JP2010174873A - Exhaust passage structure for internal combustion engine - Google Patents

Exhaust passage structure for internal combustion engine Download PDF

Info

Publication number
JP2010174873A
JP2010174873A JP2009022049A JP2009022049A JP2010174873A JP 2010174873 A JP2010174873 A JP 2010174873A JP 2009022049 A JP2009022049 A JP 2009022049A JP 2009022049 A JP2009022049 A JP 2009022049A JP 2010174873 A JP2010174873 A JP 2010174873A
Authority
JP
Japan
Prior art keywords
exhaust passage
high temperature
valve
temperature chamber
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009022049A
Other languages
Japanese (ja)
Other versions
JP5350823B2 (en
Inventor
Motoyuki Takahashi
元幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009022049A priority Critical patent/JP5350823B2/en
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to CN2012101531494A priority patent/CN102678365A/en
Priority to CN201210153657.2A priority patent/CN102661208B/en
Priority to CN201210154057.8A priority patent/CN102678218B/en
Priority to CN2012101535673A priority patent/CN102661182A/en
Priority to KR1020100004240A priority patent/KR101279331B1/en
Priority to CN201010003754A priority patent/CN101818700A/en
Publication of JP2010174873A publication Critical patent/JP2010174873A/en
Priority to KR1020110127006A priority patent/KR101202626B1/en
Priority to KR1020120137662A priority patent/KR101338778B1/en
Priority to KR1020120137664A priority patent/KR101259332B1/en
Application granted granted Critical
Publication of JP5350823B2 publication Critical patent/JP5350823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust passage structure for an internal combustion engine, having greatly improved exhausting efficiency by actualizing the smooth flow of combustion gas in a high temperature chamber and a high temperature exhaust passage. <P>SOLUTION: The exhaust passage structure includes a main valve for exhausting operation, the high temperature chamber 12 for introducing high temperature combustion gas exhausted via the main valve, the high temperature exhaust passage 13 for exhausting the combustion gas from the high temperature chamber to the outside, a low temperature exhaust passage for exhausting low temperature combustion gas to the outside, and a sub valve for selecting the flow of the combustion gas into the high temperature exhaust passage or the low temperature exhaust passage. Herein, straightening vanes 17, 18 are provided on the inner wall face of the high temperature chamber for smoothly guiding the high temperature combustion gas from the high temperature chamber into the high temperature exhaust passage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気通路構造に関する。   The present invention relates to an exhaust passage structure for an internal combustion engine.

内燃機関、例えば、2サイクルのユニフロー型ディーゼル機関では、排気弁箱に1つの排気弁(以下、主弁という)が組み込まれ、この主弁を開閉させて、排気レシーバ(排気集合部)に燃焼ガス(排気ガス)を排気すると共に、掃気も行っている。この掃気は、シリンダライナ内壁に設けられた掃気口より掃気が導入されることにより行われる。また、この排気弁箱には、主弁とは別の副弁と、この副弁を介して分離される高温室と低温室とが設けられている。   In an internal combustion engine, for example, a two-cycle uniflow type diesel engine, one exhaust valve (hereinafter referred to as a main valve) is incorporated in an exhaust valve box, and the main valve is opened and closed, and combustion is performed in an exhaust receiver (exhaust collecting portion). While exhausting gas (exhaust gas), scavenging is also performed. This scavenging is performed by introducing scavenging from a scavenging port provided on the inner wall of the cylinder liner. Further, the exhaust valve box is provided with a sub valve different from the main valve, and a high temperature chamber and a low temperature chamber separated through the sub valve.

そして、主弁の開弁初期(排気の初期)に、シリンダから高い圧力と高い温度の燃焼ガスが高温室に導入され、当該高温室から高温排気通路を通して排気レシーバ(外部)へ排出される。また、主弁の開弁中期から閉弁するまで(排気の中期から後期)の間に、シリンダ内の残余の燃焼ガスが低温室に導入され、当該低温室から低温排気通路を通して外部に排出される(例えば、特許文献1参照)。   Then, at the initial opening of the main valve (the initial stage of exhaust), high pressure and high temperature combustion gas is introduced from the cylinder into the high temperature chamber, and is discharged from the high temperature chamber to the exhaust receiver (external) through the high temperature exhaust passage. In addition, the remaining combustion gas in the cylinder is introduced into the low temperature chamber during the period from the middle opening to the closing of the main valve (from the middle to the latter), and is discharged from the low temperature chamber through the low temperature exhaust passage. (For example, see Patent Document 1).

内燃機関の排気通路の構造として、整流板に対するマンガン酸化物の付着による堆積をなくして、整流板の目詰りを防止するようにした内燃機関の排気浄化装置が提案されている(例えば、特許文献2参照)。また、大型低圧ターボチャージ付きの内燃機関において、振動を有効に抑制できる排気レシーバを備えた内燃機関が提案されている(例えば、特許文献3参照)。   As an exhaust passage structure of an internal combustion engine, there has been proposed an exhaust purification device for an internal combustion engine in which accumulation due to adhesion of manganese oxide to the rectifying plate is eliminated and clogging of the rectifying plate is prevented (for example, patent document) 2). An internal combustion engine having an exhaust receiver that can effectively suppress vibration in an internal combustion engine with a large-sized low-pressure turbocharge has been proposed (see, for example, Patent Document 3).

実開平02−145617号公報(図1)Japanese Utility Model Publication No. 02-145617 (FIG. 1) 特開2007−182786号公報(3−4頁、図1)JP 2007-182786 A (page 3-4, FIG. 1) 特開平07−317558号公報(4頁、図2)JP 07-317558 A (page 4, FIG. 2)

しかしながら、従来の排気弁箱の排気通路の構造は、例えば、図4に示すような断面形状に形成される。そして、シリンダから排気弁箱5の排気口5aを通して高温室6に導入された燃焼ガスは、排気初期のために特にスワール(旋回流)は伴っておらず、高温排気通路7の出口7aの中心と高温室6の中心とを結ぶ中心線Lに対して、矢印で示すように、ほぼ左右対称の流れとなって排出され、高温排気通路7へと流れる。なお、図4において、燃焼ガスの流れを示す流線の長さが、その位置における流速を示している。   However, the structure of the exhaust passage of the conventional exhaust valve box is formed, for example, in a cross-sectional shape as shown in FIG. The combustion gas introduced into the high temperature chamber 6 from the cylinder through the exhaust port 5a of the exhaust valve box 5 is not particularly accompanied by swirl (swirl flow) for the initial stage of exhaust, and the center of the outlet 7a of the high temperature exhaust passage 7 With respect to the center line L connecting the center of the high temperature chamber 6 and the center line L, as shown by the arrows, it is discharged as a substantially symmetrical flow and flows to the high temperature exhaust passage 7. In FIG. 4, the length of the stream line indicating the flow of the combustion gas indicates the flow velocity at that position.

ここで、高温室6から排出される燃焼ガスは、高温排気通路7の出口7aと反対側の部位においては高温室6の内壁面6aに当たり、その一部が還流となって滞留して淀み、円滑な流れが阻害される。また、高温室6の高温排気通路7の出口7a側の部位においては、高温室6から排出された燃焼ガスの一部に渦が形成され、やはり円滑な流れが阻害される。   Here, the combustion gas discharged from the high temperature chamber 6 hits the inner wall surface 6a of the high temperature chamber 6 at a portion on the opposite side to the outlet 7a of the high temperature exhaust passage 7, and a part of the combustion gas stays in a reflux state. Smooth flow is hindered. Moreover, in the site | part by the side of the exit 7a of the high temperature exhaust passage 7 of the high temperature chamber 6, a vortex is formed in a part of combustion gas discharged | emitted from the high temperature chamber 6, and a smooth flow is also inhibited.

このため、高温室6内および高温室6から高温排気通路7内に流れる燃焼ガスの流れが悪くなる。この結果、高温排気通路7の最小断面積に見合った流量の燃焼ガスを排出させることができず、排気効率が極めて悪いという問題がある。   For this reason, the flow of the combustion gas flowing into the high temperature chamber 6 and the high temperature chamber 6 into the high temperature exhaust passage 7 is deteriorated. As a result, there is a problem that the combustion gas having a flow rate corresponding to the minimum cross-sectional area of the high-temperature exhaust passage 7 cannot be discharged, and the exhaust efficiency is extremely poor.

また、上記各特許文献1及び2においては、排気弁を開閉させて、高温室から高温排気通路を通して1つの排気レシーバ(排気集合部)に燃焼ガスを排出するようにした発明については、何ら開示されていない。   Further, in each of the above Patent Documents 1 and 2, there is no disclosure about an invention in which the exhaust valve is opened and closed, and the combustion gas is discharged from the high temperature chamber to one exhaust receiver (exhaust collecting portion) through the high temperature exhaust passage. It has not been.

本発明は、このような問題を解決するためになされたもので、高温の燃焼ガスを排気レシーバに排出するための排気弁箱内の、高温室及び高温排気通路における燃焼ガスの流れを円滑にし、これにより排気効率を著しく高めるようにした内燃機関の排気通路構造を提供することを課題とする。   The present invention has been made to solve such problems, and facilitates the flow of the combustion gas in the high temperature chamber and the high temperature exhaust passage in the exhaust valve box for discharging the high temperature combustion gas to the exhaust receiver. Therefore, an object of the present invention is to provide an exhaust passage structure for an internal combustion engine in which exhaust efficiency is remarkably increased.

上記の課題を解決するために、本発明が採用する手段は、シリンダ内の燃焼ガスの排気を行う主弁と、排気弁箱内に設けられてシリンダから主弁を介して排出された高温の燃焼ガスを導入する高温室と、排気弁箱内に設けられて高温室内の燃焼ガスを外部へ排出する高温排気通路と、排気弁箱内に設けられてシリンダから主弁を介して排出された低温の燃焼ガスを外部へ排出する低温排気通路と、排気弁箱内に設けられて高温排気通路と低温排気通路への燃焼ガスの流れを切り替える副弁とを備えた内燃機関の排気通路構造において、高温室の内壁面に高温室内に導入された高温の燃焼ガスを高温排気通路に円滑に導く整流板を設けたことにある。   In order to solve the above-mentioned problems, the means employed by the present invention includes a main valve for exhausting combustion gas in the cylinder, and a high-temperature exhaust valve provided in the exhaust valve box and discharged from the cylinder through the main valve. A high-temperature chamber that introduces combustion gas, a high-temperature exhaust passage that is provided in the exhaust valve box and discharges the combustion gas in the high-temperature chamber to the outside, and is provided in the exhaust valve box and is discharged from the cylinder through the main valve. In an exhaust passage structure of an internal combustion engine comprising a low-temperature exhaust passage for discharging low-temperature combustion gas to the outside, and a sub valve provided in the exhaust valve box for switching the flow of combustion gas to the high-temperature exhaust passage and the low-temperature exhaust passage A rectifying plate is provided on the inner wall surface of the high temperature chamber for smoothly guiding the high temperature combustion gas introduced into the high temperature chamber to the high temperature exhaust passage.

本発明において、主弁の開弁初期にシリンダから排出された高温の燃焼ガスは高温室に導入され、高温室から高温排気通路を通して外部へ排出される。ここで、高温室の内壁面に新たに設けた整流板は、シリンダから排出されて高温室に導入された燃焼ガスを、その滞留を無くして高温排気通路に円滑に流す。これにより、高温室及び高温排気通路内における燃焼ガスの流れが一様となり、その結果平均流速が速くなり、高温排気通路の最小断面積に見合った流量の燃焼ガスをスムーズに排出することができるようになる。   In the present invention, the high-temperature combustion gas discharged from the cylinder at the initial stage of opening of the main valve is introduced into the high-temperature chamber and discharged from the high-temperature chamber to the outside through the high-temperature exhaust passage. Here, the rectifying plate newly provided on the inner wall surface of the high temperature chamber smoothly flows the combustion gas discharged from the cylinder and introduced into the high temperature chamber into the high temperature exhaust passage without stagnation. As a result, the flow of the combustion gas in the high temperature chamber and the high temperature exhaust passage becomes uniform, and as a result, the average flow velocity becomes faster, and the combustion gas having a flow rate corresponding to the minimum cross-sectional area of the high temperature exhaust passage can be discharged smoothly. It becomes like this.

上記内燃機関の排気通路構造において、整流板は、高温排気通路の出口側と反対側に、かつ出口側の中心に向けて設けられた第1の整流板からなることが望ましい。   In the exhaust passage structure of the internal combustion engine, the rectifying plate is preferably formed of a first rectifying plate provided on the opposite side to the outlet side of the high temperature exhaust passage and toward the center of the outlet side.

このように、高温室の内壁面の高温排気通路の出口側と反対側に、かつ出口側の中心に向けて第1の整流板を設けることにより、シリンダから高温室に導入された燃焼ガスを第1の整流板の両側に略均等に分けて、かつ高温室の内壁面に沿って流すことができ、当該部位における燃焼ガスの干渉や滞留が有効に防止される。これにより、燃焼ガスの流れが極めて円滑になる。   Thus, by providing the first rectifying plate on the inner wall surface of the high temperature chamber opposite to the outlet side of the high temperature exhaust passage and toward the center of the outlet side, the combustion gas introduced from the cylinder into the high temperature chamber can be reduced. It can be divided substantially equally on both sides of the first rectifying plate and flow along the inner wall surface of the high temperature chamber, and the interference and stagnation of the combustion gas at the portion can be effectively prevented. Thereby, the flow of combustion gas becomes very smooth.

上記内燃機関の排気通路構造において、整流板は、高温排気通路の出口側に、かつ出口側の中心に向けて設けられた第2の整流板からなることが望ましい。   In the exhaust passage structure of the internal combustion engine, the rectifying plate is preferably composed of a second rectifying plate provided on the outlet side of the high-temperature exhaust passage and toward the center of the outlet side.

このように、高温室の内壁面の高温排気通路の出口側に、かつ出口側の中心に向けて第2の整流板を設けることにより、シリンダから導入された燃焼ガスを第2の整流板の両側に略均等に分けて高温排気通路に流すことができ、当該部位における燃焼ガスの干渉や滞留が有効に防止される。これにより、燃焼ガスの流れが極めて円滑になる。   Thus, by providing the second rectifying plate on the outlet side of the high-temperature exhaust passage on the inner wall surface of the high-temperature chamber and toward the center of the outlet side, the combustion gas introduced from the cylinder is allowed to flow out of the second rectifying plate. It is possible to divide the gas into the high-temperature exhaust passage approximately equally on both sides, and effectively prevent the combustion gas from interfering with or staying at that portion. Thereby, the flow of combustion gas becomes very smooth.

上記内燃機関の排気通路構造において、第1の整流板は、両側面が高温排気通路の出口側の中心に向う先端から高温室の内壁面に向って、円弧状の凹曲面をなすように広がっていることが望ましい。   In the exhaust passage structure of the internal combustion engine, the first rectifying plate spreads so as to form an arc-shaped concave curved surface from the tip of both side surfaces toward the center of the outlet side of the high temperature exhaust passage toward the inner wall surface of the high temperature chamber. It is desirable that

このように、高温室に設けた第1の整流板の両側面を、高温排気通路の出口側の中心に向う先端から高温室の内壁面に向って、円弧状の凹曲面をなすように広げて形成すること
により、高温室に導入された燃焼ガスを凹曲面に沿って両側に略均等に、高温室の内壁面に向けて滑らかに流すことでき、燃焼ガスの流れをさらに円滑にすることができる。
In this way, both side surfaces of the first rectifying plate provided in the high temperature chamber are widened so as to form an arc-shaped concave curved surface from the tip toward the center of the outlet side of the high temperature exhaust passage toward the inner wall surface of the high temperature chamber. The combustion gas introduced into the high temperature chamber can be made to flow smoothly toward the inner wall surface of the high temperature chamber substantially evenly on both sides along the concave curved surface, thereby further smoothing the flow of the combustion gas. Can do.

上記内燃機関の排気通路構造において、上記第2の整流板は、両側面が高温排気通路の出口側の中心に向う先端から高温室の内壁面に向って、円弧状の凹曲面をなすように広がっていることことが望ましい。   In the exhaust passage structure of the internal combustion engine, the second rectifying plate has an arc-shaped concave curved surface from a tip facing both sides to the center of the outlet side of the high temperature exhaust passage toward the inner wall surface of the high temperature chamber. It is desirable to spread.

このように、高温室に設けた第2の整流板の両側面を、高温排気通路の出口側の中心に向う先端から高温室の内壁面に向って、円弧状の凹曲面をなすように広げて形成することにより、高温室から排出される燃焼ガスを凹曲面に沿って両側に略均等に流して、高温排気通路に滑らかに流れるようにする。これにより、燃焼ガスの流れをさらに円滑にすることができる。   In this way, both side surfaces of the second rectifying plate provided in the high temperature chamber are widened so as to form an arc-shaped concave curved surface from the tip toward the center of the outlet side of the high temperature exhaust passage toward the inner wall surface of the high temperature chamber. Thus, the combustion gas discharged from the high temperature chamber is made to flow substantially evenly on both sides along the concave curved surface so that it flows smoothly into the high temperature exhaust passage. Thereby, the flow of combustion gas can be made smoother.

上記内燃機関の排気通路構造において、高温室の入口近傍の内壁面を凸状の曲面をなして膨出させてなる膨出部を高温室内に設けることが望ましい。   In the exhaust passage structure of the internal combustion engine, it is desirable to provide a bulging portion in which the inner wall surface in the vicinity of the inlet of the high temperature chamber bulges in a convex curved surface in the high temperature chamber.

高温室の入口近傍では、内壁面に沿ってシリンダから高温室内へ導入される燃焼ガスに渦が形成されやすい。しかし、このように、高温室の入口近傍の内壁面を凸状の曲面をなして膨出させてなる膨出部を高温室内に設けることにより、シリンダからの燃焼ガスが高温室の入口近傍で高温室の内壁面に沿って流れるようになり、シリンダから導入される燃焼ガスが高温室内へ、そして高温排気通路へと滑らかに流れるようになる。   In the vicinity of the entrance of the high greenhouse, vortices are easily formed in the combustion gas introduced from the cylinder into the high temperature chamber along the inner wall surface. However, in this way, by providing a bulging portion in the high temperature chamber in which the inner wall surface in the vicinity of the inlet of the high temperature chamber forms a convex curved surface, the combustion gas from the cylinder is near the inlet of the high temperature chamber. The gas flows along the inner wall of the high greenhouse, and the combustion gas introduced from the cylinder flows smoothly into the high temperature chamber and into the high temperature exhaust passage.

上記内燃機関の排気通路構造において、膨出部は、高温室の入口を取り巻くように環状に形成されることが望ましい。このように、膨出部を高温室の入口を取り巻くように環状に形成することにより、この膨出部による燃焼ガスの流れの円滑化を一段と高めることができる。   In the exhaust passage structure of the internal combustion engine, it is preferable that the bulging portion is formed in an annular shape so as to surround the inlet of the high temperature chamber. In this way, by forming the bulging portion in an annular shape so as to surround the inlet of the high temperature chamber, the smoothening of the flow of combustion gas by the bulging portion can be further enhanced.

上記内燃機関の排気通路構造において、副弁の弁ステムを支持する支持部材に取り付けられた略逆円錐形状をなす整流部材の先端部を、円弧状の凹曲面をなすように縮径させて主弁側へ延出させることが望ましい。   In the exhaust passage structure of the internal combustion engine, the tip of the rectifying member having a substantially inverted conical shape attached to the support member that supports the valve stem of the subvalve is reduced in diameter so as to form an arcuate concave curved surface. It is desirable to extend to the valve side.

このように、副弁の弁ステムを支持する支持部材に取り付けられた整流部材の先端部を円弧状の凹曲面をなして主弁側へ延出形成することにより、シリンダからの燃焼ガスを高温室内へ、そして高温排気通路へ円滑に導くことが可能となり、燃焼ガスの流れを一段と円滑にすることができる。   In this way, the tip of the rectifying member attached to the support member that supports the valve stem of the auxiliary valve is formed to extend toward the main valve side by forming an arcuate concave curved surface, so that the combustion gas from the cylinder is heated to a high temperature. It is possible to smoothly guide into the room and into the high-temperature exhaust passage, and the flow of the combustion gas can be further smoothed.

上記内燃機関の排気通路構造において、副弁の弁ステムを支持する支持部材に取り付けられた略逆円錐形状をなす整流部材の先端部を上記膨出部の凸状曲面と対応する円弧状の凹曲面をなすように縮径させて主弁側へ延出させて、整流部材の先端部と高温室の膨出部とが共働するようにすることが望ましい。   In the exhaust passage structure of the internal combustion engine, the arcuate concave portion corresponding to the convex curved surface of the bulging portion is formed at the tip of the rectifying member having a substantially inverted conical shape attached to the support member that supports the valve stem of the sub valve. It is desirable to reduce the diameter so as to form a curved surface and to extend to the main valve side so that the tip portion of the rectifying member and the bulging portion of the high temperature chamber cooperate.

また、上記内燃機関の排気通路構造において、副弁の弁ステムを支持する支持部材に取り付けられた略逆円錐形状をなす整流部材の先端部を、円弧状の凹曲面をなすように縮径させて主弁側へ延出させると共に、副弁が高温室を開弁するように作動したときに高温室の膨出部と対向するように形成することが望ましい。   Further, in the exhaust passage structure of the internal combustion engine, the tip of the rectifying member having a substantially inverted conical shape attached to the support member that supports the valve stem of the subvalve is reduced in diameter so as to form an arcuate concave curved surface. It is desirable to form the main valve so as to face the bulging portion of the high temperature chamber when the sub valve is operated to open the high temperature chamber.

このように、副弁の弁ステムを支持する支持部材に取り付けられた整流部材の先端部を高温排気通路に設けた膨出部の凸状の曲面と対応する凹曲面として高温室の膨出部とが共働するようにすることにより、また、副弁が高温室を開弁するように作動したときに高温室の膨出部と対向するように形成することにより、排気通路の形状が一段と滑らかになり
、シリンダからの燃焼ガスを高温室及び高温排気通路へさらに円滑に導くことができる。
In this way, the bulging part of the high temperature chamber is formed as a concave curved surface corresponding to the convex curved surface of the bulging part provided in the high temperature exhaust passage with the tip of the rectifying member attached to the support member supporting the valve stem of the sub valve. And the auxiliary valve is formed so as to face the bulging portion of the high temperature chamber when the auxiliary valve is operated to open the high temperature chamber, thereby further increasing the shape of the exhaust passage. It becomes smooth and the combustion gas from the cylinder can be more smoothly guided to the high temperature chamber and the high temperature exhaust passage.

以上詳細に説明したように、本発明の内燃機関の排気通路構造は、シリンダ内の燃焼ガスの排気を行う主弁と、排気弁箱内に設けられてシリンダから主弁を介して排出された高温の燃焼ガスを導入する高温室と、排気弁箱内に設けられて高温室内の燃焼ガスを外部へ排出する高温排気通路と、排気弁箱内に設けられてシリンダから主弁を介して排出された低温の燃焼ガスを外部へ排出する低温排気通路と、排気弁箱内に設けられて高温排気通路と低温排気通路への燃焼ガスの流れを切り替える副弁とを備えた内燃機関の排気通路構造において、高温室の内壁面に高温室内に導入された高温の燃焼ガスを高温排気通路に円滑に導く整流板を設ける。   As described above in detail, the exhaust passage structure of the internal combustion engine of the present invention is provided with a main valve for exhausting the combustion gas in the cylinder and the exhaust valve box, and is discharged from the cylinder through the main valve. A high-temperature chamber for introducing high-temperature combustion gas, a high-temperature exhaust passage that is provided in the exhaust valve box and discharges the combustion gas in the high-temperature chamber to the outside, and is provided in the exhaust valve box and discharged from the cylinder through the main valve An exhaust passage for an internal combustion engine comprising a low-temperature exhaust passage for discharging the generated low-temperature combustion gas to the outside, and a sub valve provided in the exhaust valve box for switching the flow of the combustion gas to the high-temperature exhaust passage and the low-temperature exhaust passage In the structure, a rectifying plate for smoothly guiding the high-temperature combustion gas introduced into the high-temperature chamber to the high-temperature exhaust passage is provided on the inner wall surface of the high-temperature chamber.

したがって、高温の燃焼ガスを外部へ排出するための高温室と高温排気通路における燃焼ガスの流れが一様となり、その結果平均流速が速くなり、高温排気通路の最小断面積に見合った流量の燃焼ガスをスムーズに排出することができる。すなわち、高温室と高温排気通路における燃焼ガスの流れが極めて円滑になり、内燃機関の排気効率を著しく高めることができる、という優れた効果を奏する。   Therefore, the flow of combustion gas in the high-temperature chamber and high-temperature exhaust passage for discharging high-temperature combustion gas to the outside becomes uniform, resulting in a faster average flow velocity, and combustion at a flow rate commensurate with the minimum cross-sectional area of the high-temperature exhaust passage. Gas can be discharged smoothly. That is, there is an excellent effect that the flow of the combustion gas in the high temperature chamber and the high temperature exhaust passage becomes extremely smooth, and the exhaust efficiency of the internal combustion engine can be remarkably increased.

本発明の一実施形態に係る内燃機関の排気通路構造を適用したディーゼル機関の排気弁箱の要部断面図である。It is principal part sectional drawing of the exhaust valve box of the diesel engine to which the exhaust passage structure of the internal combustion engine which concerns on one Embodiment of this invention is applied. 図1に示した排気弁箱の矢線II−IIに沿う要部断面図である。It is principal part sectional drawing in alignment with the arrow II-II of the exhaust valve box shown in FIG. 図2に示した高温室と高温排気通路における燃焼ガスの流れを模式的に示した説明図である。It is explanatory drawing which showed typically the flow of the combustion gas in the high temperature chamber and high temperature exhaust passage which were shown in FIG. 従来の排気通路構造における高温室と高温排気通路における燃焼ガスの流れを模式的に示した説明図である。It is explanatory drawing which showed typically the flow of the combustion gas in the high temperature chamber and high temperature exhaust passage in the conventional exhaust passage structure.

本発明の内燃機関の排気通路構造の発明を実施するための形態を、図1及び2を参照して詳細に説明する。   A mode for carrying out the invention of an exhaust passage structure for an internal combustion engine according to the present invention will be described in detail with reference to FIGS.

図1は、本発明に係る内燃機関の排気通路構造を適用した排気弁箱の要部断面図である。図1に示すように排気弁箱11は、シリンダブロック1の弁座2に装着されており、主弁21と、排気弁箱11の高温室12と、高温室12に連通する高温排気通路13と、低温室14(低温排気通路)と、低温室14と連通する低温排気通路15とを備え、さらに、高温室12及び高温排気通路13の側と、低温室14及び低温排気通路15の側との燃焼ガスの流れを切り替える副弁25を備えている。   FIG. 1 is a sectional view of an essential part of an exhaust valve box to which an exhaust passage structure for an internal combustion engine according to the present invention is applied. As shown in FIG. 1, the exhaust valve box 11 is mounted on the valve seat 2 of the cylinder block 1, and the main valve 21, the high temperature chamber 12 of the exhaust valve box 11, and the high temperature exhaust passage 13 communicating with the high temperature chamber 12. A low-temperature chamber 14 (low-temperature exhaust passage), and a low-temperature exhaust passage 15 communicating with the low-temperature chamber 14. Further, the high-temperature chamber 12 and the high-temperature exhaust passage 13 side, and the low-temperature chamber 14 and the low-temperature exhaust passage 15 side. And a sub valve 25 for switching the flow of the combustion gas.

また、主弁21の開弁動作を行わせる図示しない油圧シリンダと、油圧シリンダブロック30に設けられて副弁25の切り替え動作を行なう複数の、例えば3本の油圧シリンダ31と、主弁21の弁ステム22の上部に固定されて主弁21の復旧動作を行わせる図示しない空気ピストンと、副弁25の弁ステム26の上部に固定されて副弁25の復旧動作を行わせる空気ピストン29と、主弁21の空気ピストンと副弁25の空気ピストン29を収容して空気圧を付与するための空気ばね室36を形成するケーシング35とを備えた構成とされる。   Further, a hydraulic cylinder (not shown) that opens the main valve 21, a plurality of, for example, three hydraulic cylinders 31 that are provided in the hydraulic cylinder block 30 and perform the switching operation of the sub valve 25, and the main valve 21 An air piston (not shown) that is fixed to the upper portion of the valve stem 22 to perform the recovery operation of the main valve 21, and an air piston 29 that is fixed to the upper portion of the valve stem 26 of the subvalve 25 to perform the recovery operation of the subvalve 25. The casing includes a casing 35 that houses an air piston of the main valve 21 and an air piston 29 of the sub-valve 25 and forms an air spring chamber 36 for applying air pressure.

この排気弁箱11は、一例として、2サイクルのユニフロー型ディーゼル機関に適用した場合を示している。この2サイクルのユニフロー型ディーゼル機関においては、シリンダライナ側壁に掃気口があり、主弁21は排気及び掃気を行なう。   As an example, the exhaust valve box 11 is applied to a two-cycle uniflow diesel engine. In this two-cycle uniflow type diesel engine, there is a scavenging port on the side wall of the cylinder liner, and the main valve 21 performs exhaust and scavenging.

主弁21の開弁動作は、高圧の油圧によって動作する前記油圧シリンダが弁ステム22を図中下方に押動することにより行われる。また、その閉弁動作(復旧動作)は、弁ステム22に取り付けられた前記空気ピストンが、弁ステム22を図中上方に引き上げることにより行われる。即ち、前記空気ピストンの下方に形成された空気ばね室36内の空気圧が、主弁21の閉弁動作の作動源となっている。   The valve opening operation of the main valve 21 is performed by pushing the valve stem 22 downward in the figure by the hydraulic cylinder that is operated by high pressure oil pressure. The valve closing operation (recovery operation) is performed by the air piston attached to the valve stem 22 pulling up the valve stem 22 upward in the drawing. That is, the air pressure in the air spring chamber 36 formed below the air piston is the operating source for the valve closing operation of the main valve 21.

副弁25の切り替え動作は、油圧シリンダブロック30に設けられた複数の油圧シリンダ31が高圧の油圧によって動作して、空気ピストン29を図中上方に押動することにより行われる。また、その復旧動作は、油圧シリンダ31の油圧を逃がし、空気ピストン29により弁ステム26を図中下方に押動することにより行われる。即ち、空気ピストン29の上方に形成された空気ばね室36内の空気圧が、副弁25の復旧動作の作動源となっている。   The switching operation of the sub valve 25 is performed by operating a plurality of hydraulic cylinders 31 provided in the hydraulic cylinder block 30 by high pressure oil pressure to push the air piston 29 upward in the drawing. Further, the recovery operation is performed by releasing the hydraulic pressure of the hydraulic cylinder 31 and pushing the valve stem 26 downward in the figure by the air piston 29. That is, the air pressure in the air spring chamber 36 formed above the air piston 29 serves as an operating source for the recovery operation of the sub valve 25.

副弁25は、直円筒形状をなし、その外径が排気弁箱11の排気口11aよりも僅かに小径とされ、その内径が弁座2の排気口2aと略同径とされている。尚、排気弁箱11の排気口11aは、弁座2の排気口2aよりも大径とされている。この副弁25は、その内周面が弁ステム26の外周面に複数の板状の輻(スポーク)25aにより連設されている。そして、シリンダ3から排出された燃焼ガスは、これらの輻25aの間を通して高温室12内に排出される。   The sub-valve 25 has a right cylindrical shape, and its outer diameter is slightly smaller than the exhaust port 11a of the exhaust valve box 11, and its inner diameter is substantially the same as the exhaust port 2a of the valve seat 2. The exhaust port 11 a of the exhaust valve box 11 has a larger diameter than the exhaust port 2 a of the valve seat 2. The sub-valve 25 has an inner peripheral surface connected to the outer peripheral surface of the valve stem 26 by a plurality of plate-like radii (spokes) 25a. And the combustion gas discharged | emitted from the cylinder 3 is discharged | emitted in the high temperature chamber 12 through between these radiation 25a.

また、副弁25は、その先端にスカート部25bが形成されている。このスカート部25bは、後端の外径が先端の外径よりも大径の截頭円錐筒体形状(円錐台形状)をなしている。先端の外径は排気弁箱11の排気口11aよりも僅かに小径とされ、後端の外周面は排気弁箱11の排気口11aの内周面に摺接可能とされる。そして、直円筒形状をなす副弁25の先端が、スカート部25bの内周面の略中央部に連設されている。   The auxiliary valve 25 has a skirt portion 25b formed at the tip thereof. The skirt portion 25b has a truncated conical cylindrical shape (conical truncated cone shape) in which the outer diameter of the rear end is larger than the outer diameter of the front end. The outer diameter of the front end is slightly smaller than the exhaust port 11a of the exhaust valve box 11, and the outer peripheral surface of the rear end can be slidably contacted with the inner peripheral surface of the exhaust port 11a of the exhaust valve box 11. And the front-end | tip of the subvalve 25 which makes a right cylindrical shape is provided in a row by the substantially center part of the internal peripheral surface of the skirt part 25b.

副弁25は、空気ピストン29により復旧動作されて図示の位置に切り替えられたときに、スカート部25bが排気弁箱11の排気口11a内に挿入され、後端の外周面が排気口11aの内周面に摺接して、弁座2の排気口2aを通してシリンダ3と連通する。そして、副弁25がシリンダ3と高温室12とを連通させると共に、低温室14を閉塞する。   When the auxiliary valve 25 is restored by the air piston 29 and switched to the position shown in the figure, the skirt portion 25b is inserted into the exhaust port 11a of the exhaust valve box 11, and the outer peripheral surface of the rear end is the exhaust port 11a. It is in sliding contact with the inner peripheral surface and communicates with the cylinder 3 through the exhaust port 2 a of the valve seat 2. The auxiliary valve 25 allows the cylinder 3 and the high temperature chamber 12 to communicate with each other and closes the low temperature chamber 14.

副弁25は、主弁21が開弁し始めた初期(排気の初期)に図示の位置に保持され、シリンダ3内の高温高圧の燃焼ガスを高温室12に排出させ、高温室12から高温排気通路13に排出させ、開弁の中期以降に低温室14側に切り替えられて、シリンダ3内の残余の燃焼ガス(掃気)が、低温室14及び低温排気通路15に排出させる。   The auxiliary valve 25 is held at the position shown in the initial stage when the main valve 21 starts to open (the initial stage of exhaust), and discharges the high-temperature and high-pressure combustion gas in the cylinder 3 to the high-temperature chamber 12, and the high-temperature chamber 12 The exhaust gas is discharged to the exhaust passage 13 and switched to the low temperature chamber 14 side after the middle of the valve opening, and the remaining combustion gas (scavenging) in the cylinder 3 is discharged to the low temperature chamber 14 and the low temperature exhaust passage 15.

図2に示すように、高温室12は、高温排気通路13の出口13aの中心と、排気口11a及び高温室12の中心Oとを結ぶ中心線Lに対して略対称形状に形成されており、高温室12には、シリンダ3から主弁21を介して排出された燃焼ガスの流れを円滑にするための整流板17,18が設けられている。   As shown in FIG. 2, the high temperature chamber 12 is formed in a substantially symmetric shape with respect to a center line L connecting the center of the outlet 13 a of the high temperature exhaust passage 13 and the center O of the exhaust port 11 a and the high temperature chamber 12. The high temperature chamber 12 is provided with rectifying plates 17 and 18 for smoothing the flow of the combustion gas discharged from the cylinder 3 through the main valve 21.

図1に示すように、整流板17,18は、高温室12の軸方向(図中上下方向)に沿って、即ち、シリンダ3から排出される燃焼ガスの排出方向に沿って、かつ高温排気通路13の中心線L上に、高温排気通路13の出口13aの方向に向けて形成されている。   As shown in FIG. 1, the rectifying plates 17, 18 are arranged along the axial direction (vertical direction in the drawing) of the high temperature chamber 12, that is, along the discharge direction of the combustion gas discharged from the cylinder 3 and high temperature exhaust. On the center line L of the passage 13, it is formed in the direction of the outlet 13 a of the high temperature exhaust passage 13.

整流板17は、第1の整流板とされ、高温室12の内壁面12aに、かつ高温排気通路13の出口13aと反対側に配置されており、図1に示すように、高温室12の略全高に亘り形成されている。整流板18は、第2の整流板とされ、高温室12の高温排気通路13の出口13a側に、図1に示すように、高温室12の上壁面から高温室12の略中央高さ近傍まで、垂下して形成されている。   The rectifying plate 17 is a first rectifying plate, and is disposed on the inner wall surface 12a of the high temperature chamber 12 and on the side opposite to the outlet 13a of the high temperature exhaust passage 13, and as shown in FIG. It is formed over almost the entire height. The rectifying plate 18 is a second rectifying plate, on the outlet 13 a side of the high temperature exhaust passage 13 of the high temperature chamber 12, as shown in FIG. 1, near the approximate center height of the high temperature chamber 12 from the upper wall surface of the high temperature chamber 12. Until it is drooping.

図2に示すように、高温室12の内壁面12aの高温排気通路13の出口13a側と反対側は、出口13a側に比べて、シリンダ3の内径、より具体的には排気弁箱11の排気口11aとの間の間隔が狭く、従って、整流板17の高さ(高温排気通路13の中心線L方向の長さ)を高く(長く)することができない。   As shown in FIG. 2, the inner wall surface 12a of the high temperature chamber 12 is opposite to the outlet 13a side of the high temperature exhaust passage 13 on the inner side of the cylinder 3, more specifically the exhaust valve box 11, compared to the outlet 13a side. Therefore, the height of the current plate 17 (the length of the high-temperature exhaust passage 13 in the direction of the center line L) cannot be increased (lengthened).

このため、整流板17は、整流板18よりも低く(高温排気通路13の中心線L方向の長さを短く)形成され、整流板18の略半分程度とされている。整流板18は、高温排気通路13の出口13a側に向けて、整流板17よりも高く(中心線Lに沿って出口13a方向に長く)形成されている。   For this reason, the rectifying plate 17 is formed lower than the rectifying plate 18 (the length of the high-temperature exhaust passage 13 in the direction of the center line L) is approximately half of the rectifying plate 18. The rectifying plate 18 is formed higher than the rectifying plate 17 toward the outlet 13a side of the high-temperature exhaust passage 13 (longer in the direction of the outlet 13a along the center line L).

整流板17は、両側面17aが先端から高温室12の内壁面12aに向って、例えば、曲率半径R1 の円弧状の凹曲面をなすように広がって形成されている。同様に整流板18は、両側面18aが先端から高温室12の内壁面12aに向って、例えば、曲率半径R2 の円弧状の凹曲面をなすように広がって形成されている。   The rectifying plate 17 is formed such that both side surfaces 17a extend from the tip toward the inner wall surface 12a of the high temperature chamber 12 so as to form, for example, an arcuate concave curved surface having a radius of curvature R1. Similarly, the rectifying plate 18 is formed such that both side surfaces 18a extend from the tip toward the inner wall surface 12a of the high temperature chamber 12 so as to form, for example, an arc-shaped concave curved surface having a curvature radius R2.

このように整流板17,18の両側面17a,18aを、先端から高温室12の内壁面12aに向って円弧状の凹曲面をなして広がるように形成することにより、シリンダ3から高温室12に排出された燃焼ガスの流れを円滑にすることが可能となる。また、高温室12の内径は、高温排気通路13の内径よりも大径であり、高温室12と高温排気通路13の入口との連設部13c,13dは、滑らかな曲面とされている。   Thus, by forming the both side surfaces 17a, 18a of the rectifying plates 17, 18 so as to spread from the tip toward the inner wall surface 12a of the high temperature chamber 12 with an arc-shaped concave curved surface, the high temperature chamber 12 from the cylinder 3 is formed. This makes it possible to make the flow of the combustion gas discharged smoothly. Moreover, the internal diameter of the high temperature chamber 12 is larger than the internal diameter of the high temperature exhaust passage 13, and the connecting portions 13c and 13d between the high temperature chamber 12 and the inlet of the high temperature exhaust passage 13 are smooth curved surfaces.

例えば、高温排気通路13の出口13aの内径をD0 、図1に示す主弁21のバルブフェース(弁当り面)21aの直径をDv 、副弁25の通路内径をD1 とした場合、整流板17の側面17aの曲率半径R1 は、通路出口直径D0 の約0.2〜0.5倍、整流板18の側面18aの曲率半径R2 は、通路出口直径D0 の約0.3〜1.0倍程度とされる。また、副弁25の通路内径D1 と主弁21のバルブフェース(弁当り面)21aの直径Dvとの比D1 /Dv は、約0.9〜1.2程度とされる。   For example, when the inner diameter of the outlet 13a of the high-temperature exhaust passage 13 is D0, the diameter of the valve face (valve contact surface) 21a of the main valve 21 shown in FIG. The radius of curvature R1 of the side surface 17a is about 0.2 to 0.5 times the passage outlet diameter D0, and the radius of curvature R2 of the side surface 18a of the rectifying plate 18 is about 0.3 to 1.0 times the passage outlet diameter D0. It is said to be about. The ratio D1 / Dv between the passage inner diameter D1 of the auxiliary valve 25 and the diameter Dv of the valve face (valve contact surface) 21a of the main valve 21 is about 0.9 to 1.2.

図1に示すように、高温室12の入口12c近傍の図示下側の内壁面12aを図示上方に向けて凸状の曲面をなして膨出し、高温室12内に膨出部12bを形成する。膨出部12bは、高温室12の入口12cを取り巻くように環状に形成することが望ましい。ただし、膨出部12bは、必ずしも入口12cの全体を取り巻くように環状とする必要はなく、例えば高温排気通路13側の図示下側の内壁面12aにのみ形成してもよい。   As shown in FIG. 1, the lower inner wall surface 12 a in the vicinity of the inlet 12 c of the high temperature chamber 12 bulges upward in the drawing to form a convex curved surface, and a bulging portion 12 b is formed in the high temperature chamber 12. . The bulging portion 12b is desirably formed in an annular shape so as to surround the inlet 12c of the high temperature chamber 12. However, the bulging portion 12b does not necessarily have an annular shape so as to surround the entire inlet 12c. For example, the bulging portion 12b may be formed only on the lower inner wall surface 12a in the drawing on the high temperature exhaust passage 13 side.

また、副弁25の弁ステム26を貫通させて支持する油圧シリンダブロック30の下端部に、略逆円錐形状をなす整流部材27が設けられており、この整流部材27の先端部27aは、高温室12の膨出部12bと対向する外面が、膨出部12bの凸状曲面と対応する円弧状の凹曲面をなす凹曲面部27bとされ、副弁25に向って縮径しながら主弁21の側へ延出している。   Further, a rectifying member 27 having a substantially inverted conical shape is provided at the lower end portion of the hydraulic cylinder block 30 that penetrates and supports the valve stem 26 of the sub-valve 25, and the tip portion 27a of the rectifying member 27 has a high temperature. The outer surface of the chamber 12 facing the bulging portion 12b is a concave curved surface portion 27b having an arcuate concave curved surface corresponding to the convex curved surface of the bulging portion 12b. It extends to the 21 side.

高温室12の入口12c近傍の図示下側の内壁面12aに凸状曲面からなる膨出部12bを設け、これと対向する整流部材27の先端部27aに、この膨出部12bの凸状曲面と対応する凹曲面部27bを設けることにより、高温室12の膨出部12bと整流部材27の先端部27aとが共働して、それらの相互作用により、燃焼ガスをシリンダ3から高温室12内へ、そして高温排気通路13へと円滑に排出する。   A bulging portion 12b having a convex curved surface is provided on the lower inner wall surface 12a in the vicinity of the entrance 12c of the high greenhouse 12, and a convex curved surface of the bulging portion 12b is provided at the tip portion 27a of the rectifying member 27 facing the bulging portion. By providing the corresponding concave curved surface portion 27b, the bulging portion 12b of the high temperature chamber 12 and the tip end portion 27a of the rectifying member 27 cooperate with each other, and the combustion gas is transferred from the cylinder 3 to the high temperature chamber 12 by their interaction. The air is smoothly discharged into the high-temperature exhaust passage 13.

図3は、図2に示す高温室12及び高温排気通路13内における燃焼ガスの流れの一例を示すものである。シリンダ3から排気弁箱11の排出口11aを通して高温室12内へ排出された燃焼ガスは、整流板17の凹曲面をなす両側面17aに沿って左右に略均等に
分けられて流れることにより干渉が阻止され、さらに高温室12の内壁面12aに沿って高温排気通路13方向に向って流れる。
FIG. 3 shows an example of the flow of combustion gas in the high temperature chamber 12 and the high temperature exhaust passage 13 shown in FIG. Combustion gas discharged from the cylinder 3 into the high temperature chamber 12 through the discharge port 11a of the exhaust valve box 11 is interfered by flowing substantially equally on the left and right along both side surfaces 17a forming the concave curved surface of the rectifying plate 17. Is prevented, and further flows along the inner wall surface 12 a of the high temperature chamber 12 toward the high temperature exhaust passage 13.

整流板17と整流板18との間から排出された燃焼ガスは、高温室12の内壁面12aに沿って高温排気通路13に向って流れる。また、高温室12の整流板18近傍から排出された燃焼ガスは、整流板18の凹状曲面をなす両側面18aに沿うようにして、高温排気通路13に向かって流れる。しかも、両側面18aの中心線L方向の長さが長い(高い)ために、中心線Lの両側に長い距離に亘り略均等に分けられることにより、相互に干渉することが阻止されて円滑に流れる。   The combustion gas discharged from between the rectifying plate 17 and the rectifying plate 18 flows toward the high temperature exhaust passage 13 along the inner wall surface 12 a of the high temperature chamber 12. Further, the combustion gas discharged from the vicinity of the rectifying plate 18 in the high temperature chamber 12 flows toward the high temperature exhaust passage 13 along both side surfaces 18 a forming the concave curved surface of the rectifying plate 18. Moreover, since the length of both side surfaces 18a in the direction of the center line L is long (high), the two sides of the center line L are divided almost equally over both sides of the center line L, thereby preventing interference with each other and smoothly. Flowing.

尚、図3において、流線の長さがその位置における燃焼ガスの流速を表している。これにより、高温室12及び高温排気通路13の通路抵抗を大幅に改善することが可能となり、高温室12内における燃焼ガスの円還流による滞留や、高温排気通路13の入口近傍における燃焼ガスの滞留が解消されて、高温排気通路13の最小断面積に見合った流量の燃焼ガスを排気することが可能となり、排気効率が著しく向上する。   In FIG. 3, the length of the streamline represents the flow velocity of the combustion gas at that position. As a result, the passage resistance of the high temperature chamber 12 and the high temperature exhaust passage 13 can be greatly improved. The retention of the combustion gas in the high temperature chamber 12 due to circular recirculation and the retention of the combustion gas in the vicinity of the inlet of the high temperature exhaust passage 13 Is eliminated, and it becomes possible to exhaust the combustion gas at a flow rate corresponding to the minimum cross-sectional area of the high-temperature exhaust passage 13, and the exhaust efficiency is remarkably improved.

また、高温室の形状を高温排気通路の出口に対して対称形状、即ち、高温排気通路の中心線に対して対称形状としたことにより、シリンダから導入された燃焼ガスを、中心線Lに対して両側に略均等に分けて、高温排気通路に排出することが可能となり、整流板と相俟って、高温室内における燃焼ガスの滞留を少なくすることが可能となる。   Further, the shape of the high-temperature chamber is symmetrical with respect to the outlet of the high-temperature exhaust passage, that is, symmetrical with respect to the center line of the high-temperature exhaust passage. Thus, it can be divided into substantially equal sides and discharged into the high-temperature exhaust passage, and together with the rectifying plate, the residence of combustion gas in the high-temperature chamber can be reduced.

本発明は、上述の一実施の形態に係る2サイクルのユニフロー型ディーゼル機関の排気通路に限定されるものではなく、主弁と高温室と高温排気通路と低温排気通路と副弁とを備えた他の型式の内燃機関においても、同様に実施することができる。   The present invention is not limited to the exhaust passage of the two-cycle uniflow type diesel engine according to the above-described embodiment, and includes a main valve, a high temperature chamber, a high temperature exhaust passage, a low temperature exhaust passage, and a sub valve. The same applies to other types of internal combustion engines.

1 シリンダブロック
2 弁座
2a 排気口
3 シリンダ
5 排気弁箱
5a 排気口
6 高温室
6a 内壁面
7 高温排気通路
7a 出口
11 排気弁箱
11a 排気口
12 高温室
12a 内壁面
12b 膨出部
12c 入口
13 高温排気通路
13a 出口
13c,13d 高温室と高温排気通路入口の連設部
14 低温室(低温排気通路)
15 低温排気通路
17 整流板(第1の整流板)
17a 側面
18 整流板(第2の整流板)
18a 側面
21 主弁
21a バルブフェース
22 弁ステム
25 副弁
25a 輻(スポーク)
25b スカート部
26 弁ステム
27 整流部材
27a 先端部
27b 凹曲面部
29 空気ピストン
30 油圧シリンダブロック
31 油圧シリンダ
35 ケーシング
36 空気ばね室
L 高温排気通路の中心線
R1 第1の整流板の側面の曲率半径
R2 第2の整流板の側面の曲率半径
D0 高温排気通路の出口の内径
D1 副弁の通路内径
Dv 主弁のバルブフェースの直径
O 中心
DESCRIPTION OF SYMBOLS 1 Cylinder block 2 Valve seat 2a Exhaust port 3 Cylinder 5 Exhaust valve box 5a Exhaust port 6 High greenhouse 6a Inner wall surface 7 High temperature exhaust passage 7a Outlet 11 Exhaust valve box 11a Exhaust port 12 High greenhouse 12a Inner wall surface 12b Swelling part 12c Inlet 13 High temperature exhaust passage 13a Outlet 13c, 13d Consecutive section 14 of high greenhouse and high temperature exhaust passage entrance Low greenhouse (low temperature exhaust passage)
15 Low-temperature exhaust passage 17 Current plate (first current plate)
17a Side 18 Current plate (second current plate)
18a Side 21 Main valve 21a Valve face 22 Valve stem 25 Sub valve 25a Radiation (spoke)
25b Skirt portion 26 Valve stem 27 Flow regulating member 27a Tip portion 27b Concave surface portion 29 Air piston 30 Hydraulic cylinder block 31 Hydraulic cylinder 35 Casing 36 Air spring chamber L Center line R1 of the high-temperature exhaust passage The curvature radius of the side surface of the first flow straightening plate R2 Curvature radius of side of second rectifying plate D0 Inner diameter of high temperature exhaust passage D1 Inner diameter of sub valve passage Dv Diameter of valve face of main valve O Center

Claims (10)

シリンダ(3)内の燃焼ガスの排気を行う主弁(21)と、排気弁箱(11)内に設けられて前記シリンダから前記主弁を介して排出された高温の燃焼ガスを導入する高温室(12)と、前記排気弁箱内に設けられて前記高温室内の燃焼ガスを外部へ排出する高温排気通路(13)と、前記排気弁箱内に設けられて前記シリンダから前記主弁を介して排出された低温の燃焼ガスを外部へ排出する低温排気通路(14,15)と、前記排気弁箱内に設けられて前記高温排気通路と前記低温排気通路への前記燃焼ガスの流れを切り替える副弁(25)とを備えた内燃機関の排気通路構造において、前記高温室の内壁面(14a)に前記高温室内に導入された高温の前記燃焼ガスを前記高温排気通路に円滑に導く整流板(17,18)を設けたことを特徴とする内燃機関の排気通路構造。   A main valve (21) for exhausting combustion gas in the cylinder (3), and a high temperature for introducing high-temperature combustion gas provided in the exhaust valve box (11) and discharged from the cylinder through the main valve A chamber (12), a high temperature exhaust passage (13) provided in the exhaust valve box for discharging combustion gas in the high temperature chamber to the outside, and a main valve from the cylinder provided in the exhaust valve box. A low-temperature exhaust passage (14, 15) for discharging the low-temperature combustion gas discharged to the outside, and the flow of the combustion gas to the high-temperature exhaust passage and the low-temperature exhaust passage provided in the exhaust valve box In the exhaust passage structure of the internal combustion engine provided with the auxiliary valve (25) for switching, the rectification smoothly guides the high-temperature combustion gas introduced into the high-temperature chamber to the inner wall surface (14a) of the high-temperature chamber to the high-temperature exhaust passage. Providing plates (17, 18) An exhaust passage structure for an internal combustion engine, characterized. 前記整流板は、前記高温排気通路(13)の出口(13a)側と反対側にかつ前記出口側の中心に向けて設けられた第1の整流板(17)からなることを特徴とする請求項1に記載の内燃機関の排気通路構造。   The said baffle plate consists of a 1st baffle plate (17) provided in the opposite side to the exit (13a) side of the said high temperature exhaust passage (13) toward the center of the said exit side. Item 2. An exhaust passage structure for an internal combustion engine according to Item 1. 前記整流板は、前記高温排気通路(13)の出口(13a)側にかつ前記出口側の中心に向けて設けられた第2の整流板(18)からなることを特徴とする請求項1又は2に記載の内燃機関の排気通路構造。   The said baffle plate consists of the 2nd baffle plate (18) provided toward the exit (13a) side of the said high temperature exhaust passage (13) toward the center of the said exit side, or characterized by the above-mentioned. 3. An exhaust passage structure for an internal combustion engine according to 2. 前記第1の整流板(17)は、両側面(17a)が前記高温排気通路(13)の出口(13a)側の中心に向う先端から前記高温室(12)の内壁面(12a)に向って円弧状の凹曲面をなすように広がっていることを特徴とする請求項2に記載の内燃機関の排気通路構造。   The first rectifying plate (17) has both side surfaces (17a) directed toward the inner wall surface (12a) of the high temperature chamber (12) from a tip end toward the center of the outlet side (13a) of the high temperature exhaust passage (13). The exhaust passage structure for an internal combustion engine according to claim 2, wherein the exhaust passage structure extends so as to form an arcuate concave curved surface. 前記第2の整流板(18)は、両側面(18a)が前記高温排気通路(13)の出口(13a)側の中心に向う先端から前記高温室(12)の前記内壁面(12a)に向って円弧状の凹曲面をなすように広がっていることを特徴とする請求項4に記載の内燃機関の排気通路構造。   The second rectifying plate (18) has both side surfaces (18a) from the tip of the high temperature exhaust passage (13) toward the center on the outlet (13a) side to the inner wall surface (12a) of the high temperature chamber (12). The exhaust passage structure for an internal combustion engine according to claim 4, wherein the exhaust passage structure extends so as to form an arcuate concave curved surface. 前記高温室(12)の入口(12c)近傍の内壁面(12a)を凸状の曲面をなして膨出させてなる膨出部(12b)を前記高温室内に設けたことを特徴とする請求項1ないし5のいずれかに記載の内燃機関の排気通路構造。   The bulging portion (12b) formed by bulging the inner wall surface (12a) in the vicinity of the inlet (12c) of the high temperature chamber (12) into a convex curved surface is provided in the high temperature chamber. Item 6. An exhaust passage structure for an internal combustion engine according to any one of Items 1 to 5. 前記膨出部(12b)は、前記高温室(12)の前記入口(12c)を取り巻くように環状に形成されたことを特徴とする請求項6に記載の内燃機関の排気通路構造。   The exhaust passage structure for an internal combustion engine according to claim 6, wherein the bulging portion (12b) is formed in an annular shape so as to surround the inlet (12c) of the high temperature chamber (12). 前記副弁(25)の弁ステム(26)を支持する支持部材(30)に取り付けられた略逆円錐形状をなす整流部材(27)の先端部(27a)を円弧状の凹曲面をなすように縮径させて前記主弁(21)側へ延出させたことを特徴とする請求項1ないし7に記載の内燃機関の排気通路構造。   The tip (27a) of the rectifying member (27) having a substantially inverted conical shape attached to the support member (30) that supports the valve stem (26) of the sub-valve (25) has an arcuate concave curved surface. The exhaust passage structure for an internal combustion engine according to any one of claims 1 to 7, wherein the exhaust passage structure is reduced in diameter to extend toward the main valve (21). 前記副弁(25)の弁ステム(26)を支持する支持部材(30)に取り付けられた略逆円錐形状をなす整流部材(27)の先端部(27a)を前記高温室(12)の前記膨出部(12b)の前記凸状曲面と対応する円弧状の凹曲面(27b)をなすように縮径させて前記主弁(21)側へ延出させて前記整流部材の前記先端部と前記高温室の前記膨出部とが共働するようにしたことを特徴とする請求項6又は7に記載の内燃機関の排気通路構造。   The tip (27a) of the rectifying member (27) having a substantially inverted conical shape attached to the support member (30) that supports the valve stem (26) of the sub-valve (25) is connected to the high temperature chamber (12). The diameter of the bulging portion (12b) is reduced so as to form an arcuate concave curved surface (27b) corresponding to the convex curved surface, and the bulging portion (12b) is extended to the main valve (21) side, and The exhaust passage structure for an internal combustion engine according to claim 6 or 7, wherein the bulging portion of the high temperature chamber cooperates. 前記副弁(25)の弁ステム(26)を支持する支持部材(30)に取り付けられた略
逆円錐形状をなす整流部材(27)の先端部(27a)を円弧状の凹曲面(27b)をなすように縮径させて前記主弁(21)側へ延出させると共に前記副弁(25)が前記高温室(12)を開弁するように作動したときに前記高温室の前記膨出部(12b)と対向するように形成したことを特徴とする請求項6,7又は9に記載の内燃機関の排気通路構造。
The tip (27a) of the rectifying member (27) having a substantially inverted conical shape attached to the support member (30) that supports the valve stem (26) of the sub-valve (25) has an arcuate concave curved surface (27b). The bulge of the high temperature chamber when the diameter of the high temperature chamber is reduced to extend toward the main valve (21) and the auxiliary valve (25) is operated to open the high temperature chamber (12). The exhaust passage structure for an internal combustion engine according to claim 6, 7 or 9, wherein the exhaust passage structure is formed so as to face the portion (12b).
JP2009022049A 2009-01-19 2009-02-02 Exhaust passage structure of internal combustion engine Active JP5350823B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2009022049A JP5350823B2 (en) 2009-02-02 2009-02-02 Exhaust passage structure of internal combustion engine
CN201210153657.2A CN102661208B (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
CN201210154057.8A CN102678218B (en) 2009-01-19 2010-01-18 structure of exhaust gas separation device of internal combustion engine
CN2012101535673A CN102661182A (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
KR1020100004240A KR101279331B1 (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
CN201010003754A CN101818700A (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
CN2012101531494A CN102678365A (en) 2009-01-19 2010-01-18 Structure of exhaust gas separation device of internal combustion engine
KR1020110127006A KR101202626B1 (en) 2009-01-19 2011-11-30 Structure of exhaust gas separation device of internal combustion engine
KR1020120137662A KR101338778B1 (en) 2009-01-19 2012-11-30 Structure of exhaust gas separation device of internal combustion engine
KR1020120137664A KR101259332B1 (en) 2009-01-19 2012-11-30 Structure of exhaust gas separation device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022049A JP5350823B2 (en) 2009-02-02 2009-02-02 Exhaust passage structure of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010174873A true JP2010174873A (en) 2010-08-12
JP5350823B2 JP5350823B2 (en) 2013-11-27

Family

ID=42706063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022049A Active JP5350823B2 (en) 2009-01-19 2009-02-02 Exhaust passage structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP5350823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019364A (en) * 2011-07-12 2013-01-31 Mitsui Eng & Shipbuild Co Ltd Internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436605U (en) * 1987-08-31 1989-03-06
JPH0161419U (en) * 1987-10-13 1989-04-19
JPH06185318A (en) * 1992-12-16 1994-07-05 Nissan Motor Co Ltd Exhaust valve device of internal combustion engine
JPH08503285A (en) * 1993-09-13 1996-04-09 エス.エヌ.セー. メルシオール テクノロジー Improvement of internal combustion engine
JPH10110650A (en) * 1996-10-03 1998-04-28 Nissan Diesel Motor Co Ltd Exhaust port structure for internal combustion engine
JP2008248720A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Oil supply device for intake/exhaust valve stem of internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436605U (en) * 1987-08-31 1989-03-06
JPH0161419U (en) * 1987-10-13 1989-04-19
JPH06185318A (en) * 1992-12-16 1994-07-05 Nissan Motor Co Ltd Exhaust valve device of internal combustion engine
JPH08503285A (en) * 1993-09-13 1996-04-09 エス.エヌ.セー. メルシオール テクノロジー Improvement of internal combustion engine
JPH10110650A (en) * 1996-10-03 1998-04-28 Nissan Diesel Motor Co Ltd Exhaust port structure for internal combustion engine
JP2008248720A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Oil supply device for intake/exhaust valve stem of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019364A (en) * 2011-07-12 2013-01-31 Mitsui Eng & Shipbuild Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JP5350823B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
CN104791018B (en) Turbine blade having swirling cooling channel and cooling method thereof
KR100983001B1 (en) The apparatus for preventing backward stream of exhaust gas of the internal combustion engine and boiler
CN216811940U (en) Cylinder head and gas engine
KR101598155B1 (en) Steam valve device
KR101338778B1 (en) Structure of exhaust gas separation device of internal combustion engine
JP5350823B2 (en) Exhaust passage structure of internal combustion engine
CN204572184U (en) Admission line
JP6344268B2 (en) Engine exhaust passage structure
JP2011247270A (en) Port structure of internal combustion engine
KR101661734B1 (en) The Vehicle main exhaust pipe having an exhaust gas pressure control structure
JP5275062B2 (en) Exhaust passage structure of internal combustion engine
CN106460629B (en) Internal combustion engine
CN210289946U (en) Engine intake duct and engine cylinder head
TWM535168U (en) Enhanced air intake auxiliary device
JP2005048650A (en) Piston for internal combustion engine
CN113404613A (en) Cylinder head and gas engine
KR100929692B1 (en) Exhaust gas backflow prevention device of internal combustion engine and boiler
EP3260693B1 (en) Cylinder head and engine
CN215444237U (en) Motorcycle engine and cylinder head air inlet structure thereof
JP2013024171A (en) Internal combustion engine
CN113404569B (en) Intake valve, cylinder cover and gas engine
CN213743570U (en) Engine, air inlet and exhaust system and valve assembly
CN209621451U (en) A kind of motorcycle exhaust pipe structure of low noise
JP5755960B2 (en) Internal combustion engine
CN207554209U (en) Strengthen the water conservancy diversion core of petrol engine Cooling of Cylinder Head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5350823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350