JPH06185318A - Exhaust valve device of internal combustion engine - Google Patents

Exhaust valve device of internal combustion engine

Info

Publication number
JPH06185318A
JPH06185318A JP33569892A JP33569892A JPH06185318A JP H06185318 A JPH06185318 A JP H06185318A JP 33569892 A JP33569892 A JP 33569892A JP 33569892 A JP33569892 A JP 33569892A JP H06185318 A JPH06185318 A JP H06185318A
Authority
JP
Japan
Prior art keywords
valve shaft
valve
exhaust
flow
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33569892A
Other languages
Japanese (ja)
Inventor
Masashi Matoba
雅司 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33569892A priority Critical patent/JPH06185318A/en
Publication of JPH06185318A publication Critical patent/JPH06185318A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4264Shape or arrangement of intake or exhaust channels in cylinder heads of exhaust channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide an exhaust valve device of an internal combustion engine effectively restraining temperature rise of an exhaust valve while reducing exhaust resistance under a comparatively simple method. CONSTITUTION:On the upstream side of a valve stem 11 in the exhaust gas flowing direction, an upstream side straightening vane 6 approaching the valve stem 11 with a slight clearance and projecting from the inwall of an exhaust port 3 along the valve stem 11 is formed integrally with a cylinder head 1. The upstream side straightening vane 6, width of the proximate part of which is roughly the same as diameter of the valve stem 11, extends to the upstream in the flowing direction as it gradually reduces its width. A downstream side straightening vane 7 is also formed on the downstream in the flowing direction of the valve stem 11 in the same shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、内燃機関の排気弁装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust valve device for an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の排気弁は、弁傘が燃焼によっ
て発生する熱にさらされるうえ、排気ポート内に露出し
ている部分には、高温の排気ガスが直接吹き付ける。こ
のため、弁傘が高温になって、シリンダ内に吸入された
混合気の温度を過剰に上昇させたり、弁傘の一部にヒー
トスポットが発生したりしてノッキングの原因になるほ
か、大きな熱負荷により弁軸が折損を起こす、などの点
で問題であり、排気弁の温度上昇を抑制する必要があ
る。
2. Description of the Related Art An exhaust valve of an internal combustion engine is exposed to heat generated by combustion of a valve umbrella, and hot exhaust gas is directly blown to an exposed portion of the exhaust port. For this reason, the temperature of the valve umbrella becomes high, the temperature of the air-fuel mixture sucked into the cylinder is excessively increased, and a heat spot is generated on a part of the valve umbrella, which causes knocking. This is a problem in that the valve shaft is broken due to the heat load, and it is necessary to suppress the temperature rise of the exhaust valve.

【0003】この対策としては、例えば図5に示すよう
な排気弁装置がある(例えば、実開昭60−12250
9号公報等参照)。
As a countermeasure against this, for example, there is an exhaust valve device as shown in FIG.
9).

【0004】シリンダヘッド101に、燃焼室102と
燃焼室102に連通する排気ポート103が設けられて
いる。排気弁110は、排気ポート103の内部に突出
する弁軸111と、この弁軸111の先端に形成された
弁傘113とからできている。弁軸111が、シリンダ
ヘッド101に打ち込まれた弁案内105に、摺動可能
に支持され、排気弁110が往復運動することで排気ポ
ート103の開閉を行っている。弁案内105には、冷
却液流入口120および冷却液流出口121を備えた冷
却液通路122が形成され、冷却液によって弁案内10
5を冷却している。この従来装置は、弁案内105を冷
却することで排気弁110の温度上昇を抑制しようとす
るものである。
The cylinder head 101 is provided with a combustion chamber 102 and an exhaust port 103 communicating with the combustion chamber 102. The exhaust valve 110 is made up of a valve shaft 111 protruding inside the exhaust port 103 and a valve umbrella 113 formed at the tip of the valve shaft 111. The valve shaft 111 is slidably supported by the valve guide 105 driven into the cylinder head 101, and the exhaust valve 110 reciprocates to open and close the exhaust port 103. In the valve guide 105, a cooling liquid passage 122 having a cooling liquid inlet 120 and a cooling liquid outlet 121 is formed.
Cooling 5 This conventional device is intended to suppress the temperature rise of the exhaust valve 110 by cooling the valve guide 105.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の排気弁装置にあっては、排気弁110のうち
弁案内105に接する弁軸111の上部だけを冷却する
構造になっており、排気ガスにさらされ高温になる部分
を直接冷却することができないので、ノッキングに影響
を及ぼす弁傘表面114や、熱負荷が最も大きい弁首部
112の温度上昇を抑制する効果が十分ではなかった。
また、このような構成で弁軸111を全体的に冷却する
には、弁案内105を排気ポート103内に大きく突出
させねばならず、排気抵抗が大幅に増大することにな
る。
However, in such a conventional exhaust valve device, only the upper portion of the valve shaft 111 of the exhaust valve 110, which is in contact with the valve guide 105, is cooled. Since it is not possible to directly cool the portion exposed to the gas and having a high temperature, the effect of suppressing the temperature rise of the valve umbrella surface 114 that influences knocking and the valve neck portion 112 having the largest heat load was not sufficient.
Further, in order to cool the valve shaft 111 as a whole with such a configuration, the valve guide 105 has to be largely projected into the exhaust port 103, and the exhaust resistance is greatly increased.

【0006】また、冷却液通路122設置のための加工
コストが高くなるという問題があった。
Further, there is a problem that the processing cost for installing the cooling liquid passage 122 becomes high.

【0007】本発明は、比較的簡便な方法で、排気抵抗
を減少させつつ、排気弁の温度上昇を効果的に抑制する
排気弁装置を提供することを目的とする。
It is an object of the present invention to provide an exhaust valve device that effectively suppresses the temperature rise of the exhaust valve while reducing the exhaust resistance by a relatively simple method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、この発明は、燃焼室に連通する排気ポートと、該排
気ポート内に突出する弁軸の先端に弁傘を形成してなる
排気弁と、前記弁軸の排気ガス流れ方向上流側に近接し
て前記弁軸に沿って前記排気ポートの内壁から突出する
上流側整流壁と、前記弁軸の前記流れ方向下流側に近接
して前記弁軸に沿って前記排気ポートの内壁から突出す
る下流側整流壁とを有し、前記上流側整流壁は、前記流
れと直交する幅が、前記弁軸に近接する部分では前記弁
軸の軸径と略同一で、前記弁軸から前記流れ方向上流へ
離れるに従って減少するものであり、前記下流側整流壁
は、前記幅が、前記弁軸に近接する部分では前記弁軸の
軸径と略同一で、前記弁軸から前記流れ方向下流へ離れ
るに従って減少するものである、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention is an exhaust valve comprising an exhaust port communicating with a combustion chamber and a valve umbrella formed at the tip of a valve shaft protruding into the exhaust port. An upstream rectifying wall which is located close to the exhaust gas flow direction upstream side of the valve shaft and projects from the inner wall of the exhaust port along the valve shaft, and is located close to the flow direction downstream side of the valve shaft. A downstream side straightening wall protruding from the inner wall of the exhaust port along the valve shaft, and the upstream side straightening wall has a width orthogonal to the flow at a portion close to the valve shaft, and the shaft of the valve shaft. The diameter is substantially the same as the diameter of the downstream side straightening wall, and the width of the downstream side straightening wall is substantially the same as the diameter of the valve shaft at a portion close to the valve shaft. The same, and decreases with increasing distance from the valve shaft downstream in the flow direction. Than it, characterized in that.

【0009】[0009]

【作用】上記構成に基づき、作用を説明する。The operation will be described based on the above configuration.

【0010】燃焼室から排出される高温の排気ガスは、
非常に大きな速度を持って排気ポートに流れ込む。弁軸
に向かう流れは、上流側整流壁によって流れと直交する
方向に2分され、整流壁面に沿って流れる。上流側整流
壁は、弁軸に近接する部分の幅が弁軸径と略同一である
から、2分された排気ガスの流れは、双方ともに直接弁
軸に吹き付けることなく弁軸下流に流れる。弁軸下流に
設けられる下流側整流壁は、弁軸に近接し、近接部分で
弁軸径と略同一な幅を持っているので、流れが弁軸を巻
き込むようにして乱れることを防止する。これにより、
弁軸下流側も排気ガスの流れに直接接することがない。
弁軸下流の流れは、整流壁面に沿って流れ、整流壁後端
で合流する。
The hot exhaust gas discharged from the combustion chamber is
It flows into the exhaust port with a very large velocity. The flow toward the valve shaft is bisected in a direction orthogonal to the flow by the upstream flow straightening wall and flows along the flow straightening wall surface. Since the width of a portion of the upstream side rectifying wall that is close to the valve shaft is substantially the same as the valve shaft diameter, the two divided exhaust gas flows flow downstream of the valve shaft without being directly sprayed on the valve shaft. The downstream rectifying wall provided downstream of the valve shaft is close to the valve shaft and has a width substantially equal to the diameter of the valve shaft in the proximity portion, so that the flow is prevented from being disturbed by wrapping around the valve shaft. This allows
The downstream side of the valve shaft also does not come into direct contact with the exhaust gas flow.
The flow downstream of the valve shaft flows along the straightening wall surface and joins at the rear end of the straightening wall.

【0011】弁軸周辺の排気ガスの流れを上記のように
方向付け、弁軸が高温高速の排気ガス流に直接さらされ
ることを極力防止する。
The exhaust gas flow around the valve shaft is directed as described above to prevent direct exposure of the valve shaft to the high temperature, high speed exhaust gas flow.

【0012】同時に、排気ガスの流れを整流し、弁軸周
辺で乱れが発生することを抑制する。
At the same time, the flow of the exhaust gas is rectified to suppress the occurrence of turbulence around the valve shaft.

【0013】[0013]

【実施例】本発明に係る第1実施例を、図1、図2に基
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment according to the present invention will be described with reference to FIGS.

【0014】シリンダヘッド1に、燃焼室2と燃焼室2
に連通する排気ポート3が設けられている。排気弁10
は、排気ポート3の内部に突出する弁軸11と、この弁
軸11の先端に形成された弁傘13とからできている。
弁軸11が、シリンダヘッド1に打ち込まれた弁案内5
に、摺動可能に支持され、排気弁10が往復運動するこ
とで排気ポート3の開閉を行っている。4a〜4cはシ
リンダヘッド1を冷却するための冷却液通路である。
A combustion chamber 2 and a combustion chamber 2 are provided on the cylinder head 1.
Is provided with an exhaust port 3. Exhaust valve 10
Is made up of a valve shaft 11 protruding inside the exhaust port 3 and a valve umbrella 13 formed at the tip of the valve shaft 11.
The valve guide 5 in which the valve shaft 11 is driven into the cylinder head 1.
Further, the exhaust port 10 is slidably supported, and the exhaust port 10 reciprocates to open and close the exhaust port 3. Reference numerals 4a to 4c are cooling liquid passages for cooling the cylinder head 1.

【0015】弁軸11の排気ガス流れ方向上流側には、
弁軸11の上流側との間にわずかな隙間を保って近接
し、排気ポート3上壁から下方に向かい弁軸11に沿っ
て突出する上流側整流壁6がシリンダヘッド1と一体に
形成されている。流れ方向下流側に形成される下流側整
流壁7についても同様である。各整流壁6、7の、排気
ポート3内への突出高さについては、排気弁10が摺動
した際にも、各整流壁6、7の下端が弁首部12と干渉
しない範囲でできるだけ大きく下方まで延ばし、各整流
壁6、7が弁軸11の上下流側を全体的に覆うようにな
っている。また、図2に示すように、弁軸11から離れ
るに従って下流側整流壁7の突出高さを減少させてい
る。
On the upstream side of the valve shaft 11 in the exhaust gas flow direction,
An upstream rectifying wall 6 is formed integrally with the cylinder head 1 so as to be close to the upstream side of the valve shaft 11 with a slight gap therebetween, and to project downward from the upper wall of the exhaust port 3 along the valve shaft 11. ing. The same applies to the downstream flow regulating wall 7 formed on the downstream side in the flow direction. The projecting height of each flow straightening wall 6, 7 into the exhaust port 3 is as large as possible within a range in which the lower ends of the flow straightening walls 6, 7 do not interfere with the valve neck portion 12 even when the exhaust valve 10 slides. The flow straightening walls 6 and 7 are extended to the lower side so as to entirely cover the upstream and downstream sides of the valve shaft 11. Further, as shown in FIG. 2, the protruding height of the downstream flow regulating wall 7 is reduced as the distance from the valve shaft 11 increases.

【0016】弁軸11の直上流から上流方向へ向かって
延びる上流側整流壁6は、流れと直交する幅が、図2断
面Eに示すように、弁軸11に近接する部分では弁軸径
dと略同一のb1で、弁軸11から流れ方向上流へ離れ
るに従って減少する形状である。下流側整流壁7も、上
流側整流壁6と同様な形状で弁軸11の直上流から上流
方向へ向かって延びており、全体として流れ方向に滑ら
かに形状変化がなされている。
The upstream straightening wall 6 extending from just upstream of the valve shaft 11 in the upstream direction has a width perpendicular to the flow at a portion close to the valve shaft 11 as shown in section E of FIG. b1 is substantially the same as d, and has a shape that decreases with increasing distance from the valve shaft 11 in the upstream direction. The downstream flow straightening wall 7 also has a shape similar to that of the upstream flow straightening wall 6 and extends from immediately upstream of the valve shaft 11 toward the upstream direction, and the shape thereof is smoothly changed in the flow direction as a whole.

【0017】上記構成に基づき、作用を説明する。The operation will be described based on the above configuration.

【0018】燃焼室から排出される高温の排気ガスは、
非常に大きな速度を持って排気ポート3に流れ込む。弁
軸11に向かう流れは、上流側整流壁6によって流れと
直交する方向に2分され、整流壁面に沿って流れる。上
流側整流壁6は、弁軸11に近接する部分の幅が弁軸径
dと略同一のb1であるから、2分された排気ガスの流
れは、双方ともに直接弁軸11に吹き付けることなく弁
軸11下流に流れる。弁軸11下流に設けられる下流側
整流壁7は、弁軸11に近接し、近接部分で弁軸径dと
略同一な幅b2を持っているので、流れが弁軸11を巻
き込むようにして乱れることを防止する。これにより、
弁軸11下流側も排気ガスの流れに直接接することがな
い。弁軸11下流の流れは、整流壁面に沿って流れ、整
流壁後端で合流する。
The hot exhaust gas discharged from the combustion chamber is
It flows into the exhaust port 3 with a very large velocity. The flow toward the valve shaft 11 is divided into two in a direction orthogonal to the flow by the upstream flow straightening wall 6 and flows along the flow straightening wall surface. Since the width of a portion of the upstream side rectifying wall 6 which is close to the valve shaft 11 is b1 which is substantially the same as the valve shaft diameter d, both of the divided exhaust gas flows do not directly blow to the valve shaft 11. It flows downstream of the valve shaft 11. The downstream rectification wall 7 provided on the downstream side of the valve shaft 11 is close to the valve shaft 11 and has a width b2 that is substantially the same as the valve shaft diameter d in the proximity portion. Prevent from being disturbed. This allows
The downstream side of the valve shaft 11 also does not come into direct contact with the exhaust gas flow. The flow downstream of the valve shaft 11 flows along the straightening wall surface and joins at the rear end of the straightening wall.

【0019】弁軸11周辺の排気ガスの流れを上記のよ
うに方向付け、弁軸11が高温高速の排気ガス流に直接
さらされることを極力防止する。これにより、排気ガス
から弁軸11へ移動する熱量を低減することができ、弁
軸11の温度上昇を抑制する。各整流壁6、7は、弁軸
11の上下流側を全体的に覆っているので、上記作用は
弁軸11略全体で得られ、弁軸11全体の温度が低く抑
えられることになり、弁傘13の熱が弁軸11を介して
シリンダヘッド1に伝導されやすくなる。よって、弁傘
表面14の温度が低下し、ノッキングの原因となる吸入
混合気の過熱や、ヒートスポットの発生を抑制すること
ができる。また、弁傘13からの熱と弁軸11からの熱
が集中して最も熱負荷が大きくなる弁首部12の温度上
昇を低減することにもなり、弁軸11の折損を防止す
る。
The exhaust gas flow around the valve shaft 11 is directed as described above to prevent direct exposure of the valve shaft 11 to the high temperature, high speed exhaust gas flow. As a result, the amount of heat transferred from the exhaust gas to the valve shaft 11 can be reduced, and the temperature rise of the valve shaft 11 can be suppressed. Since each of the flow straightening walls 6 and 7 covers the upstream and downstream sides of the valve shaft 11 as a whole, the above-described action can be obtained by almost the entire valve shaft 11, and the temperature of the entire valve shaft 11 can be suppressed low. The heat of the valve umbrella 13 is easily conducted to the cylinder head 1 via the valve shaft 11. Therefore, the temperature of the valve umbrella surface 14 is lowered, and it is possible to suppress overheating of the intake air-fuel mixture that causes knocking and generation of a heat spot. Further, the heat from the valve umbrella 13 and the heat from the valve shaft 11 are concentrated to reduce the temperature rise of the valve neck portion 12 where the heat load becomes the largest, and the valve shaft 11 is prevented from being broken.

【0020】各整流壁6、7は、直接排気ガスの流れに
さらされることになるが、この部分はシリンダヘッド1
と一体なので、排気ガスから受け取った熱は、速やかに
シリンダヘッド1中に拡散する。さらに、シリンダヘッ
ド1には排気ポート3の上側に冷却液通路4a、4bが
設けられており、この冷却液通路4a、4bが各整流壁
6、7の付近を通っているので、各整流壁6、7が問題
となるような温度上昇を起こすことはない。
Each straightening wall 6, 7 is directly exposed to the flow of exhaust gas, and this portion is the cylinder head 1.
Since it is integrated with, the heat received from the exhaust gas is quickly diffused into the cylinder head 1. Further, the cylinder head 1 is provided with cooling liquid passages 4a and 4b on the upper side of the exhaust port 3, and since the cooling liquid passages 4a and 4b pass in the vicinity of the straightening walls 6 and 7, the straightening walls are formed. 6 and 7 do not cause a problematic temperature rise.

【0021】また、各整流壁6、7は、排気ガスの流れ
を整流し、特に流れが弁軸11を巻き込むようにして乱
れることを抑制して、排気ガスの流通抵抗を低減するこ
とができる。
The flow regulating walls 6 and 7 regulate the flow of the exhaust gas, and in particular, the flow is restrained from being disturbed by entraining the valve shaft 11, and the flow resistance of the exhaust gas can be reduced. .

【0022】各整流壁6、7は、弁軸11との間に、わ
ずかな隙間を保つよう形成されるので、排気弁10開閉
時に摺動部でのフリクションが増加することはない。
Since the flow-regulating walls 6 and 7 are formed so as to maintain a slight gap between them and the valve shaft 11, friction at the sliding portion does not increase when the exhaust valve 10 is opened and closed.

【0023】また、本実施例は、従来の排気ポートに2
つの整流壁6、7を設けるだけで成立し、大幅なコスト
アップを伴わない。
In addition, this embodiment has two conventional exhaust ports.
It is established only by providing one straightening wall 6 and 7, and does not cause a significant increase in cost.

【0024】本発明に係る第2実施例を、図3に基づい
て説明する。
A second embodiment according to the present invention will be described with reference to FIG.

【0025】この実施例は、弁軸11との間に弁案内5
bを介在させるほかは第1実施例と同様に形成した各整
流壁6b、7bの内部に冷却液流通溝8bを設け、これ
を冷却液通路4a、4bと接続したことを特徴としてい
る。
In this embodiment, the valve guide 5 is provided between the valve shaft 11 and the valve guide 11.
The present invention is characterized in that a cooling liquid flow groove 8b is provided inside each of the straightening walls 6b and 7b formed in the same manner as in the first embodiment except that b is interposed, and this is connected to the cooling liquid passages 4a and 4b.

【0026】冷却液流通溝8bは、各整流壁6b、7b
の幅の中央に設けられ、各整流壁6b、7bの外形に沿
った形状をなしている。
The cooling liquid flow groove 8b is provided in each of the straightening walls 6b and 7b.
Is provided in the center of the width of the straightening wall and has a shape along the outer shape of each of the straightening walls 6b and 7b.

【0027】弁案内5bは、上流側を部分的に上流側整
流壁6bと段差がつかないような幅で、上流側整流壁6
bの下端近傍まで延長し、弁軸11と上流側整流壁6b
の双方に接するようになっている。下流側についても同
様である。
The valve guide 5b has such a width that the upstream side thereof does not partially have a step with the upstream side straightening wall 6b, and the upstream side straightening wall 6b.
The valve shaft 11 and the upstream side straightening wall 6b
It comes in contact with both sides. The same applies to the downstream side.

【0028】上記構成に基づき、作用を説明する。The operation will be described based on the above configuration.

【0029】各整流壁6b、7bは、第1実施例の場合
と全く同様な効果を示す。加えて、各整流壁6b、7b
が弁案内5bを介して全体的に弁軸11と接しているの
で、弁軸11の熱がより多く各整流壁6b、7bに逃げ
る。さらに、各整流壁6b、7bの内部には、冷却液流
通溝8bが設けられているので、弁軸11全体を積極的
に冷却することができる。特に、排気弁10の閉弁時に
は、最も熱負荷の高い弁首部12の極近くを冷却するこ
とができる。
Each of the flow regulating walls 6b and 7b exhibits the same effect as that of the first embodiment. In addition, each straightening wall 6b, 7b
Is in contact with the valve shaft 11 as a whole through the valve guide 5b, so that more heat of the valve shaft 11 escapes to the flow straightening walls 6b and 7b. Further, since the cooling liquid flow groove 8b is provided inside each of the flow regulating walls 6b and 7b, the entire valve shaft 11 can be positively cooled. In particular, when the exhaust valve 10 is closed, it is possible to cool the vicinity of the valve neck portion 12 having the highest heat load.

【0030】本発明に係る第3実施例を、図4に基づい
て説明する。
A third embodiment of the present invention will be described with reference to FIG.

【0031】この実施例は、下流側整流壁7cを、排気
ポート3の下壁まで延ばし、その内部に設けた冷却液流
通溝8cによって排気ポート3の上下に設けられている
冷却液通路4b、4cを連通するものである。そのほか
の部分は、第2実施例と同様に構成される。
In this embodiment, the downstream flow straightening wall 7c is extended to the lower wall of the exhaust port 3, and a cooling liquid passage 4b is provided above and below the exhaust port 3 by a cooling liquid flow groove 8c provided therein. 4c is communicated. The other parts are configured similarly to the second embodiment.

【0032】上記構成に基づき、作用を説明する。The operation will be described based on the above configuration.

【0033】弁軸11の冷却に関する作用は、第2実施
例の場合と同様であるが、さらに、下流側整流壁7c内
の冷却液流通溝8cが上下の冷却液通路4b、4cを連
通しているため冷却液流通溝8c内に冷却液通路4cか
ら4bに向かう冷却液の流れがあり、より冷却の効果が
大きい。
The operation relating to the cooling of the valve shaft 11 is the same as in the case of the second embodiment, but the cooling liquid flow groove 8c in the downstream side flow regulating wall 7c further connects the upper and lower cooling liquid passages 4b and 4c. Therefore, there is a flow of the cooling liquid from the cooling liquid passage 4c to the cooling liquid passage 4c in the cooling liquid flow groove 8c, and the cooling effect is greater.

【0034】下流側整流壁7cを、排気ポート3の下壁
まで延ばしたことにより排気ガスの流通路断面積が減少
するが、排気ガスの流れは排気ポート3の上壁面に沿っ
た流れが主流であり、下側に延長された下流側整流壁7
cによって流通抵抗が増大することはほとんどなく、第
1、第2実施例で得られた効果と同様に、弁軸11周辺
の整流によって流通抵抗が減少する。また、弁傘13周
辺の乱雑な流れを整流する効果も期待できる。
By extending the downstream flow regulating wall 7c to the lower wall of the exhaust port 3, the flow passage cross-sectional area of the exhaust gas is reduced, but the main flow of the exhaust gas is along the upper wall surface of the exhaust port 3. And the downstream side straightening wall 7 extended downward.
The flow resistance is hardly increased by c, and the flow resistance is reduced by the rectification around the valve shaft 11, similar to the effects obtained in the first and second embodiments. Further, the effect of rectifying the turbulent flow around the valve umbrella 13 can be expected.

【0035】[0035]

【発明の効果】以上説明してきたように、この発明によ
れば、弁軸の上流側と下流側に設けられる上流側整流壁
および下流側整流壁が排気ガスの流れを弁軸の左右に2
分するため、弁軸が高温高速の排気ガス流に直接さらさ
れない。このような簡便な方法で排気ガスから弁軸への
熱移動を抑制することができる。これにより、弁軸の過
剰な温度上昇が防止でき、弁全体の温度上昇を効果的に
抑制することができる。
As described above, according to the present invention, the upstream side rectification wall and the downstream side rectification wall provided on the upstream side and the downstream side of the valve shaft respectively cause the flow of the exhaust gas to the left and right of the valve shaft.
Therefore, the valve stem is not directly exposed to the high temperature, high velocity exhaust gas flow. With such a simple method, heat transfer from the exhaust gas to the valve shaft can be suppressed. As a result, excessive temperature rise of the valve shaft can be prevented, and the temperature rise of the entire valve can be effectively suppressed.

【0036】また、排気ガスの流れを整流し、特に流れ
が弁軸を巻き込むようにして乱れることを抑制して、排
気ガスの流通抵抗を低減することができる。
Further, the flow of exhaust gas can be rectified, and in particular, the flow can be prevented from being disturbed by involving the valve shaft, and the flow resistance of exhaust gas can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示すシリンダヘッド排気
弁部分断面図
FIG. 1 is a partial sectional view of a cylinder head exhaust valve showing a first embodiment of the present invention.

【図2】同じく、排気ポートと上下流側整流壁の詳細を
示す断面図
FIG. 2 is a sectional view showing the details of the exhaust port and the upstream / downstream rectifying wall.

【図3】本発明の第2実施例を示す断面図FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】本発明の第3実施例を示す断面図FIG. 4 is a sectional view showing a third embodiment of the present invention.

【図5】従来例を示す断面図FIG. 5 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 2 燃焼室 3 排気ポート 6 上流側整流壁 7 下流側整流壁 10 排気弁 11 弁軸 13 弁傘 1 Cylinder Head 2 Combustion Chamber 3 Exhaust Port 6 Upstream Side Straightening Wall 7 Downstream Side Straightening Wall 10 Exhaust Valve 11 Valve Shaft 13 Valve Umbrella

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼室に連通する排気ポートと、該排気ポ
ート内に突出する弁軸の先端に弁傘を形成してなる排気
弁と、前記弁軸の排気ガス流れ方向上流側に近接して前
記弁軸に沿って前記排気ポートの内壁から突出する上流
側整流壁と、前記弁軸の前記流れ方向下流側に近接して
前記弁軸に沿って前記排気ポートの内壁から突出する下
流側整流壁とを有し、 前記上流側整流壁は、前記流れと直交する幅が、前記弁
軸に近接する部分では前記弁軸の軸径と略同一で、前記
弁軸から前記流れ方向上流へ離れるに従って減少するも
のであり、 前記下流側整流壁は、前記幅が、前記弁軸に近接する部
分では前記弁軸の軸径と略同一で、前記弁軸から前記流
れ方向下流へ離れるに従って減少するものである、 ことを特徴とする内燃機関の排気弁装置。
1. An exhaust port communicating with a combustion chamber, an exhaust valve formed by forming a valve umbrella at a tip of a valve shaft protruding into the exhaust port, and an exhaust valve close to an upstream side of the valve shaft in an exhaust gas flow direction. Upstream rectifying wall projecting from the inner wall of the exhaust port along the valve shaft, and downstream side projecting from the inner wall of the exhaust port along the valve shaft in proximity to the downstream side in the flow direction of the valve shaft. A flow straightening wall, the width of the upstream flow straightening wall orthogonal to the flow is substantially the same as the axial diameter of the valve shaft in the portion close to the valve shaft, and from the valve shaft to the upstream in the flow direction. The width of the downstream side straightening wall is substantially the same as the shaft diameter of the valve shaft in the portion close to the valve shaft, and the width decreases as the distance from the valve shaft toward the downstream in the flow direction increases. An exhaust valve device for an internal combustion engine, characterized in that:
JP33569892A 1992-12-16 1992-12-16 Exhaust valve device of internal combustion engine Pending JPH06185318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33569892A JPH06185318A (en) 1992-12-16 1992-12-16 Exhaust valve device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33569892A JPH06185318A (en) 1992-12-16 1992-12-16 Exhaust valve device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06185318A true JPH06185318A (en) 1994-07-05

Family

ID=18291489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33569892A Pending JPH06185318A (en) 1992-12-16 1992-12-16 Exhaust valve device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06185318A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174873A (en) * 2009-02-02 2010-08-12 Mitsui Eng & Shipbuild Co Ltd Exhaust passage structure for internal combustion engine
JP2012117439A (en) * 2010-11-30 2012-06-21 Toyota Motor Corp Cylinder head exhaust port
JP2013104311A (en) * 2011-11-10 2013-05-30 Toyota Motor Corp Cylinder head
KR101338778B1 (en) * 2009-01-19 2013-12-06 미쯔이 죠센 가부시키가이샤 Structure of exhaust gas separation device of internal combustion engine
WO2014199717A1 (en) * 2013-06-12 2014-12-18 日産自動車株式会社 Cylinder head for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338778B1 (en) * 2009-01-19 2013-12-06 미쯔이 죠센 가부시키가이샤 Structure of exhaust gas separation device of internal combustion engine
JP2010174873A (en) * 2009-02-02 2010-08-12 Mitsui Eng & Shipbuild Co Ltd Exhaust passage structure for internal combustion engine
JP2012117439A (en) * 2010-11-30 2012-06-21 Toyota Motor Corp Cylinder head exhaust port
JP2013104311A (en) * 2011-11-10 2013-05-30 Toyota Motor Corp Cylinder head
WO2014199717A1 (en) * 2013-06-12 2014-12-18 日産自動車株式会社 Cylinder head for internal combustion engine
JP5994940B2 (en) * 2013-06-12 2016-09-21 日産自動車株式会社 Cylinder head of internal combustion engine

Similar Documents

Publication Publication Date Title
JPH10110650A (en) Exhaust port structure for internal combustion engine
JP2003343347A (en) Water jacket for cylinder head
JPS5932656B2 (en) engine intake system
JPS5913300Y2 (en) Internal combustion engine intake path device
JPH06185318A (en) Exhaust valve device of internal combustion engine
US6213090B1 (en) Engine cylinder head
JP2004124835A (en) Intake device of internal combustion engine
JPS6123380B2 (en)
JP3011920B2 (en) Cylinder liner cooling structure
JPS6347898B2 (en)
JPH09242602A (en) Cylinder head
JPS6352208B2 (en)
JPH08334003A (en) Cooling blade rear edge cooling system
JP2005248725A (en) Intake system for internal combustion engine
JPS6321687Y2 (en)
JP2004308473A (en) Air intake device for internal combustion engine
JP2004308472A (en) Intake device for internal combustion engine
JP2008274788A (en) Combustion chamber structure of engine
JP2558757Y2 (en) Part of engine liquid-cooled forced air cooling system
JPS6332911Y2 (en)
KR100434442B1 (en) Shroud of the engine cooling system
JPS6346668Y2 (en)
JPH06241111A (en) Cylinder block of water cooled type internal combustion engine
JP4650333B2 (en) Intake port of internal combustion engine
JP2004332656A (en) Indirect injection diesel engine