンテーション装置。
1. Large and small 2 having circumferences having remarkably different curvatures
Two disks and / or fan-shaped disks are in contact with each other on their circumferential surfaces, and a handle or a motor for rotating the small disk is provided at the center of the small disk, and a rotation support provided at the center of the large disk A decantation device for a sample, wherein a holding arm is fixed to the part, and a container holder is installed at the tip of the holding arm.
【請求項2】 曲率の顕著に異なる円周を有する大小2
つの円盤及び/又は扇形盤が弾性体で構成されている請
求項1に記載の試料のデカンテーション装置。
2. Large and small 2 having circumferences having markedly different curvatures
The sample decanting device according to claim 1, wherein the one disk and / or the fan-shaped disk is made of an elastic material.
【請求項3】 弾性体がゴム又はエラストマーである請
求項1に記載の試料のデカンテーション装置。
3. The decantation device for a sample according to claim 1, wherein the elastic body is rubber or elastomer.
【請求項4】 回転支持部の下部に振動伝達防止用ゴム
台が設けられている請求項1に記載の試料のデカンテー
ション装置。
4. The decantation device for a sample according to claim 1, wherein a rubber stand for preventing vibration transmission is provided below the rotation support part.
【請求項5】 試料を蓋のある熱分解容器に入れ加熱
し、該熱分解蒸気を冷却装置又は冷却剤を用いて冷却捕
集して凝集物とした後、該凝縮物を赤外分光分析装置に
より分析することを特徴とする熱分解−赤外分光分析
法。
5. The sample is placed in a pyrolysis container with a lid and heated, the pyrolysis vapor is cooled and collected by a cooling device or a coolant to form an aggregate, and then the condensate is analyzed by infrared spectroscopy. Pyrolysis-infrared spectroscopy characterized by being analyzed by a device.
【請求項6】 熱分解蒸気の凝集物に含まれる酸アミド
基を分析してアミノ基の確認を行う請求項4に記載の熱
分解−赤外分光分析法。
6. The thermal decomposition-infrared spectroscopic analysis method according to claim 4, wherein the acid amide group contained in the aggregate of the thermal decomposition vapor is analyzed to confirm the amino group.
JP35388892A 1992-12-16 1992-12-16 Decantation device and thermal decomposition-infrared spectral analysis method for sample Pending JPH06186223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35388892A JPH06186223A (en) 1992-12-16 1992-12-16 Decantation device and thermal decomposition-infrared spectral analysis method for sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35388892A JPH06186223A (en) 1992-12-16 1992-12-16 Decantation device and thermal decomposition-infrared spectral analysis method for sample

Publications (1)

Publication Number Publication Date
JPH06186223A true JPH06186223A (en) 1994-07-08

Family

ID=18433902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35388892A Pending JPH06186223A (en) 1992-12-16 1992-12-16 Decantation device and thermal decomposition-infrared spectral analysis method for sample

Country Status (1)

Country Link
JP (1) JPH06186223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832303A (en) * 2017-07-10 2020-02-21 株式会社岛津制作所 Flame atomic absorption spectrophotometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832303A (en) * 2017-07-10 2020-02-21 株式会社岛津制作所 Flame atomic absorption spectrophotometer
CN110832303B (en) * 2017-07-10 2022-09-13 株式会社岛津制作所 Flame atomic absorption spectrophotometer

Similar Documents

Publication Publication Date Title
US5017007A (en) Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same
US6884997B2 (en) Method and apparatus for detecting dangerous substances and substances of interest
Rotundi et al. Identification of carbon forms in soot materials of astrophysical interest
US6991704B2 (en) Heating of microtitre well plates in centrifugal evaporators
JPH0658927B2 (en) Method for analyzing semiconductor thin film and device for collecting sample for analysis
JPH06186223A (en) Decantation device and thermal decomposition-infrared spectral analysis method for sample
Link et al. Use of microwave-assisted evaporation for the complete recovery of volatile species of inorganic trace analytes
Rotundi et al. Production, processing and characterization techniques for cosmic dust analogues
JP3718459B2 (en) Analytical sample liquid concentration method and apparatus
Hobbs Preparation of thin films of moisture-sensitive crystals for transmission electron microscopy
Claes et al. Controlled deposition of organic contamination and removal with ozone-based cleanings
US20020157795A1 (en) Centrifugal evaporation
JP2003142542A (en) Collection method and apparatus for impurity on semiconductor wafer surface
JP3117671B2 (en) Apparatus and method for concentrating chemical substances for semiconductors
JP4204434B2 (en) Method and apparatus for recovering object to be measured around wafer
JP3627918B2 (en) Semiconductor substrate surface evaluation analyzer and jig used therefor
JP2005305358A (en) Composition gradient apparatus and method using high speed rotation, and condensable thin film substance obtained by its method
WO2018072023A1 (en) Digester system for processing a plurality of samples for chemical analysis
JPS61221649A (en) Dissolving device for thin semiconductor film
Rood et al. Photodimerization of anthracene single crystals in situ in the electron microscope
JP2003010829A (en) Mercury removing apparatus and method
JPS59112870A (en) Curing method for coating film and apparatus therefor
JP2956733B2 (en) Sample preparation method for total reflection X-ray fluorescence analysis
SU547687A1 (en) Device for thermal analysis of samples
JP2002039928A (en) Method and apparatus for pretreatment for analysis of impuritiy on surface of semiconductor