JPH06185342A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JPH06185342A
JPH06185342A JP33994892A JP33994892A JPH06185342A JP H06185342 A JPH06185342 A JP H06185342A JP 33994892 A JP33994892 A JP 33994892A JP 33994892 A JP33994892 A JP 33994892A JP H06185342 A JPH06185342 A JP H06185342A
Authority
JP
Japan
Prior art keywords
nox
catalyst
temperature
exhaust gas
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33994892A
Other languages
Japanese (ja)
Inventor
Akihide Takami
明秀 高見
Hideji Iwakuni
秀治 岩国
Takashi Takemoto
崇 竹本
Makoto Kyogoku
誠 京極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP33994892A priority Critical patent/JPH06185342A/en
Publication of JPH06185342A publication Critical patent/JPH06185342A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To obtain excellent NOx purification performance from low to high temperature areas by efficiently utilizing HC in exhaust gas for decomposition and purification of NOx. CONSTITUTION:A middle and high temperature activating NOx catalyst 2 is provided such that HC is adsorbed in a low temperature side area, the adsorbed HC is desorbed in a high temperature side area, and NOx is purified in the high temperature side area. A low temperature activating NOx catalyst 3 is arranged on a downstream side of the middle and high activating NOx catalyst for dicomposing and purifying NOx in the low temperature side area where HC desorption can be started by means of the mizzle and high temperature activating NOx catalyst 2, in the presence of HC. The pairs of the catalysts 2 and 3 are alternately arranged in an exhaust passage 1 in the vicinity of each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のリーンバーン
エンジン等の排気系における排気ガス浄化装置に関し、
特に、HC(炭化水素)をNOx(窒素酸化物)の分解
浄化に有効に利用して低温から高温までの幅広い温度域
NOx浄化能を有する触媒装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an exhaust system of a lean burn engine of an automobile,
In particular, the present invention relates to a catalyst device that effectively utilizes HC (hydrocarbon) for decomposition and purification of NOx (nitrogen oxide) and has NOx purification ability in a wide temperature range from low temperature to high temperature.

【0002】[0002]

【従来の技術】自動車の排気ガス浄化装置に用いられる
触媒として、CO(一酸化炭素)及びHCの酸化とNO
xの還元とを同時に行う三元触媒が一般に知られてい
る。この三元触媒は、例えばγ−アルミナにPt(白
金)及びRh(ロジウム)を担持させてなるもので、エ
ンジンの空燃比(A/F)を理論空燃比であるA/F=
14.7の付近に制御したときに、高い浄化効率が得ら
れる。
2. Description of the Related Art CO (carbon monoxide) and HC oxidation and NO are used as catalysts for automobile exhaust gas purifying devices.
Three-way catalysts that simultaneously perform the reduction of x are generally known. This three-way catalyst is formed by supporting Pt (platinum) and Rh (rhodium) on γ-alumina, for example, and the engine air-fuel ratio (A / F) is the theoretical air-fuel ratio A / F =
A high purification efficiency can be obtained when controlling to the vicinity of 14.7.

【0003】ところで、エンジンの低燃費化を図るため
に上記空燃比に対してはリーン化するという要請があ
る。その場合、排気ガスも酸素過剰のリーン雰囲気とな
るため、上記三元触媒では、COやHCは酸化浄化する
ことができてもNOxの還元浄化ができなくなる。
By the way, there is a demand to make the air-fuel ratio lean in order to reduce the fuel consumption of the engine. In that case, since the exhaust gas also becomes a lean atmosphere with excess oxygen, the above three-way catalyst cannot oxidize and purify CO and HC, but cannot reduce and purify NOx.

【0004】そこで、近年では、ゼオライトに遷移金属
をイオン交換により担持させてなるゼオライト触媒の研
究が進められている。このゼオライト触媒では、リーン
雰囲気においても、共存する還元剤(例えば、HC等)
によりNOxをN2 とO2 とに接触分解させることがで
きる。従って、このようなNOx浄化用触媒の上流側に
HC吸着部材を配置し、このHC吸着部材におけるHC
の吸着脱離を制御することにより、NOx浄化用触媒に
対するHCの供給が効果的になされるようにすれば、該
HCをNOxの浄化に寄与させることができる。
Therefore, in recent years, research on a zeolite catalyst in which a transition metal is supported on the zeolite by ion exchange has been advanced. With this zeolite catalyst, a reducing agent (for example, HC) that coexists even in a lean atmosphere
Thus, NOx can be catalytically decomposed into N 2 and O 2 . Therefore, the HC adsorbing member is arranged on the upstream side of the NOx purifying catalyst, and the HC in the HC adsorbing member is increased.
If HC is effectively supplied to the NOx purification catalyst by controlling the adsorption / desorption of NOx, the HC can be contributed to the purification of NOx.

【0005】一方、例えば、特開平3−141816号
公報には、HC浄化用触媒の上流側に配置されたHC吸
着部材に並列なバイパス通路と、排気ガスの流れをHC
吸着部材側とバイパス通路側との間で切換える切換弁と
を設け、排気ガス温度に応じて排気ガスの流路を切換え
ることにより、上記HC吸着部材におけるHCの吸着脱
離を制御するようになされた排気ガス浄化装置が記載さ
れている。従って、上記HC浄化用触媒の代わりにNO
x浄化用触媒を配置すれば、HCをNOx浄化用触媒に
効果的に供給することができるようになると考えられ
る。
On the other hand, for example, in Japanese Unexamined Patent Publication No. 3-141816, a bypass passage parallel to an HC adsorbing member arranged upstream of an HC purifying catalyst and an exhaust gas flow are described.
A switching valve for switching between the adsorption member side and the bypass passage side is provided, and the adsorption / desorption of HC in the HC adsorption member is controlled by switching the flow path of the exhaust gas according to the exhaust gas temperature. Exhaust gas purification device is described. Therefore, instead of the above HC purifying catalyst, NO
It is considered that the HC can be effectively supplied to the NOx purification catalyst by arranging the x purification catalyst.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、その場
合、HC吸着部材に吸着されたHCは、排気ガス温度が
所定温度に達すると略一斉に脱離してNOx浄化用触媒
に供給されることになるので、NOx浄化用触媒でのH
CによるNOxの分解浄化は、所定温度域において1回
しか行われないことになり、幅広い温度域においてHC
を活用したNOxの分解浄化を行うには不十分である。
However, in that case, when the exhaust gas temperature reaches a predetermined temperature, the HC adsorbed on the HC adsorbing member is desorbed almost all at once and supplied to the NOx purifying catalyst. Therefore, H in the NOx purification catalyst
The decomposition and purification of NOx by C is carried out only once in a predetermined temperature range, and HC is decomposed in a wide temperature range.
It is not enough to decompose and purify NOx by utilizing the.

【0007】また、幅広い温度域においてHCがNOx
浄化用触媒に供給されるようにするには、温度センサ及
び切換弁による流路制御がきめ細かく行われるように、
例えば切換弁の開度調整によりHCの脱離量を制御すれ
ば可能となる。しかし、バイパス通路を設置するための
スペースの問題があり、切換弁を排気ガス温度に応じて
作動させるための温度センサが要ることからコストの問
題も無視できない。
HC is NOx in a wide temperature range.
In order to be supplied to the purification catalyst, in order to finely control the flow path by the temperature sensor and the switching valve,
For example, it is possible if the desorption amount of HC is controlled by adjusting the opening degree of the switching valve. However, there is a problem of space for installing the bypass passage, and a temperature sensor for operating the switching valve according to the exhaust gas temperature is required, so that the cost problem cannot be ignored.

【0008】本発明は斯かる諸点に鑑みてなされたもの
であり、その目的は、HC吸着部材及びNOx浄化用触
媒を用いてその配置を工夫することにより、簡単な構成
でありながら、幅広い温度域においてHCを活用したN
Oxの浄化ができるようにし、もって低温から高温にか
けて優れたNOx浄化能が得られるようにすることにあ
る。
The present invention has been made in view of the above points, and an object thereof is to devise its arrangement by using an HC adsorbing member and a NOx purifying catalyst so as to have a simple structure but a wide temperature range. N utilizing HC in the region
It is to be able to purify Ox, and thus to obtain an excellent NOx purifying ability from low temperature to high temperature.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では、HC吸着部材の下流側にHCの存在下
でNOxを浄化するNOx浄化用触媒を配置し、かつ上
記HC吸着部材及びNOx浄化用触媒を2対以上交互に
配列するようにした。
In order to achieve the above object, in the present invention, a NOx purifying catalyst for purifying NOx in the presence of HC is arranged downstream of the HC adsorbing member, and the HC adsorbing member is also provided. And two or more pairs of NOx purification catalysts are arranged alternately.

【0010】具体的には、請求項1の発明では、低温側
の温度域で排気ガス中のHCを吸着する一方、高温側の
温度域で上記吸着したHCを脱離させるHC吸着部材
と、このHC吸着部材の下流側に配置され、該HC吸着
部材にてHCの離脱が開始される温度を含む温度域にお
いてかつHCの存在下において排気ガス中のNOxを浄
化するNOx浄化用触媒との対を、交互に近接させて2
対以上設ける。
Specifically, in the invention of claim 1, an HC adsorbing member for adsorbing HC in the exhaust gas in the low temperature side region and desorbing the adsorbed HC in the high temperature side region, A NOx purification catalyst that is arranged on the downstream side of the HC adsorbing member and purifies NOx in the exhaust gas in a temperature range including the temperature at which the HC adsorbing member starts to separate HC and in the presence of HC. The pairs are alternately placed close to each other and 2
Provide more than one pair.

【0011】上記HC吸着部材としては、例えば、ミク
ロの細孔を有する結晶質多孔体であるゼオライト等の金
属含有シリケートが好適であり、該金属含有シリケート
に遷移金属をイオン交換等によって担持せしめてなるも
のが好ましい。ゼオライトを用いる場合には、耐熱性の
点では水素型ゼオライトが好適である。このゼオライト
としては、A型、Y型、ZSM−5、フェリエライト、
モルデナイト等を使用することができる。このようなゼ
オライトに担持させる遷移金属としては、Co、Ni、
Mo−Co、Cu−Mg、Cu等が使用できる。また、
ゼオライト以外の金属含有シリケートでは、例えば、2
種以上の金属を結晶の骨格構成元素とする複合金属含有
シリケートや、Alを含まない非アルミノ金属含有シリ
ケート等を使用することもできる。上記骨格構成金属元
素としては、3A族ではSc、Y、La、Ce、Nd、
Tbが、また4A族ではTi、Zrが、また5A族では
V、Nbが、また6A族ではCr、Mo、Wが、また7
A族ではMn、Tc、Reが、また8族ではFe、C
o、Ni、Rh、Pd、Ptが、また1B族ではCu
が、また2B族ではZnが、また3B族ではAl、G
a、Inが、また4B族ではGe、Snが、さらに5B
族ではSb、Biがそれぞれ採用できる。尚、以上の骨
格構成元素(Me)とSiとの比については、Si/M
e>5が好適である。
As the HC adsorbing member, for example, a metal-containing silicate such as zeolite, which is a crystalline porous body having microscopic pores, is suitable, and a transition metal is supported on the metal-containing silicate by ion exchange or the like. Is preferred. When zeolite is used, hydrogen-type zeolite is preferable in terms of heat resistance. As the zeolite, A type, Y type, ZSM-5, ferrierite,
Mordenite and the like can be used. As transition metals to be supported on such zeolite, Co, Ni,
Mo-Co, Cu-Mg, Cu, etc. can be used. Also,
For metal-containing silicates other than zeolite, for example, 2
It is also possible to use a composite metal-containing silicate having a skeleton-constituting element of crystals of one or more metals, a non-alumino metal-containing silicate containing no Al, and the like. As the skeleton-constituting metal element, Sc, Y, La, Ce, Nd in 3A group,
Tb, Ti and Zr in the 4A group, V and Nb in the 5A group, Cr, Mo and W in the 6A group, 7
Mn, Tc, and Re in Group A, and Fe and C in Group 8
o, Ni, Rh, Pd, Pt, and Cu in the 1B group
However, Zn is used in the 2B group, and Al and G are used in the 3B group.
a, In, and in the 4B group, Ge and Sn are 5B.
Sb and Bi can be adopted for each group. The ratio between the skeleton-constituting element (Me) and Si is Si / M
e> 5 is preferred.

【0012】一方、上記NOx浄化用触媒としては、H
Cの存在下でNOxを分解浄化するようなものであれば
よく、例えば、γ−アルミナ、MgO、SiO2 、上述
の金属含有シリケート等の高比表面積酸化物に貴金属等
の遷移金属を担持せしめたもの等が使用できる。
On the other hand, as the NOx purification catalyst, H
Any material that decomposes and purifies NOx in the presence of C may be used. For example, a transition metal such as a noble metal may be supported on a high specific surface area oxide such as γ-alumina, MgO, SiO 2 , or the metal-containing silicate described above. It can be used for things.

【0013】また、上記HC吸着部材及びNOx浄化用
触媒は、各々の担体に担持せしめた状態で、或いはペレ
ットタイプ等の形状に加工された状態でそれぞれ使用す
ることができる。担体に担持せしめる場合には、担体と
してはコーディライト製のハニカム担体が好適である。
The HC adsorbing member and the NOx purifying catalyst can be used while being supported on their respective carriers or processed into a pellet type shape or the like. When the carrier is supported, a cordierite honeycomb carrier is suitable as the carrier.

【0014】請求項2の発明では、上記請求項1の発明
において、NOx浄化用触媒は貴金属を含んでいるもの
とする。貴金属としては、PtやIrが好適であるが、
この他に、Rh、Pd、Ru、Os、Ag、Auも単独
で若しくは組み合わせて使用することができる。
According to a second aspect of the present invention, in the above-mentioned first aspect of the present invention, the NOx purification catalyst contains a noble metal. Pt and Ir are preferable as the noble metal,
In addition to these, Rh, Pd, Ru, Os, Ag, and Au can be used alone or in combination.

【0015】請求項3の発明では、上記請求項1又は2
の発明において、HC吸着部材を、排気ガス中のNOx
を浄化する高温活性のNOx浄化能を有するものとし、
かつその最高活性温度がNOx浄化用触媒よりも高温側
にあるものとする。NOx浄化用触媒よりも高温側と
は、例えば、NOx浄化用触媒が250〜400℃の触
媒温度でNOxの浄化を行う場合には、350〜600
℃の触媒温度でNOxの浄化を行う程度であればよい。
According to the invention of claim 3, the invention according to claim 1 or 2
In the invention of claim 1, the HC adsorbing member is replaced with NOx
Has a high-temperature active NOx purification capacity for purifying
Moreover, it is assumed that the maximum activation temperature is higher than the NOx purification catalyst. The higher temperature side than the NOx purification catalyst means, for example, 350 to 600 when the NOx purification catalyst purifies NOx at a catalyst temperature of 250 to 400 ° C.
It suffices that the NOx is purified at the catalyst temperature of ° C.

【0016】[0016]

【作用】請求項1の発明では、排気ガス温度が低く、各
HC吸着部材の温度が低温側の温度域にあるときには、
排気ガス中のHCは各HC吸着部材にそれぞれ吸着さ
れ、排気ガス温度が上昇して各HC吸着部材の温度が高
温側の温度域に達すると、各HC吸着部材は上記吸着し
たHCを脱離させることになる。このとき、各HC吸着
部材は、排気系において上流側から下流側にかけて順に
配設され、かつ各々のHC吸着部材間にはNOx浄化用
触媒が配設されているので、各々の温度の間に差異が生
じる。すなわち、上流側のHC吸着部材の温度が最も高
く、他のHC吸着部材の温度は下流側となるに従って低
くなっている。このことにより、先ず、上流側のHC吸
着部材が高温側の温度域に達してHCを脱離させ、以下
のHC吸着部材はそれよりも遅れて高温側の温度域に達
し、上記HC吸着部材よりも遅れてHCを脱離させる。
各HC吸着部材から脱離したHCは、該HC吸着部材の
下流側に位置するNOx浄化用触媒に供給される。この
NOx浄化用触媒では、HC吸着部材にてHCの離脱が
開始される温度を含む温度域において、上記HCは燃焼
により自身が浄化されるとともに排気ガス中のNOxの
分解浄化に寄与する。このように、各HC吸着部材にお
けるHCの脱離が排気ガスの異なる温度域で順次行われ
ることにより、上記各温度域を含む広い温度域において
NOxの浄化にHCが寄与することとなる。
According to the invention of claim 1, when the exhaust gas temperature is low and the temperature of each HC adsorbing member is in the low temperature range,
HC in the exhaust gas is adsorbed by each HC adsorbing member, and when the temperature of the exhaust gas rises and the temperature of each HC adsorbing member reaches the temperature range on the high temperature side, each HC adsorbing member desorbs the adsorbed HC. I will let you. At this time, since each HC adsorbing member is sequentially arranged from the upstream side to the downstream side in the exhaust system, and the NOx purifying catalyst is arranged between each HC adsorbing member, the respective HC adsorbing members are arranged between the respective temperatures. Differences occur. That is, the temperature of the HC adsorbing member on the upstream side is the highest, and the temperatures of the other HC adsorbing members are lower on the downstream side. As a result, first, the upstream HC adsorbing member reaches the high temperature side temperature range to desorb HC, and the following HC adsorbing members reach the high temperature side temperature range later than that, and The HC is desorbed later than the above.
The HC desorbed from each HC adsorbing member is supplied to the NOx purifying catalyst located on the downstream side of the HC adsorbing member. In this NOx purification catalyst, the HC itself is purified by combustion and contributes to decomposition and purification of NOx in the exhaust gas in a temperature range including a temperature at which the HC adsorbing member starts to release HC. As described above, since the desorption of HC in each HC adsorbing member is sequentially performed in different temperature ranges of the exhaust gas, HC contributes to the purification of NOx in a wide temperature range including the above-mentioned temperature ranges.

【0017】請求項2の発明では、上記NOx浄化用触
媒に担持させた貴金属によりHCはラジカル化が促進さ
れ、NOxの分解浄化にさらに適した状態となるように
している。これにより、上記のようにHC吸着部材及び
NOx浄化用触媒を交互に重ね合せた構成により、NO
x浄化用触媒の全容量が減少する場合であっても、NO
x浄化率の大きな低下が抑えられる。
According to the second aspect of the present invention, the noble metal supported on the NOx purification catalyst promotes radicalization of HC, so that the HC is brought into a state more suitable for NOx decomposition and purification. As a result, as described above, the HC adsorbing member and the NOx purification catalyst are alternately superposed on each other, so that the NO
x Even if the total capacity of the purification catalyst decreases, NO
x A large decrease in the purification rate can be suppressed.

【0018】請求項3の発明では、HC吸着部材をNO
xの浄化にも活用しようとするもので、排気ガスが比較
的高温の場合は、排気ガス中のNOxは主にHC吸着部
材により浄化される。これにより、排気ガス中のNOx
は低温側では主にNOx浄化用触媒にて、また高温側で
は主にHC吸着部材にてそれぞれ浄化される。
According to the third aspect of the invention, the HC adsorbing member is NO.
When the exhaust gas has a relatively high temperature, NOx in the exhaust gas is mainly purified by the HC adsorbing member. As a result, NOx in the exhaust gas
Is purified mainly by the NOx purification catalyst on the low temperature side and mainly by the HC adsorbing member on the high temperature side.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】(実施例1)この実施例1では、図1に示
すように、自動車エンジンの排気系である排気通路1の
上流位置、中流位置及び下流位置の3箇所に、HC吸着
部材としての中高温活性NOx触媒2(以下、中高温触
媒と称する)と、該中高温触媒2の下流側に位置するN
Ox浄化用触媒としての低温活性NOx触媒3(以下、
低温触媒と称する)との対が交互に近接して3対配設さ
れている。
(Embodiment 1) In Embodiment 1, as shown in FIG. 1, the HC adsorbing members are provided at three positions of an exhaust passage 1 which is an exhaust system of an automobile engine: an upstream position, a middle position and a downstream position. Medium-high temperature active NOx catalyst 2 (hereinafter referred to as medium-high temperature catalyst), and N located downstream of the medium-high temperature catalyst 2.
Low temperature active NOx catalyst 3 (hereinafter referred to as Ox purification catalyst)
3 pairs are referred to as “low temperature catalyst” and are alternately arranged close to each other.

【0021】上記中高温触媒2は、コーディライト製ハ
ニカム担体にHC吸着能及び中高温活性のNOx浄化能
を有する触媒材料が担持されてなる。この触媒材料は、
約250℃よりも低温側の温度域で排気ガス中のHCを
吸着する一方、約250℃よりも高温側の温度域で上記
HCを離脱させ、また約300℃よりも高温側の温度域
で今度は排気ガス中のNOxを分解浄化する特性を有す
る。そして、上記触媒材料は、金属含有シリケートとし
てのペンタシル型ZMS−5に、活性種としてのCoを
イオン交換によって105%のイオン交換率で担持さ
せ、これにPtを担体1リットル当り0.2gの割合で
高分散させたもので、上記ハニカム担体にはアルミナバ
インダーを用いてウォッシュコートされている。このハ
ニカム担体は400セル/inch2 のもので、その容
量は0.2リットルとされている。
The medium-high temperature catalyst 2 comprises a cordierite honeycomb carrier carrying a catalyst material having HC adsorbing ability and medium-high temperature active NOx purifying ability. This catalytic material is
While the HC in the exhaust gas is adsorbed in the temperature range lower than about 250 ° C, the HC is desorbed in the temperature range higher than about 250 ° C, and in the temperature range higher than about 300 ° C. This time, it has the property of decomposing and purifying NOx in the exhaust gas. In the above catalyst material, pentasil-type ZMS-5 as a metal-containing silicate is loaded with Co as an active species by ion exchange at an ion exchange rate of 105%, and Pt is added thereto in an amount of 0.2 g per liter of a carrier. The above honeycomb carrier is wash-coated with an alumina binder. This honeycomb carrier has a capacity of 400 cells / inch 2 , and its capacity is 0.2 liter.

【0022】一方、上記低温触媒3は、上記担体と同じ
断面形状を有するハニカム担体に低温活性のNOx浄化
能を有する触媒材料が担持されてなる。この触媒材料
は、約150℃から約400°までの温度域において、
かつHCの存在下においてNOxを分解浄化する特性を
有する。上記触媒材料は、ケイバン比が70のH型ゼオ
ライトに、活性種としてPt、Ir及びRhをPt:I
r:Rh=30:3:1の比率で、かつ担体1リットル
当り6gの割合で担持させたもので、上記中高温触媒3
と同様にアルミナバインダーを用いてウォッシュコート
されている。
On the other hand, the low-temperature catalyst 3 comprises a honeycomb carrier having the same cross-sectional shape as that of the carrier, and a catalyst material having a low-temperature active NOx purifying ability supported thereon. This catalytic material has a temperature range from about 150 ° C to about 400 °,
In addition, it has the property of decomposing and purifying NOx in the presence of HC. The catalyst material is a H-type zeolite having a Cavan ratio of 70 and Pt, Ir and Rh as Pt: I as active species.
r: Rh = 30: 3: 1 and 6 g per 1 liter of the carrier, and the medium-high temperature catalyst 3
It is wash-coated with an alumina binder in the same manner as in.

【0023】尚、上記触媒2,3に対し、比較のため
に、中高温触媒としてのCuゼオライト触媒を比較例1
として、また低温触媒としてのPt−Rhアルミナ触媒
を比較例2として、さらに上記Cuゼオライト触媒及び
該触媒の下流側に位置するPt−Rhアルミナ触媒を1
対とする比較例3をそれぞれ作製した。上記Cuゼオラ
イト触媒は、上記中高温触媒2と同じゼオライト及び担
体を用い、該ゼオライトにCuをイオン交換によって1
40%のCuイオン交換率で担持させてなる触媒材料が
担体に担持されたものである。また、上記Pt−Rhア
ルミナ触媒は、上記低温触媒3と同じ担体を用い、高比
表面積のγ−アルミナにPt及びRhをPt:Rh=
5:1の比率で、かつ担体1リットル当り1.6gの割
合で担持させてなる触媒材料が担体に担持されたもので
ある。尚、これら中高温触媒及び低温触媒の活性温度域
及び触媒能等は、それぞれ単体としてみた場合に、この
実施例における中高温触媒2及び低温触媒3とそれぞれ
略同じに設定されている。
For comparison with the above catalysts 2 and 3, a Cu zeolite catalyst as a medium-high temperature catalyst was used in Comparative Example 1.
As a comparative example 2, a Pt-Rh alumina catalyst as a low-temperature catalyst was used, and the Cu zeolite catalyst and a Pt-Rh alumina catalyst located on the downstream side of the catalyst were used as 1.
A pair of comparative example 3 was produced. The Cu zeolite catalyst uses the same zeolite and carrier as the medium-high temperature catalyst 2 and Cu is ion-exchanged into the zeolite to obtain 1
The catalyst material supported at a Cu ion exchange rate of 40% is supported on a carrier. Further, the Pt-Rh alumina catalyst uses the same carrier as the low temperature catalyst 3, and Pt and Rh are added to γ-alumina having a high specific surface area.
The catalyst material is supported on the carrier at a ratio of 5: 1 and at a ratio of 1.6 g per liter of the carrier. The active temperature ranges and the catalytic abilities of the middle-high temperature catalyst and the low-temperature catalyst are set to be substantially the same as those of the middle-high temperature catalyst 2 and the low-temperature catalyst 3 in this embodiment when viewed as a single body.

【0024】上記本発明例及び比較例1〜3について、
排気量が1.3リットルのエンジンを用い、エンジン負
荷が一定の状態で各触媒の前後位置を変えることにより
入口ガス温度を変化させ、各々のNOx浄化率を測定し
た。その結果を図2に示す。尚、何れの場合でも総触媒
容量は同一である。
Regarding the above-mentioned present invention example and comparative examples 1 to 3,
Using an engine with a displacement of 1.3 liter, the inlet gas temperature was changed by changing the front and rear positions of each catalyst while the engine load was constant, and the NOx purification rate of each was measured. The result is shown in FIG. In all cases, the total catalyst capacity is the same.

【0025】本発明例と比較例3とを比べると、比較例
3では低温側のピークが1つであるのに対し、本発明例
では3つのピークが見られる。この理由は、比較例3で
は中高温触媒に吸着したHCの離脱は該中高温触媒が所
定温度に達したときの1回のみで、脱離したHCが低温
触媒に供給されるのも、この1回しか行われないのに対
し、本発明例では3つの中高温触媒2によるHCの供給
が互いに異なる入口ガス温度域において合計で3回行わ
れることによるものである。
Comparing the inventive example with the comparative example 3, the comparative example 3 has one peak on the low temperature side, whereas the inventive example shows three peaks. The reason for this is that in Comparative Example 3, the HC adsorbed to the medium-high temperature catalyst is released only once when the medium-high temperature catalyst reaches a predetermined temperature, and the desorbed HC is supplied to the low-temperature catalyst. This is because the supply of HC by the three medium and high temperature catalysts 2 is performed a total of three times in different inlet gas temperature regions in the present invention example, whereas it is performed only once.

【0026】具体的に説明すると、本発明例において、
排気ガス入口温度が低いときには、各中高温触媒2はH
Cをそれぞれ吸着する。排気ガス温度の上昇に応じて、
先ず上流位置の中高温触媒2が所定温度に達してHCを
脱離させる。このHCは上流位置の低温触媒3に供給さ
れ、燃焼することで自身が浄化されるとともにNOxの
分解浄化に寄与する。これにより第1のピークが形成さ
れる。そして、排気ガス温度がさらに上昇すると、今度
は中流位置の中高温触媒2が所定温度に達してHCを脱
離させ、中流位置の低温触媒3におけるNOxの分解浄
化に寄与する。これにより第2のピークが形成される。
最後は、下流位置の中高温触媒3が所定温度に達してH
Cを脱離し、下流位置の低温触媒3により該HCの燃焼
及びNOxの分解浄化が行われ、第3のピークが形成さ
れる。このように、各中高温触媒2が排気ガス入口温度
の異なる温度域で各々のHCを低温触媒3に順次供給す
ることにより、上記各温度域においてHCはそれぞれ燃
焼浄化され、このことでNOxの分解浄化に寄与する。
More specifically, in the example of the present invention,
When the exhaust gas inlet temperature is low, each of the middle and high temperature catalysts 2 becomes H
Adsorb C respectively. As exhaust gas temperature rises,
First, the medium-high temperature catalyst 2 at the upstream position reaches a predetermined temperature and desorbs HC. This HC is supplied to the low temperature catalyst 3 at the upstream position and burned to purify itself and contribute to NOx decomposition and purification. This forms the first peak. Then, when the exhaust gas temperature further rises, the middle-high temperature catalyst 2 reaches a predetermined temperature this time, desorbs HC, and contributes to the decomposition and purification of NOx in the low-temperature catalyst 3 in the middle flow position. This forms a second peak.
Finally, when the medium-high temperature catalyst 3 at the downstream position reaches a predetermined temperature, H
C is desorbed, the low temperature catalyst 3 at the downstream position burns the HC and decomposes and purifies NOx, and a third peak is formed. In this way, the medium-high temperature catalysts 2 sequentially supply the respective HCs to the low-temperature catalyst 3 in the temperature range in which the exhaust gas inlet temperatures are different, so that the HCs are burned and purified in the respective temperature ranges, whereby NOx Contributes to decomposition and purification.

【0027】また、上記3つのピークは略連続して形成
されているが、これは各低温触媒3におけるHCの燃焼
が、下流側に位置する中高温触媒2及び低温触媒3の温
度上昇を促進していることによるもので、このことによ
り、ピーク間における落ち込みが小さく、略安定した浄
化率が維持されている。
Further, the above three peaks are formed substantially continuously, but the combustion of HC in each low temperature catalyst 3 promotes the temperature rise of the intermediate high temperature catalyst 2 and the low temperature catalyst 3 located on the downstream side. As a result, the drop between peaks is small and a substantially stable purification rate is maintained.

【0028】本発明例を比較例2と比べると、本発明例
の低温側における第1のピークが比較例2のピークより
も低いのは、本発明例の低温触媒3の全容量が比較例2
である低温触媒の半分であるためであるが、それでも本
発明例の浄化率が比較例3のピーク程に低下していない
のは、本発明例では低温触媒3における貴金属(Pt、
Ir及びRh)の担持量が比較例2の低温触媒よりも多
く、上記貴金属によりHCはラジカル化が促進され、N
Oxの分解浄化にさらに適した状態となり、これによ
り、NOx浄化用触媒の全容量が減少する場合であって
も、NOx浄化率の大きな低下が抑えられているためで
あると考えられる。
Compared to Comparative Example 2 of the present invention, the first peak on the low temperature side of the present invention is lower than the peak of Comparative Example 2 because the total capacity of the low temperature catalyst 3 of the present invention is Comparative Example. Two
The reason is that the purification rate of the present invention example is not as low as the peak of Comparative Example 3 even though it is half of that of the low temperature catalyst.
The supported amount of Ir and Rh) is larger than that of the low temperature catalyst of Comparative Example 2, and the noble metal promotes radicalization of HC,
It is considered that this is because the state becomes more suitable for the decomposition and purification of Ox, and as a result, even if the total capacity of the NOx purification catalyst decreases, a large decrease in the NOx purification rate is suppressed.

【0029】本発明例を比較例1と比べた場合に、本発
明例の高温側における浄化率が全体として低いのは上記
低温触媒の場合と同じ理由によるが、この場合には、比
較例3より浄化率が低というよりも、中流位置及び下流
位置にある各中高温触媒3の温度上昇が積層構造によっ
て遅れたためであり、むしろ、本発明例の浄化特性が高
温側にシフトした、つまり全体としてNOx浄化能が実
質的に高温側に拡大したと考えられる。因みに、中高温
触媒2及び低温触媒3を2対とした場合では、同じ入口
ガス温度における浄化率が上昇し、代わりに低温側にお
ける第3のピークがみられなくなった。
The reason why the purification rate on the high temperature side of the present invention example as a whole is low when the present invention example is compared with the comparative example 1 is for the same reason as in the case of the above low temperature catalyst, but in this case, the comparative example 3 It is because the purification rate of each medium-high temperature catalyst 3 at the midstream position and the downstream position was delayed by the laminated structure rather than the purification rate being lower, rather, the purification characteristics of the example of the present invention were shifted to the high temperature side, that is, the whole. As a result, it is considered that the NOx purification capacity has substantially expanded to the high temperature side. Incidentally, when two pairs of the medium-high temperature catalyst 2 and the low-temperature catalyst 3 were used, the purification rate at the same inlet gas temperature increased, and instead, the third peak on the low temperature side was not observed.

【0030】(実施例2)この実施例2では、自動車エ
ンジンの排気系である排気通路の上流位置及び下流位置
の2箇所に、HC吸着部材としての中高温活性NOx触
媒と、該中高温触媒の下流側に位置するNOx浄化用触
媒としての低温活性NOx触媒との対が交互に近接して
2対配設されている。
(Embodiment 2) In Embodiment 2, a medium-high temperature active NOx catalyst as an HC adsorbing member and a medium-high temperature catalyst are provided at two positions, an upstream position and a downstream position of an exhaust passage which is an exhaust system of an automobile engine. Two pairs of low temperature active NOx catalysts as NOx purification catalysts located on the downstream side are alternately arranged close to each other.

【0031】上記中高温触媒は、上記実施例1の中高温
触媒2と同じ担体及びゼオライトを用い、該ゼオライト
に活性種としてのCu−Mgをイオン交換によって担持
させてなる触媒材料が上記担体に担持されたものであ
る。一方、上記低温触媒は、上記実施例の低温触媒3と
略同じ構成であり、異なるのは、Pt、Ir及びRhを
担体1リットル当り3gの割合でゼオライトに担持させ
て触媒材料とした点である。
The medium-high temperature catalyst uses the same carrier and zeolite as those used in the medium-high temperature catalyst 2 of Example 1, and a catalyst material obtained by supporting Cu-Mg as an active species on the carrier by ion exchange. It is carried. On the other hand, the low temperature catalyst has substantially the same structure as the low temperature catalyst 3 of the above embodiment, except that Pt, Ir and Rh are supported on zeolite at a ratio of 3 g per liter of the carrier to form a catalyst material. is there.

【0032】上記各触媒について、比較のために、中高
温触媒のみからなる比較例1′と、低温触媒のみからな
る比較例2′と、中高温触媒及び低温触媒を1対配設し
てなる比較例3′とをそれぞれ作製し、FTPモードに
おけるHC浄化率及びNOx浄化率をそれぞれテストし
た。その結果を表1に示す。尚、何れの場合でも総触媒
容量触は同一である。
For comparison, each of the above-mentioned catalysts comprises a comparative example 1'comprising only a medium-high temperature catalyst, a comparative example 2'comprising only a low-temperature catalyst, and a pair of medium-high temperature catalyst and low-temperature catalyst. Comparative Example 3 ′ and Comparative Example 3 ′ were produced and tested for the HC purification rate and the NOx purification rate in the FTP mode. The results are shown in Table 1. In all cases, the total catalyst capacity is the same.

【0033】[0033]

【表1】 比較例1′及び2′では、HC浄化率に比べてNOx浄
化率が低くなっている。これは、NOxの浄化にHCが
十分に寄与していないからであると考えられる。現に、
比較例3′では同程度のHC浄化率でありながら、NO
x浄化率は5〜15%の向上をみている。
[Table 1] In Comparative Examples 1'and 2 ', the NOx purification rate is lower than the HC purification rate. It is considered that this is because HC does not sufficiently contribute to the purification of NOx. Actually,
In Comparative Example 3 ', although the HC purification rate is about the same, NO
The x purification rate is improving by 5 to 15%.

【0034】これに対して、本発明例では、NOx浄化
率が上記比較例3よりもさらに12%も向上しており、
またHC浄化率においても比較例3′と比べて3%の増
加を示している。この理由は、中高温触媒及び低温触媒
を2対配設したことにより、NOxの浄化におけるHC
の寄与率が高まり、結果的にHCの燃焼浄化も促進され
たためであると考えられる。
On the other hand, in the example of the present invention, the NOx purification rate was further improved by 12% as compared with the comparative example 3,
The HC purification rate also shows an increase of 3% as compared with Comparative Example 3 '. The reason for this is that by arranging two pairs of middle and high temperature catalysts and low temperature catalysts, it is possible to reduce HC in the purification of NOx.
It is considered that this is because the contribution ratio of H.sub.2 was increased, and as a result, combustion purification of HC was also promoted.

【0035】[0035]

【発明の効果】以上説明したように、請求項1の発明に
よれば、HC吸着部材とその下流側に位置するNOx浄
化用触媒とを2対以上交互に配設したことにより、各H
C吸着部材に排気ガスの異なる入口温度域でHCを脱離
させてNOx浄化用触媒に順次供給することができるの
で、広い入口温度域においてHCを有効に活用してNO
xの浄化性能を高めることができ、低温から高温までの
間の広い温度域においてHC及びNOxに対する浄化性
能の向上を図ることができる。また、触媒の構成及び配
置によってNOxの浄化にHCを有効に活用することが
でき、HC吸着部材に対するバイパス通路や排気ガスの
流路を該排気ガスの温度に応じて切換えるための部品が
不要であるので、排気ガス浄化装置の設置スペースや部
品コストの点でも有利である。
As described above, according to the first aspect of the present invention, by arranging two or more pairs of the HC adsorbing member and the NOx purifying catalyst located on the downstream side thereof alternately, each H
Since HC can be desorbed to the C adsorbing member in different inlet temperature regions of the exhaust gas and sequentially supplied to the NOx purification catalyst, the HC can be effectively utilized in a wide inlet temperature region to NO.
The purification performance for x can be enhanced, and the purification performance for HC and NOx can be improved in a wide temperature range from low temperature to high temperature. Further, HC can be effectively used for purifying NOx by the structure and arrangement of the catalyst, and a component for switching the bypass passage for the HC adsorbing member and the exhaust gas flow passage according to the temperature of the exhaust gas is unnecessary. Therefore, it is advantageous in terms of the installation space of the exhaust gas purification device and the cost of parts.

【0036】請求項2の発明によれば、上記NOx浄化
用触媒に貴金属を担持させたことにより、総触媒容量の
拡大を伴うことなく該NOx浄化用触媒によるNOx浄
化率の低下を抑えることができるので、配設スペースの
点でさらに有利である。
According to the second aspect of the present invention, since the NOx purification catalyst is loaded with the noble metal, it is possible to suppress the reduction of the NOx purification rate by the NOx purification catalyst without increasing the total catalyst capacity. Therefore, it is further advantageous in terms of installation space.

【0037】請求項3の発明によれば、上記HC吸着部
材にNOx浄化用触媒よりも高温側でのNOx浄化能を
付与したことにより、NOx浄化用触媒による低温側で
のNOx浄化のみならず、HC吸着部材による高温側で
のNOx浄化を行うことができるので、低温から高温ま
での間における広い温度域においてNOx浄化性能を発
現させることができる。
According to the third aspect of the present invention, since the HC adsorbing member is provided with the NOx purifying ability on the higher temperature side than the NOx purifying catalyst, not only the NOx purifying catalyst on the lower temperature side can be purified. Since NOx purification can be performed on the high temperature side by the HC adsorption member, NOx purification performance can be exhibited in a wide temperature range from low temperature to high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る排気ガス浄化装置を示
す原理図である。
FIG. 1 is a principle diagram showing an exhaust gas purification device according to a first embodiment of the present invention.

【図2】各種の浄化装置におけるNOx浄化特性を示す
グラフ図である。
FIG. 2 is a graph showing NOx purification characteristics in various purification devices.

【符号の説明】[Explanation of symbols]

1 排気通路(排気系) 2 中高温活性NOx触媒(HC吸着部材) 3 低温活性NOx触媒(NOx浄化用触媒) 1 Exhaust passage (exhaust system) 2 Medium high temperature active NOx catalyst (HC adsorbing member) 3 Low temperature active NOx catalyst (NOx purification catalyst)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 京極 誠 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Kyogoku 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Motor Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低温側の温度域で排気ガス中のHCを吸
着する一方、高温側の温度域で上記吸着したHCを脱離
させるHC吸着部材と、 上記HC吸着部材の下流側に配置され、該HC吸着部材
にてHCの離脱が開始される温度を含む温度域において
かつHCの存在下において排気ガス中のNOxを浄化す
るNOx浄化用触媒との対が、交互に近接して2対以上
設けられていることを特徴とする排気ガス浄化装置。
1. An HC adsorbing member that adsorbs HC in exhaust gas in a low temperature side region and desorbs the adsorbed HC in a high temperature side region, and is arranged downstream of the HC adsorbing member. , A pair of NOx purification catalysts for purifying NOx in the exhaust gas in a temperature range including a temperature at which HC desorption starts in the HC adsorbing member and in the presence of HC are alternately adjacent and two pairs An exhaust gas purification device characterized in that it is provided as described above.
【請求項2】 請求項1記載の排気ガス浄化装置におい
て、 NOx浄化用触媒は貴金属を含んでなることを特徴とす
る排気ガス浄化装置。
2. The exhaust gas purifying apparatus according to claim 1, wherein the NOx purifying catalyst contains a noble metal.
【請求項3】 請求項1又は2記載の排気ガス浄化装置
において、 HC吸着部材は、排気ガス中のNOxを浄化する高温活
性のNOx浄化能を有し、かつその最高活性温度がNO
x浄化用触媒よりも高温側にあることを特徴とする排気
ガス浄化装置。
3. The exhaust gas purifying apparatus according to claim 1 or 2, wherein the HC adsorbing member has a high-temperature active NOx purifying ability for purifying NOx in the exhaust gas, and its maximum activation temperature is NO.
An exhaust gas purifying device, which is located on a higher temperature side than the x purifying catalyst.
JP33994892A 1992-12-21 1992-12-21 Exhaust emission control device Pending JPH06185342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33994892A JPH06185342A (en) 1992-12-21 1992-12-21 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33994892A JPH06185342A (en) 1992-12-21 1992-12-21 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JPH06185342A true JPH06185342A (en) 1994-07-05

Family

ID=18332279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33994892A Pending JPH06185342A (en) 1992-12-21 1992-12-21 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JPH06185342A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866218A1 (en) * 1997-03-22 1998-09-23 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Adsorber-catalytic converter combination for internal combustion engines
EP0957254A2 (en) 1998-05-15 1999-11-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
JP2002038917A (en) * 2000-07-21 2002-02-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US6447735B1 (en) * 1998-04-30 2002-09-10 Nissan Motor Co., Ltd. Exhaust purifier and manufacturing method of same
US6845612B2 (en) 2000-01-05 2005-01-25 Enklaver Ab And Ab Volvo NOx-reducing catalyst with temperature regulation of exhaust gas
JP2008291672A (en) * 2007-05-22 2008-12-04 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866218A1 (en) * 1997-03-22 1998-09-23 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Adsorber-catalytic converter combination for internal combustion engines
US6113864A (en) * 1997-03-22 2000-09-05 Dr. Ing. H.C.F. Porsche Ag Adsorber-catalyst combination for internal combustion engines
US6447735B1 (en) * 1998-04-30 2002-09-10 Nissan Motor Co., Ltd. Exhaust purifier and manufacturing method of same
EP0957254A2 (en) 1998-05-15 1999-11-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus for internal combustion engine
US6845612B2 (en) 2000-01-05 2005-01-25 Enklaver Ab And Ab Volvo NOx-reducing catalyst with temperature regulation of exhaust gas
JP2002038917A (en) * 2000-07-21 2002-02-06 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008291672A (en) * 2007-05-22 2008-12-04 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine

Similar Documents

Publication Publication Date Title
JPH0910594A (en) Catalyst for purifying exhaust gas
JP2002364343A (en) Exhaust emission control system
EP0935055B1 (en) Method for purifying oxygen rich exhaust gas
KR100731257B1 (en) Exhaust gas purifying catalyst and process for purifying exhaust gas
JPH06185342A (en) Exhaust emission control device
JP3551348B2 (en) Exhaust gas purification device
JP2000042368A (en) Exhaust gas purifying method
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP3591186B2 (en) Exhaust purification catalyst device for internal combustion engine
JPH1147596A (en) Catalyst for purifying exhaust gas
JP3458624B2 (en) Exhaust purification catalyst device for internal combustion engine
JP4114581B2 (en) Exhaust purification device
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JP3736373B2 (en) Engine exhaust purification system
JP3278514B2 (en) Exhaust gas purification catalyst structure
JP2751562B2 (en) Catalytic exhaust gas purification system for internal combustion engine
JPH11324663A (en) Catalyst for controlling of exhaust gas emission
JP2000135419A (en) Exhaust gas purifying system
JPH0824655A (en) Catalyst for purifying exhaust gas
JP2005144294A (en) Catalyst for purifying exhaust gas
JP3291316B2 (en) Exhaust gas purification catalyst
JPH07328448A (en) Exhaust gas purification catalyst and device for purifying exhaust gas
JPH05317701A (en) Engine exhaust purification and adsorptive agent
JP2001115832A (en) Exhaust emission control device
JPH08141405A (en) Catalyst for purification of exhaust gas from internal-combustion engine