JPH06186085A - Method and device for measuring temperature - Google Patents

Method and device for measuring temperature

Info

Publication number
JPH06186085A
JPH06186085A JP4341876A JP34187692A JPH06186085A JP H06186085 A JPH06186085 A JP H06186085A JP 4341876 A JP4341876 A JP 4341876A JP 34187692 A JP34187692 A JP 34187692A JP H06186085 A JPH06186085 A JP H06186085A
Authority
JP
Japan
Prior art keywords
temperature
absolute
absolute temperature
measured
ambient temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4341876A
Other languages
Japanese (ja)
Inventor
Kazunori Koga
和則 古賀
Makoto Senoo
誠 妹尾
Kenji Tsuchida
健二 土田
Keiji Tanaka
敬二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4341876A priority Critical patent/JPH06186085A/en
Publication of JPH06186085A publication Critical patent/JPH06186085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To accurately measure the temperature of an object for measurement even if the output characteristics of an infrared camera are varied with ambient temperature. CONSTITUTION:The output characteristics of an infrared camera are measured in advance to calculate a calculation constant for use in an arithmetic expression for absolute temperature. A correction factor for expressing the relation between the calculation constant and ambient temperature is stored in a memory 15. A computing element 9 reads the correction factor from the memory 15 following the ambient temperature detected by a temperature sensor 12, to compute the calculation constant for use in the arithmetic expression for absolute temperature. The computing circuit 9 computes the absolute temperature using the calculation constant computed. The computation result is displayed on a display circuit 11 as a heat image proportional to the absolute temperature and as the numerical value of the absolute temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線カメラを用いた
温度計測方法及び装置に係り、特に、雰囲気温度によ
り、赤外線カメラの出力特性が変化した場合にも、被測
定熱源の正確な絶対温度を計測するのに好適な温度計測
方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring method and apparatus using an infrared camera, and more particularly, to an accurate absolute temperature of a heat source to be measured even when the output characteristic of the infrared camera changes due to ambient temperature. The present invention relates to a temperature measuring method suitable for measuring temperature and its device.

【0002】[0002]

【従来の技術】雰囲気温度により、赤外線カメラの出力
特性が変化した場合に出力特性の補正を行う温度計測装
置に関する従来技術は、特開昭62−116226号公報に記載
の「赤外温度計」というものが挙げられる。これは、予
め、雰囲気温度の変化に対応した補正レベルをメモリへ
格納しておき、温度計測時に雰囲気温度に対応した補正
レベルを読みだし、この補正レベルで被測定熱源の信号
レベルを補正することにより、雰囲気温度に影響されず
に正確な温度計測を可能とするものである。
2. Description of the Related Art A conventional technique relating to a temperature measuring device which corrects the output characteristic of an infrared camera when the output characteristic of the infrared camera changes depending on the ambient temperature is disclosed in Japanese Patent Laid-Open No. 62-116226. That can be mentioned. This is because the correction level corresponding to the change of the ambient temperature is stored in the memory in advance, the correction level corresponding to the ambient temperature is read at the time of temperature measurement, and the signal level of the heat source to be measured is corrected by this correction level. This enables accurate temperature measurement without being affected by the ambient temperature.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、雰
囲気温度の変化に対応した補正レベルを検出するため
に、複数の黒体炉が必要となる。また、雰囲気温度の変
化に対応した補正レベルを予めメモリに記憶しておく必
要がある。このため、この従来技術では多数のメモリ及
び複数の黒体炉が必要となり、装置の構成が複雑である
という問題があった。さらに、メモリに記憶した補正レ
ベルの数値以外の条件では、補間演算を行うため、温度
計測精度が悪いという問題があった。
In the above prior art, a plurality of blackbody furnaces are required to detect the correction level corresponding to the change in ambient temperature. Further, it is necessary to store the correction level corresponding to the change in the ambient temperature in the memory in advance. For this reason, this conventional technique requires a large number of memories and a plurality of black body furnaces, and has a problem that the configuration of the apparatus is complicated. Further, there is a problem that the temperature measurement accuracy is poor because the interpolation calculation is performed under conditions other than the correction level value stored in the memory.

【0004】本発明の目的は、雰囲気温度により出力特
性が変化した場合でも、被測定熱源の正確な温度計測が
可能な赤外線カメラを用いた温度計測方法及び装置を提
供することにある。
It is an object of the present invention to provide a temperature measuring method and apparatus using an infrared camera capable of accurately measuring the temperature of a heat source to be measured even when the output characteristic changes depending on the ambient temperature.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の手段を用いる。すなわち、予め、雰
囲気温度を変えた場合の赤外線カメラの出力特性を測定
する。この出力特性における絶対温度と画像濃度の関係
から出力特性を表す回帰曲線を求める。さらに、この回
帰曲線の定数を雰囲気温度によって補正する。このよう
な絶対温度算出法を用い、赤外線カメラによる熱画像の
濃度から被測定熱源の絶対温度を算出する。
In order to achieve the above object, the present invention uses the following means. That is, the output characteristics of the infrared camera when the ambient temperature is changed are measured in advance. A regression curve representing the output characteristic is obtained from the relationship between the absolute temperature and the image density in this output characteristic. Furthermore, the constant of this regression curve is corrected by the ambient temperature. By using such an absolute temperature calculation method, the absolute temperature of the heat source to be measured is calculated from the density of the thermal image obtained by the infrared camera.

【0006】[0006]

【作用】絶対温度算出式では、赤外線カメラの絶対温度
と画像濃度の関係を2次関数あるいは指数関数で近似し
た計算式を用いる。また、この絶対温度算出式における
計算定数を雰囲気温度の2次関数として表す。ここで求
めた絶対温度算出式の計算定数を補正するための補正定
数は、予めメモリへ記憶しておく。温度計測時には、温
度センサにより雰囲気温度を検出し、メモリから読みだ
した補正定数との演算により、絶対温度算出式の計算定
数を決定する。さらに、ここで求めた計算定数を用いて
赤外線カメラにおける熱画像の濃度から被測定熱源の絶
対温度を算出する。
In the absolute temperature calculation formula, a calculation formula that approximates the relationship between the absolute temperature of the infrared camera and the image density by a quadratic function or an exponential function is used. The calculation constant in this absolute temperature calculation formula is expressed as a quadratic function of the ambient temperature. The correction constant for correcting the calculation constant of the absolute temperature calculation formula obtained here is stored in the memory in advance. At the time of temperature measurement, the ambient temperature is detected by the temperature sensor, and the calculation constant of the absolute temperature calculation formula is determined by calculation with the correction constant read from the memory. Further, the absolute temperature of the heat source to be measured is calculated from the density of the thermal image in the infrared camera using the calculation constant obtained here.

【0007】[0007]

【実施例】以下、本発明の実施例を図を用いて説明す
る。まず、本発明の第一実施例の温度計測方法の概要に
ついて図2及び図3を用いて説明する。図2は雰囲気温
度を変えた場合の赤外線カメラの出力特性の一例を示す
ものである。このように、雰囲気温度が上昇すると絶対
温度に対する画像濃度の関係が上方にシフトしてゆく。
すなわち、雰囲気温度によって赤外線カメラの出力特性
が変化してゆく。ここで各雰囲気温度の出力特性を表す
回帰曲線21〜24は数1で表される。
Embodiments of the present invention will be described below with reference to the drawings. First, an outline of the temperature measuring method according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows an example of output characteristics of the infrared camera when the ambient temperature is changed. In this way, when the ambient temperature rises, the relationship between the absolute temperature and the image density shifts upward.
That is, the output characteristics of the infrared camera change depending on the ambient temperature. Here, the regression curves 21 to 24 that represent the output characteristics of each atmosphere temperature are expressed by Equation 1.

【0008】[0008]

【数1】 I=ε(aT2+bT+c) …(数1) ここで、Iは画像濃度、Tは絶対温度、εは放射率、
a,b,cは定数である。この数1を以下では絶対温度
算出式という。図3は図2に示す絶対温度算出式におけ
る雰囲気温度taと定数aの関係を示すものである。こ
のように、計算定数を雰囲気温度の2次関数として表す
ことができる。したがって、絶対温度算出式における定
数aと雰囲気温度taの関係は数2で表される。
I = ε (aT 2 + bT + c) (Equation 1) where I is the image density, T is the absolute temperature, ε is the emissivity,
a, b, and c are constants. Hereinafter, this number 1 is referred to as an absolute temperature calculation formula. FIG. 3 shows the relationship between the atmospheric temperature ta and the constant a in the absolute temperature calculation formula shown in FIG. In this way, the calculation constant can be expressed as a quadratic function of the ambient temperature. Therefore, the relationship between the constant a and the ambient temperature ta in the absolute temperature calculation formula is expressed by Equation 2.

【0009】[0009]

【数2】 a=K1ta2+K2ta+K3 …(数2) ここで、K1,K2,K3は定数である。## EQU2 ## a = K 1 ta 2 + K 2 ta + K 3 (Equation 2) where K 1 , K 2 and K 3 are constants.

【0010】ここでは、定数aについてのみ述べたが、
他の定数b,cについても同様に雰囲気温度taの関数
として数3及び数4で表される。
Although only the constant a is described here,
The other constants b and c are also expressed by the equations 3 and 4 as a function of the ambient temperature ta.

【0011】[0011]

【数3】 b=K4ta2+K5ta+K6 …(数3) ここで、K4,K5,K6は定数である。## EQU3 ## b = K 4 ta 2 + K 5 ta + K 6 (Equation 3) where K 4 , K 5 , and K 6 are constants.

【0012】[0012]

【数4】 c=K7ta2+K8ta+K9 …(数4) ここで、K7,K8,K9は定数である。C = K 7 ta 2 + K 8 ta + K 9 (Equation 4) where K 7 , K 8 and K 9 are constants.

【0013】このK1〜K9を以下では補正定数という。
このようにして、特定の雰囲気温度における絶対温度算
出式の定数a,b,cを数2ないし数4で求めることが
できる。
Hereinafter, these K 1 to K 9 are referred to as correction constants.
In this way, the constants a, b, and c of the absolute temperature calculation formula at the specific ambient temperature can be obtained by the equations 2 to 4.

【0014】したがって、求めた定数a,b,cを用い
数1を変形すれば、絶対温度Tは数5で求めることがで
きる。
Therefore, if the equation 1 is modified using the obtained constants a, b and c, the absolute temperature T can be obtained by the equation 5.

【0015】[0015]

【数5】 [Equation 5]

【0016】ここで、Iは画像濃度、εは放射率、a,
b,cは定数である。
Where I is the image density, ε is the emissivity, a,
b and c are constants.

【0017】また、上記に述べた数1の出力特性は絶対
温度Tの指数関数として数6で表される。
Further, the output characteristic of the above-mentioned equation 1 is represented by the equation 6 as an exponential function of the absolute temperature T.

【0018】[0018]

【数6】 [Equation 6]

【0019】ここで、Iは画像濃度、εは放射率、K,
nは定数である。
Where I is the image density, ε is the emissivity, K,
n is a constant.

【0020】なお、雰囲気温度による絶対温度算出式の
定数の補正処理は出力特性が2次関数の場合と同様に実
施することができるため、ここでは省略する。
Since the correction processing of the constant of the absolute temperature calculation formula based on the ambient temperature can be carried out in the same manner as in the case where the output characteristic is a quadratic function, it is omitted here.

【0021】最終的に絶対温度Tは数6を変形し、数7
で表される。
Finally, the absolute temperature T is obtained by modifying Equation 6 and Equation 7.
It is represented by.

【0022】[0022]

【数7】 [Equation 7]

【0023】以上、述べたような絶対温度算出法を用い
ることにより、雰囲気温度により赤外線カメラの出力特
性が変化した場合でも被測定熱源の絶対温度を算出する
ことができる。
By using the absolute temperature calculating method as described above, the absolute temperature of the heat source to be measured can be calculated even when the output characteristic of the infrared camera changes depending on the ambient temperature.

【0024】以下、本発明の実施例を図を用いて説明す
る。なお、以下では絶対温度と画像濃度の関係を2次関
数で表した場合の実施例についてのみ説明する。出力特
性を指数関数で表した場合は同様であるので省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the following, only an embodiment in which the relationship between the absolute temperature and the image density is represented by a quadratic function will be described. The same applies when the output characteristic is expressed by an exponential function, and therefore the description thereof is omitted.

【0025】まず、本発明の第一実施例の温度計測方法
について説明する。図4は本発明の第一実施例の温度計
測方法のフローチャートである。まず、予め赤外線カメ
ラの出力特性を測定し、絶対温度算出式の定数a,b,
cと雰囲気温度の関係を表すための補正定数K1〜K9
求めておき、メモリに記憶しておく(ステップ30A)。次
に温度センサで雰囲気温度taを検出する(ステップ3
0B)。さらにステップ30Aで求めた補正定数K1
9を用い、検出した雰囲気温度taとの演算を行うこ
とにより絶対温度算出式の定数a,b,cを求める(ス
テップ30C)。このようにして求めた計算定数a,
b,cを用い、数5にしたがって画像濃度Iから絶対温
度Tを求める。ここで、被測定熱源の放射率εは熱源毎
にメモリに記憶してある(ステップ30D)。以上のよ
うな処理を赤外線センサ毎に温度計測が終了するまで継
続して行う(ステップ30E)。以上、本実施例によ
り、出力特性が変化した場合でも被測定熱源の絶対温度
を算出することができる。
First, the temperature measuring method according to the first embodiment of the present invention will be described. FIG. 4 is a flowchart of the temperature measuring method according to the first embodiment of the present invention. First, the output characteristics of the infrared camera are measured in advance, and the constants a, b, and
Correction constants K 1 to K 9 for expressing the relationship between c and the ambient temperature are obtained and stored in the memory (step 30A). Next, the temperature sensor detects the ambient temperature ta (step 3).
0B). Further, the correction constant K 1 obtained in step 30A
With K 9, constant a absolute temperature calculation formula by performing the calculation of the detected ambient temperature ta, b, obtains the c (step 30C). The calculation constant a obtained in this way,
Using b and c, the absolute temperature T is calculated from the image density I according to the equation (5). Here, the emissivity ε of the heat source to be measured is stored in the memory for each heat source (step 30D). The above processing is continuously performed until the temperature measurement is completed for each infrared sensor (step 30E). As described above, according to the present embodiment, the absolute temperature of the heat source to be measured can be calculated even when the output characteristic changes.

【0026】次に本発明の第二実施例の温度計測方法に
ついて図5ないし図7を用いて説明する。図5は赤外線
カメラのアイリスを絞った場合の出力特性、図6は赤外
線カメラのアイリスを開放した場合の出力特性である。
また、図7は本発明の第二実施例の温度計測方法のフロ
ーチャートである。赤外線カメラにおける絶対温度と画
像濃度の関係は図5に示すように低温領域では絶対温度
に対し画像濃度の値は非常にゆるやかに上昇する。この
ため、絶対温度の算出においては画像濃度のわずかな変
化が絶対温度に大きく影響してしまうことになり、その
精度が悪くなってしまう。このため、本実施例は温度の
計測領域を低温領域と高温領域とに二つに分け、絶対温
度と画像濃度の関係が線形になるようにして絶対温度を
精度よく検出するようにしたものである。低温領域で
は、図6に示すように絶対温度と画像濃度の関係が線形
になるように赤外線カメラのアイリスを開放状態の近傍
の数値に設定する。一方、高温領域では、図5に示すよ
うに絶対温度と画像濃度の関係が線形になるように赤外
線カメラのアイリスを絞った状態に設定する。この二つ
の条件において出力特性を測定し、これから高温領域の
補正定数K1〜K9,低温領域の補正定数K1〜K9を求め
る。ここで求めた定数は予めメモリに記憶しておく(ス
テップ31A)。次に温度を計測する領域を選択する
(ステップ31B)。この選択結果にしたがい、高温領域の
場合はK1〜K9を補正定数として用いる(ステップ31
C)。一方、低温領域の場合はK1〜K9を補正定数とし
て用いる(ステップ31D)。このようにして、低温領
域及び高温領域のそれぞれの場合における補正定数を設
定する。これ以後の処理は図4に示す第一実施例と同じ
であるので省略する。このように、本実施例によれば、
絶対温度と画像濃度の関係が線形な領域の出力特性を用
いて絶対温度を算出するため、高精度な温度計測が可能
となる。
Next, a temperature measuring method according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 5 shows output characteristics when the iris of the infrared camera is narrowed, and FIG. 6 shows output characteristics when the iris of the infrared camera is opened.
FIG. 7 is a flow chart of the temperature measuring method of the second embodiment of the present invention. As for the relationship between the absolute temperature and the image density in the infrared camera, as shown in FIG. 5, the value of the image density rises very slowly with respect to the absolute temperature in the low temperature region. Therefore, in the calculation of the absolute temperature, a slight change in the image density has a great influence on the absolute temperature, and the accuracy thereof deteriorates. Therefore, in this embodiment, the temperature measurement region is divided into a low temperature region and a high temperature region, and the absolute temperature and the image density are linearly detected so that the absolute temperature is accurately detected. is there. In the low temperature region, the iris of the infrared camera is set to a value near the open state so that the relationship between the absolute temperature and the image density becomes linear as shown in FIG. On the other hand, in the high temperature region, the iris of the infrared camera is set so that the relationship between the absolute temperature and the image density becomes linear as shown in FIG. The output characteristics were measured in these two conditions, the correction constant K 1 ~K 9 of future high-temperature region, determine the correction constant K 1 ~K 9 cold zone. The constant obtained here is stored in advance in the memory (step 31A). Next, a region for measuring the temperature is selected (step 31B). According to this selection result, K 1 to K 9 are used as correction constants in the high temperature region (step 31).
C). On the other hand, in the case of the low temperature region using K 1 ~K 9 as a correction constant (step 31D). In this way, the correction constants for the low temperature region and the high temperature region are set. The subsequent processing is the same as in the first embodiment shown in FIG. Thus, according to this embodiment,
Since the absolute temperature is calculated using the output characteristic in the region where the relationship between the absolute temperature and the image density is linear, highly accurate temperature measurement can be performed.

【0027】次に本発明の一実施例の温度計測装置につ
いて説明する。図1は本発明の一実施例のブロック図で
ある。被測定熱源13から放射される赤外線エネルギ
は、ミラー4及び光学系3を介して赤外線検出器1に入
力される。この赤外線エネルギの大きさはしぼり制御板
2によって制御される。赤外線検出器1は1次元アレイ
型のセンサであり、垂直方向の温度情報を検出する。一
方、水平方向はミラー4の走査により水平方向の温度情
報を検出する。このような走査により、視野内の2次元
温度情報を検出する。赤外線検出器1では検出した信号
を赤外線エネルギに比例した電気信号に変換する。この
電気信号は直流増幅回路5,ビデオ増幅回路6を介して
ビデオ信号として出力される。さらに、このビデオ信号
はA/D変換器7を介して演算回路9に入力される。ま
た、温度センサ12で検出した雰囲気温度に比例した信
号もA/D変換器8を介して演算回路9に入力される。
この演算回路9では、雰囲気温度に対応した補正定数K
1〜K9をメモリ15から読みだし、ビデオ信号の出力レ
ベル、すなわち、熱画像の濃度を用いて、絶対温度を演
算する。さらにこの演算結果は絶対温度に比例したビデ
オ信号に変換され、D/A変換器10を介して表示回路
11に入力される。表示回路11では被測定熱源13の
絶対温度に比例した熱画像14を表示する。また、この
被測定熱源13の絶対温度の数値も同時に表示回路11
に表示する。
Next, a temperature measuring device according to an embodiment of the present invention will be described. FIG. 1 is a block diagram of an embodiment of the present invention. Infrared energy radiated from the measured heat source 13 is input to the infrared detector 1 via the mirror 4 and the optical system 3. The size of the infrared energy is controlled by the squeezing control plate 2. The infrared detector 1 is a one-dimensional array type sensor, and detects temperature information in the vertical direction. On the other hand, in the horizontal direction, the temperature information in the horizontal direction is detected by scanning the mirror 4. By such scanning, two-dimensional temperature information in the visual field is detected. The infrared detector 1 converts the detected signal into an electric signal proportional to infrared energy. This electric signal is output as a video signal through the DC amplification circuit 5 and the video amplification circuit 6. Further, this video signal is input to the arithmetic circuit 9 via the A / D converter 7. A signal proportional to the ambient temperature detected by the temperature sensor 12 is also input to the arithmetic circuit 9 via the A / D converter 8.
In this arithmetic circuit 9, the correction constant K corresponding to the ambient temperature is
1 to K 9 are read from the memory 15 and the absolute temperature is calculated using the output level of the video signal, that is, the density of the thermal image. Further, the calculation result is converted into a video signal proportional to the absolute temperature and input to the display circuit 11 via the D / A converter 10. The display circuit 11 displays a thermal image 14 proportional to the absolute temperature of the measured heat source 13. Further, the numerical value of the absolute temperature of the heat source 13 to be measured is also displayed on the display circuit 11 at the same time.
To display.

【0028】次に本発明の応用例について説明する。図
8は本発明の温度計測装置をプラントの異常監視装置と
して応用した実施例である。プラント50には、監視機
器54の異常を監視するためにレール51が設置してあ
る。温度計測装置20は駆動機構52に搭載してあり、
レール51上を移動して監視機器54の温度異常の監視
を行う。温度計測装置20で検出したデータはプラント
外に設置したデータ処理装置53に送られ、監視機器5
4の熱的な異常の有無及び位置の同定を行う。
Next, application examples of the present invention will be described. FIG. 8 shows an embodiment in which the temperature measuring device of the present invention is applied as a plant abnormality monitoring device. A rail 51 is installed in the plant 50 to monitor the abnormality of the monitoring equipment 54. The temperature measuring device 20 is mounted on the drive mechanism 52,
It moves on the rail 51 to monitor the temperature abnormality of the monitoring equipment 54. The data detected by the temperature measuring device 20 is sent to the data processing device 53 installed outside the plant, and the monitoring device 5
The presence or absence of the thermal abnormality of 4 and the position are identified.

【0029】[0029]

【発明の効果】本発明の温度計測方法及び装置によれ
ば、赤外線カメラの出力特性、すなわち、絶対温度と画
像濃度の関係を2次関数あるいは指数関数で近似し、雰
囲気温度によって計算定数を補正する手法を用いるた
め、雰囲気温度により出力特性が変化しても被測定熱源
の正確な絶対温度を計測することができる。また、この
計算では温度領域を低温及び高温領域に分割し、出力特
性が線形な領域で絶対温度を算出するために被測定熱源
の高精度な温度計測が可能となる。
According to the temperature measuring method and apparatus of the present invention, the output characteristic of the infrared camera, that is, the relationship between the absolute temperature and the image density is approximated by a quadratic function or an exponential function, and the calculation constant is corrected by the ambient temperature. Since the method described above is used, the accurate absolute temperature of the heat source to be measured can be measured even if the output characteristic changes depending on the ambient temperature. Further, in this calculation, the temperature region is divided into the low temperature region and the high temperature region, and the absolute temperature is calculated in the region where the output characteristic is linear, so that the temperature of the heat source to be measured can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の装置構成を示すブロック図。FIG. 1 is a block diagram showing a device configuration according to an embodiment of the present invention.

【図2】本発明の第一実施例の温度計測方法の説明図。FIG. 2 is an explanatory diagram of a temperature measuring method according to the first embodiment of this invention.

【図3】本発明の第一実施例の温度計測方法の説明図。FIG. 3 is an explanatory diagram of a temperature measuring method according to the first embodiment of this invention.

【図4】本発明の第一実施例の温度計測方法のフローチ
ャート。
FIG. 4 is a flowchart of a temperature measuring method according to the first embodiment of the present invention.

【図5】本発明の第二実施例の温度計測方法の説明図。FIG. 5 is an explanatory diagram of a temperature measuring method according to a second embodiment of the present invention.

【図6】本発明の第二実施例の温度計測方法の説明図。FIG. 6 is an explanatory diagram of a temperature measuring method according to a second embodiment of the present invention.

【図7】本発明の第二実施例の温度計測方法のフローチ
ャート。
FIG. 7 is a flowchart of a temperature measuring method according to a second embodiment of the present invention.

【図8】本発明の応用例のプラント監視装置の説明図。FIG. 8 is an explanatory diagram of a plant monitoring apparatus according to an application example of the present invention.

【符号の説明】[Explanation of symbols]

1…赤外線検出器、5…直流増幅回路、6…ビデオ増幅
回路、7,8…A/D変換器、9…演算回路、10…D
/A変換器、11…表示回路、12…温度センサ。
1 ... Infrared detector, 5 ... DC amplification circuit, 6 ... Video amplification circuit, 7, 8 ... A / D converter, 9 ... Arithmetic circuit, 10 ... D
/ A converter, 11 ... Display circuit, 12 ... Temperature sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 敬二 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiji Tanaka 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】物体から放射される赤外線を検出して被測
定物体の熱画像を計測する手段と、雰囲気温度を検出す
る手段と、絶対温度と熱画像の濃度の関係をn次関数で
フィッティングする手段とを設け、これら手段における
係数を雰囲気温度のn次関数でフィッティングする手段
により、熱画像の濃度から前記被測定物体の絶対温度を
算出する手段を備えたことを特徴とする温度計測方法。
1. A means for measuring a thermal image of an object to be measured by detecting infrared rays radiated from the object, a means for detecting an ambient temperature, and a relationship between an absolute temperature and a density of the thermal image, which is fitted by an n-order function. Means for calculating the absolute temperature of the object to be measured from the density of the thermal image by means of fitting the coefficient in these means with an nth-order function of the ambient temperature. .
【請求項2】請求項1において、前記被測定物体の絶対
温度を算出する手段が絶対温度と熱画像の濃度の関係を
2次関数でフィッティングする手段と前記手段における
係数を雰囲気温度の2次関数でフィッティングする手段
である温度計測方法。
2. The means for calculating the absolute temperature of the object to be measured according to claim 1, wherein the means for fitting the relationship between the absolute temperature and the density of the thermal image by a quadratic function and the coefficient in the means are quadratic of the ambient temperature. A temperature measurement method that is a means of fitting with a function.
【請求項3】請求項1において、前記被測定物体の絶対
温度を算出する手段が絶対温度の算出領域を低温領域と
高温領域に分割し、それぞれの温度領域において出力特
性が線形な領域で絶対温度を算出する手段である温度計
測方法。
3. The method according to claim 1, wherein the means for calculating the absolute temperature of the object to be measured divides the absolute temperature calculation region into a low temperature region and a high temperature region, and in each temperature region, the output characteristic is absolute in a linear region. A temperature measuring method that is a means for calculating the temperature.
【請求項4】物体から放射される赤外線を検出して被測
定物体の熱画像を計測する赤外線カメラにおいて、前記
熱画像の濃度から絶対温度を算出するための演算回路と
前記演算回路における絶対温度を算出するための係数を
記憶するためのメモリと雰囲気温度を検出するためのセ
ンサを付加したことを特徴とする温度計測装置。
4. An infrared camera for measuring infrared images radiated from an object to measure a thermal image of an object to be measured, an arithmetic circuit for calculating an absolute temperature from the density of the thermal image, and an absolute temperature in the arithmetic circuit. A temperature measuring device comprising a memory for storing a coefficient for calculating and a sensor for detecting an ambient temperature.
【請求項5】請求項4に記載の温度計測装置をプラント
内の機器の異常検出手段として構成したプラントの異常
監視装置。
5. A plant abnormality monitoring device comprising the temperature measuring device according to claim 4 as abnormality detecting means for equipment in the plant.
JP4341876A 1992-12-22 1992-12-22 Method and device for measuring temperature Pending JPH06186085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4341876A JPH06186085A (en) 1992-12-22 1992-12-22 Method and device for measuring temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4341876A JPH06186085A (en) 1992-12-22 1992-12-22 Method and device for measuring temperature

Publications (1)

Publication Number Publication Date
JPH06186085A true JPH06186085A (en) 1994-07-08

Family

ID=18349436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4341876A Pending JPH06186085A (en) 1992-12-22 1992-12-22 Method and device for measuring temperature

Country Status (1)

Country Link
JP (1) JPH06186085A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002480A1 (en) * 2010-06-30 2012-01-05 パナソニック電工株式会社 Temperature sensor
JP2015215177A (en) * 2014-05-08 2015-12-03 セイコーエプソン株式会社 Circuit device, temperature detector, electronic apparatus and temperature detection method
CN112262301A (en) * 2019-02-12 2021-01-22 株式会社优利电子 Temperature measuring apparatus and method using thermal imaging camera, and computer-readable recording medium
JP2021047195A (en) * 2020-11-27 2021-03-25 日本アビオニクス株式会社 Infrared imaging device, infrared imaging system and infrared imaging method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002480A1 (en) * 2010-06-30 2012-01-05 パナソニック電工株式会社 Temperature sensor
JP2012013517A (en) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd Temperature sensor
JP2015215177A (en) * 2014-05-08 2015-12-03 セイコーエプソン株式会社 Circuit device, temperature detector, electronic apparatus and temperature detection method
CN112262301A (en) * 2019-02-12 2021-01-22 株式会社优利电子 Temperature measuring apparatus and method using thermal imaging camera, and computer-readable recording medium
JP2021526227A (en) * 2019-02-12 2021-09-30 ユー エレクトロニクス シーオー. エルティディ. Temperature measuring devices and methods using thermal image cameras, and computer-readable recording media
US11477399B2 (en) 2019-02-12 2022-10-18 U Electronics Co., Ltd. Temperature measuring device and method using thermal imaging camera, and computer-readable recording medium
JP2021047195A (en) * 2020-11-27 2021-03-25 日本アビオニクス株式会社 Infrared imaging device, infrared imaging system and infrared imaging method

Similar Documents

Publication Publication Date Title
US5994699A (en) Thermal camera for infrared imaging
US5994701A (en) Infrared sensor device with temperature correction function
US6606115B1 (en) Method and apparatus for monitoring the thermal characteristics of an image
US5094544A (en) Scanning infrared thermometer with DC offset and emissivity correction
US20090212220A1 (en) Method and System for Measuring and Compensating for the Case Temperature Variations in a Bolometer Based System
US5128884A (en) Black body calibration using image processing techniques
CN111307294A (en) Body temperature measuring device
JP2021526227A (en) Temperature measuring devices and methods using thermal image cameras, and computer-readable recording media
CN112254827A (en) Information processing device and method for improving precision of infrared thermometer
US6609824B1 (en) Radiation thermometer
US6695471B2 (en) Method and apparatus for measuring temperature of movable object
JPH06186085A (en) Method and device for measuring temperature
JP2919665B2 (en) Heat source monitoring device, temperature measurement method, and heat source monitoring robot system
CN116878669A (en) Temperature compensation method based on short wave infrared temperature measurement, fire monitoring method and system
US6621943B1 (en) System and method for converting analog data to digital data
CN114518175B (en) Temperature correction method and related device for infrared thermal imaging image
JP2008268134A (en) Infrared detector
JPH10115557A (en) Method and apparatus for temperature correction of infrared sensor as well as infrared thermography using two-dimensional infrared sensor
JP2019213193A (en) Infrared imaging apparatus and program used for the same
EP0433698A2 (en) Black body calibration using image processing techniques
JPH08278203A (en) Infrared ray radiation thermometer
JP2005010050A (en) Temperature measurement method by infrared camera image
JPH09257589A (en) Temperature drift correcting device for infrared ray heat image forming device
JP2003322344A (en) Heating cooker
KR19990052844A (en) Method of measuring radiation temperature in non-contact temperature distribution measuring device