JPH06184975A - Production of very fine fibrous cellulose - Google Patents

Production of very fine fibrous cellulose

Info

Publication number
JPH06184975A
JPH06184975A JP33140592A JP33140592A JPH06184975A JP H06184975 A JPH06184975 A JP H06184975A JP 33140592 A JP33140592 A JP 33140592A JP 33140592 A JP33140592 A JP 33140592A JP H06184975 A JPH06184975 A JP H06184975A
Authority
JP
Japan
Prior art keywords
cellulose
main shaft
crushing
ring
fibrous cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33140592A
Other languages
Japanese (ja)
Inventor
Hisao Ishikawa
久夫 石川
Seiichi Ide
成一 井出
Chitose Kawamata
千登勢 河又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP33140592A priority Critical patent/JPH06184975A/en
Publication of JPH06184975A publication Critical patent/JPH06184975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce fine fibrous cellulose having small fiber width from fibrous or granular cellulose. CONSTITUTION:A cellulose suspension having 0.1-20wt.% concentration, comprising fibrous or granular cellulose is ground in a wet state by using a grinder which is equipped with a cylindrical crushing chamber 2, a main shaft 1 set at the central part of the crushing chamber, plural countershafts 4 arranged symmetrically with respect to the main shaft around the main shaft and a great number of ring-shaped grinding mediums 5 attached to each of the countershafts and the ring-shaped grinding mediums are subjected to centrifugal force and hit to the wall face of the crushing chamber. The ring-shaped grinding mediums 5 are rotated on its axis and revolved around the main shaft on the wall face and the cellulose is ground to produce fine fibrous cellulose.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低濃度懸濁液でも高い
粘性を有し、水保持力の高い微細繊維状セルロース繊維
を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine fibrous cellulosic fibers which have a high viscosity even in a low-concentration suspension and have a high water retention.

【0002】[0002]

【従来の技術】微小なセルロース粒子の製造法として
は、セルロースは有機物で柔らかく機械的な粉砕処理の
みでは微小なセルロース粒子を得ることが難しいため、
化学的処理と機械的粉砕を組み合わせた方法が一般的に
使用されている。化学的処理と機械的粉砕を組み合わせ
た方法としては、パルプを軽度に酸加水分解し、濾過水
洗後、乾燥、粉砕して一部非結晶領域を含むセルロース
微粒子の製造方法、または精製パルプを塩酸または硫酸
で加水分解して結晶領域のみを残して微粉化したものが
知られている(紙パルプ技術タイムス昭和60年8月号5〜
11ページ参照)。
2. Description of the Related Art As a method for producing fine cellulose particles, since cellulose is an organic substance and it is difficult to obtain fine cellulose particles only by mechanical pulverization,
A method combining chemical treatment and mechanical grinding is commonly used. As a method combining chemical treatment and mechanical crushing, pulp is slightly acid-hydrolyzed, filtered, washed with water, dried and crushed to produce cellulose fine particles partially containing an amorphous region, or purified pulp is chlorinated with hydrochloric acid. Alternatively, it is known that it is hydrolyzed with sulfuric acid and finely divided, leaving only the crystalline region (Paper and Pulp Technology Times, August 1985, May 5 ~
(See page 11).

【0003】微小な繊維幅の繊維状セルロースの製造法
としては、繊維状セルロースの水懸濁液を少なくとも3
000psiの圧力差で小径オリフィスを高速度で通過
させる方法、すなわち高圧均質化装置(高圧ホモジナイ
ザー)により繊維状セルロース懸濁液を処理する方法が
知られている(特公昭60-19921号、特公昭63-44763号参
照)。
As a method for producing fibrous cellulose having a fine fiber width, at least 3 parts of an aqueous suspension of fibrous cellulose is used.
There is known a method of passing a small diameter orifice at a high speed with a pressure difference of 000 psi, that is, a method of treating a fibrous cellulose suspension with a high pressure homogenizer (high pressure homogenizer) (Japanese Patent Publication No. 60-19921 and Japanese Patent Publication No. See 63-44763).

【0004】また、紙の紙力強度を強める働きをする微
細繊維化パルプの製造法として、パルプの水懸濁液をサ
ンドミルで軽度に処理する方法が知られている(特開平
4-18186号参照)。
Further, as a method for producing a fine fiberized pulp having a function of strengthening the strength of paper, a method in which an aqueous suspension of pulp is lightly treated with a sand mill is known (Japanese Patent Laid-Open No. Hei 10-1999)
See 4-18186).

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、前記高圧均質化装置による方法では繊維状
セルロース懸濁液に高圧をかけて細いオリフィスを通す
必要があるため処理効率が低い、またサンドミル処理で
も試料を何回もサンドミル処理する必要があるため処理
効率が低い点であり、本発明は処理効率の改良された生
産性の高い微細繊維状セルロースの製造方法を提供する
ことにある。
The problem to be solved by the present invention is that the method using the above-mentioned high-pressure homogenizing apparatus has a low treatment efficiency because it is necessary to apply a high pressure to the fibrous cellulose suspension and pass it through a narrow orifice. In addition, since the sample needs to be sand milled many times even in the sand mill treatment, the treatment efficiency is low, and the present invention provides a method for producing highly productive fine fibrous cellulose with improved treatment efficiency. is there.

【0006】[0006]

【課題を解決するための手段】本発明の微細繊維状セル
ロースの製造方法は、繊維状セルロースまたは粒子状セ
ルロースからなるセルロース懸濁液を、0.1〜20重
量%の濃度で湿式粉砕する微細繊維状セルロースの製造
方法において、前記セルロース懸濁液が、円筒形の粉砕
室と、前記粉砕室の中央部に設置され、かつ回転可能な
主軸と、前記主軸の周囲に前記主軸に対して対称となる
ように設置され、かつ前記主軸と連結板によって連結さ
れた複数の副軸と、前記副軸の各々に取付けられた多数
枚のリング状粉砕媒体とからなり、前記主軸の回転によ
り、前記リング状粉砕媒体が遠心力を受けて前記粉砕室
の内壁面に押し当てられ、前記粉砕室の内壁面上を自転
・公転して粉砕が行われる機構を有する粉砕装置によ
り、粉砕されることを特徴とするものである。
The method for producing fine fibrous cellulose of the present invention comprises a method of finely pulverizing a cellulosic suspension comprising fibrous cellulose or particulate cellulose by wet pulverization at a concentration of 0.1 to 20% by weight. In the method for producing fibrous cellulose, the cellulose suspension has a cylindrical grinding chamber, a main spindle that is installed in the central portion of the grinding chamber, and is rotatable, and symmetrical about the main spindle with respect to the main spindle. And a plurality of sub-shafts connected to the main shaft by a connecting plate, and a plurality of ring-shaped grinding media attached to each of the sub-shafts. The ring-shaped grinding medium is pressed against the inner wall surface of the grinding chamber by a centrifugal force, and is ground by a grinding device having a mechanism for rotating and revolving on the inner wall surface of the grinding chamber to perform grinding. It is an feature.

【0007】本発明者らは、上記の粉砕装置による繊維
状セルロースの微小化の作用機構(解繊作用)、特に剪
断作用、切断作用、摩擦作用に注目して検討した結果、
本発明における粉砕装置の各副軸に取り付けられた多数
のリング状粉砕媒体が、主軸の回転による遠心作用で容
器内壁面に押しつけられながら自転・公転し、その時リ
ング状粉砕媒体と容器壁面の間で働く圧縮作用、剪断作
用により試料を効率的に微細化できることを見い出し
た。
The present inventors have paid attention to the action mechanism (defibration action) of micronization of fibrous cellulose by the above-mentioned crushing device, particularly the shearing action, cutting action and friction action, and as a result,
A large number of ring-shaped grinding media attached to each sub-shaft of the crushing device in the present invention are rotated and revolved while being pressed against the inner wall surface of the container by the centrifugal action due to the rotation of the main shaft, and at that time, between the ring-shaped grinding media and the container wall surface. It was found that the sample can be efficiently miniaturized by the compressing action and the shearing action which are applied at.

【0008】本発明に用いられる粉砕装置の横断面説明
図を図1に、また上断面説明図を図2に示す。図1およ
び図2において、粉砕室2の中央部に回転可能な主軸1
が設置され、主軸1の周囲に複数の副軸4が主軸1に対
して対称となるように設置され、主軸1の上下に取付け
られた2枚の連結板6により主軸1と連結されている。
さらに、各々の副軸4には、まん中に副軸4の直径より
も大きい穴があいているリング状粉砕媒体5が多数枚通
してある。そして、主軸1が回転すると副軸4も回転
し、同時に副軸4に通してある多数枚のリング状粉砕媒
体5が遠心力を受けて粉砕室の内壁3に接触し、副軸4
と共に公転しながら副軸4を中心として自転する。この
際に、リング状粉砕媒体5と粉砕室の内壁3との間で試
料の粉砕処理が行われる。このような機構を有する粉砕
装置としては、商標:MICROS(奈良機械製作所
製)が例示され、本発明方法に有利に用いられる。
FIG. 1 shows a cross-sectional explanatory view of the crushing apparatus used in the present invention, and FIG. 2 shows an upper cross-sectional explanatory view. In FIG. 1 and FIG. 2, a rotatable main shaft 1 is provided at the center of the grinding chamber 2.
Is installed, a plurality of counter shafts 4 are installed around the main shaft 1 so as to be symmetrical with respect to the main shaft 1, and are connected to the main shaft 1 by two connecting plates 6 mounted above and below the main shaft 1. .
Further, a large number of ring-shaped grinding media 5 each having a hole larger than the diameter of the sub shaft 4 are passed through each sub shaft 4. When the main shaft 1 rotates, the sub shaft 4 also rotates, and at the same time, a large number of ring-shaped grinding media 5 passing through the sub shaft 4 receive centrifugal force and come into contact with the inner wall 3 of the grinding chamber, and the sub shaft 4
It revolves around the auxiliary shaft 4 while revolving. At this time, the sample is crushed between the ring-shaped crushing medium 5 and the inner wall 3 of the crushing chamber. A trade name: MICROS (manufactured by Nara Machinery Co., Ltd.) is exemplified as a crushing device having such a mechanism, and is advantageously used in the method of the present invention.

【0009】本発明に用いられる粉砕装置のリング状粉
砕媒体の材質としては、アルミナ、ジルコニア、ジルコ
ン等のセラミックス類またはステンレス等の金属、更に
はテフロン等の高分子材料が使用可能である。また粉砕
室の内壁の材質としては、アルミナ、ジルコニア、ジル
コン等のセラミックス類またはステンレス等の金属が使
用可能であるが、摩耗等を考えるとリング状粉砕媒体と
粉砕室の内壁の材質は同じものが好ましい。
As the material of the ring-shaped crushing medium of the crusher used in the present invention, ceramics such as alumina, zirconia, zircon, metal such as stainless steel, and polymer material such as Teflon can be used. As the material of the inner wall of the crushing chamber, ceramics such as alumina, zirconia, zircon or metal such as stainless steel can be used. However, considering the wear and the like, the material of the ring-shaped crushing medium and the inner wall of the crushing chamber are the same. Is preferred.

【0010】粉砕処理時におけるセルロース懸濁液の濃
度は、セルロース試料の性質により異なるが、0.1〜
20重量%の範囲で調節することが好ましい。また、処
理濃度、回転数、リング状粉砕媒体の数等の処理条件
は、要求される微細繊維状セルロースの物性により適宜
選択することが可能である。さらに、処理方法として
は、バツチ式でも良く、または連続式でも良く、あるい
は数台の装置を直列に接続して、第一段で粗く処理し、
後の段で微細に処理することも可能である。
The concentration of the cellulosic suspension during the pulverization treatment varies depending on the property of the cellulosic sample,
It is preferably adjusted within the range of 20% by weight. Further, the processing conditions such as the processing concentration, the number of revolutions, the number of ring-shaped grinding media, etc. can be appropriately selected depending on the required physical properties of the fine fibrous cellulose. Further, as a treatment method, a batch type may be used, or a continuous type may be used, or several devices may be connected in series to perform rough treatment in the first stage,
It is also possible to perform fine processing in a later stage.

【0011】また、本発明で使用する粉砕装置に供する
セルロース試料としては、針葉樹、広葉樹の漂白または
未漂白化学パルプ、機械パルプ、溶解パルプ、古紙パル
プ、等の木質系パルプ、また麻、コットン等の非木質系
パルプ、等の繊維状セルロース、さらに粒子状セルロー
スが使用できる。
Cellulose samples used in the crushing apparatus used in the present invention include wood pulp such as bleached or unbleached softwood and hardwood chemical pulp, mechanical pulp, dissolving pulp, waste paper pulp, hemp, cotton and the like. Fibrous cellulose such as non-wood pulp, and particulate cellulose can be used.

【0012】処理するセルロース懸濁液の媒体として
は、水が基本であるが、処理工程において化学的に不活
性で流動性を有する、低級アルコール、エチレングリコ
ールあるいはグリセリンの如き有機溶媒、さらに水と有
機溶媒との混合溶媒が使用できる。
Water is basically used as a medium for the cellulosic suspension to be treated, but an organic solvent such as lower alcohol, ethylene glycol or glycerin, which is chemically inert and has fluidity in the treatment step, and water are further added. A mixed solvent with an organic solvent can be used.

【0013】次に、繊維状セルロースとして広葉樹漂白
クラフトパルプを使用した例で、繊維形態の変化を示
す。未処理パルプと本発明による微細繊維状セルロース
生成物を光学顕微鏡及び電子顕微鏡観察した。未処理パ
ルプの繊維幅は20〜30μ、長さ加重平均繊維長は約
0.7mm、形は平滑で偏平な円筒形をなし、さらによ
じれたり屈曲したりしている。本発明による容器とその
中で回転する主軸および主軸回転により連動回転する副
軸から構成され、更にその各副軸には多数のリング状粉
砕媒体が取り付けられ、主軸の回転によりリングは遠心
作用で容器内壁面に押しつけられながら自転、公転する
粉砕装置にて湿式粉砕処理したパルプは、処理初期では
繊維表面にヒゲ状の細い繊維の毛羽立ちが起こり、その
後いわゆるルーメンを持った木材繊維の構造が破壊さ
れ、繊維幅2〜4μmの繊維同士或いは繊維と未粉砕部
分が相互に数本から数十本、一部で結合した状態にな
る。更に湿式粉砕処理を行うと繊維幅は1μm以下、更
には0.7μm以下の微細な繊維状セルロースになる。
Next, an example in which a hardwood bleached kraft pulp is used as the fibrous cellulose shows a change in fiber morphology. The untreated pulp and the fine fibrous cellulosic product according to the invention were observed by light and electron microscopy. The untreated pulp has a fiber width of 20 to 30 μm, a length-weighted average fiber length of about 0.7 mm, a smooth and flat cylindrical shape, and is further twisted and bent. It comprises a container according to the invention, a main shaft which rotates therein and a counter shaft which rotates in conjunction with the rotation of the main shaft, and a large number of ring-shaped grinding media are attached to each of the counter shafts. Pulp wet-milled by a crusher that rotates and revolves while being pressed against the inner wall of the container causes fluffing of fine, whisker-like fibers on the surface of the fiber at the beginning of the process, after which the structure of so-called lumen-containing wood fibers is destroyed. As a result, fibers having a fiber width of 2 to 4 μm or fibers and uncrushed portions are bonded to each other by some to several tens or some. Further wet-milling gives fine fibrous cellulose having a fiber width of 1 μm or less, further 0.7 μm or less.

【0014】また繊維長の変化は、ある程度の粉砕であ
れば繊維長の短繊維化は余り起こらず、水保持力300
%位まで粉砕を進めると長さ加重平均繊維長は0.5m
m位になるが、繊維長については、使用する繊維状セル
ロース原料によって初期繊維長が異なるため、用途によ
り繊維長の長いものが必要であれば繊維長の長い原料を
使用すればよいし、短い繊維長のものが必要であれば繊
維長の短い原料を使用すればよい。
Further, the change in fiber length is such that if the powder is pulverized to some extent, the fiber length is not shortened so much that the water retention capacity is 300.
When the crushing is advanced to about%, the length-weighted average fiber length is 0.5 m.
Although it is in the m-position, regarding the fiber length, since the initial fiber length differs depending on the fibrous cellulose raw material used, if a long fiber length is required depending on the application, a long fiber length raw material may be used, If a fiber having a long fiber length is required, a raw material having a short fiber length may be used.

【0015】本発明による微細繊維状セルロース生成物
は、粉砕初期のものであれば叩解を進めたパルプに近い
性質をもっているが、粉砕を進めたものは通常のパルプ
繊維とは全く異なる特性を持っている。本粉砕装置でパ
ルプを湿式粉砕処理すると、繊維状セルロースが微細化
されるにつれ表面積が増大し、水との親和性が増して粘
性が高くなり、また水を保持する能力(水保持力)が高
くなる。
The fine fibrous cellulose product according to the present invention has properties close to those of pulp that has been beaten if it is in the initial stage of crushing, but the one that has been crushed has properties completely different from ordinary pulp fibers. ing. When wet pulverizing pulp with this pulverizer, the surface area increases as the fibrous cellulose becomes finer, the affinity with water increases, the viscosity increases, and the ability to retain water (water retention) is increased. Get higher

【0016】水保持力の測定は、低部に穴の開いた円筒
状の遠心管にG3のガラスフィルターを取付け、300
0Gで15分間の遠心処理により脱水処理し、その後処
理試料を取り出しセルロース試料の重量の測定を行っ
た。その後この試料を105℃で少なくとも5時間にわ
たって乾燥させた試料の乾燥重量を測定した。水保持力
は、遠心処理後の湿った状態の試料重量から乾燥試料重
量を減算し、これを乾燥試料重量で除算し、これに10
0を乗算して得た値である。
The water-holding power was measured by attaching a G3 glass filter to a cylindrical centrifuge tube having a hole in the lower part, and measuring 300
The sample was dehydrated by centrifugation at 0 G for 15 minutes, and then the treated sample was taken out to measure the weight of the cellulose sample. The sample was then dried at 105 ° C. for at least 5 hours and the dry weight of the sample was measured. Water retention was calculated by subtracting the dry sample weight from the wet sample weight after centrifugation and dividing this by the dry sample weight to give 10
It is a value obtained by multiplying by 0.

【0017】但し、遠心処理する供試試料については、
粉砕処理生成物の水の保持力が高いので、そのまま水保
持力測定をすると脱水が困難になり水相が試料上部に残
るため、前処理として濾過等により予め予備脱水して固
形部濃度8%〜12%にして水保持力測定に供した。得
られた微細繊維状セルロースは、相当多く水を保持する
能力をもっており、水保持力200%以上、条件によっ
ては300%以上にも達する。
However, for the sample to be centrifuged,
Since the water retention of the pulverized product is high, if the water retention is measured as it is, dehydration becomes difficult and the aqueous phase remains on the upper part of the sample. Therefore, as a pretreatment, preliminary dehydration is carried out in advance by filtration etc. and the solid part concentration is 8%. It was made to be -12% and subjected to water retention measurement. The obtained fine fibrous cellulose has an ability to retain water in a considerably large amount, and has a water retention power of 200% or more, and even 300% or more depending on conditions.

【0018】通常のパルプの叩解における水保持力を比
較すると、広葉樹漂白クラフトパルプ(未処理フリーネ
ス620ml、水保持力105%)を処理濃度2%でリ
ファイナーにて叩解し、フリーネス(TAPPIスタン
ダード T227m−58に準じて測定)440ml、
125ml、33mlまで処理したのものの水保持力
は、それぞれ139%、174%、194%であった。
また、機械パルプの場合では、加圧型グランドウッドパ
ルプでフリーネス60ml、水保持力145%であっ
た。
Comparing the water-holding powers in the beating of ordinary pulp, hardwood bleached kraft pulp (620 ml of untreated freeness, 105% of water-holding power) was beaten with a refiner at a treatment concentration of 2% to obtain freeness (TAPPI Standard T227m- Measured according to 58) 440 ml,
The water holding powers of the samples treated up to 125 ml and 33 ml were 139%, 174% and 194%, respectively.
In the case of mechanical pulp, the pressure type groundwood pulp had a freeness of 60 ml and a water holding power of 145%.

【0019】[0019]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto.

【0020】実施例1 広葉樹漂白クラフトパルプの2重量%水懸濁液1500
mlを粉砕装置(MICROS−2型、奈良機械製作所
製、粉砕部有効容積1700ml)の粉砕室に入れ、回
転数1400rpmにて3分、15分、30分と処理時
間を変え、バッチ式にて湿式粉砕処理した。この際、リ
ング状粉砕媒体、および粉砕室の内壁はジルコニア製の
ものを用いた。また粉砕容器の冷却を水の放流で行い、
粉砕室内の温度を30〜35℃に保った。表1に処理時
間と、長さ加重平均繊維長、水保持力、粘度及び走査電
子顕微鏡写真観察による繊維幅との関係を示す。なお、
長さ加重平均繊維長は、FS−200型繊維長測定装置
(フィンランドKAJAANI社製)で測定した。ま
た、粘度の測定は、DVL−B型粘度計(東京計器製)
を用い、水懸濁液濃度1重量%、20℃、ローター回転
数30rpmの条件で行った。
Example 1 1500% 2% by weight aqueous suspension of hardwood bleached kraft pulp in water
ml was put into a crushing chamber of a crusher (MICROS-2 type, manufactured by Nara Machinery Co., Ltd., effective volume of crushing unit: 1700 ml), and the processing time was changed to 3 minutes, 15 minutes, 30 minutes at a rotation speed of 1400 rpm, and a batch method was used. It was wet-milled. At this time, the ring-shaped grinding medium and the inner wall of the grinding chamber were made of zirconia. Also, cooling the crushing container by discharging water,
The temperature in the grinding chamber was maintained at 30-35 ° C. Table 1 shows the relationship between the treatment time, the length-weighted average fiber length, the water holding power, the viscosity, and the fiber width measured by scanning electron micrograph. In addition,
The length weighted average fiber length was measured with a FS-200 type fiber length measuring device (manufactured by KAJAANI, Finland). Moreover, the viscosity is measured by a DVL-B type viscometer (manufactured by Tokyo Keiki).
Was used under the conditions of a water suspension concentration of 1% by weight, 20 ° C., and a rotor rotation speed of 30 rpm.

【0021】処理時間を長くするに従い水保持力は上昇
するが、繊維長は短くなることが判る。繊維幅について
は、未処理パルプ繊維は約20μmであるが、粉砕処理
時間5分のものは、繊維の一部が破壊され繊維幅2〜4
μmの微細繊維が繊維表面からヒゲ状に出てきた。この
時のパルプ繊維の顕微鏡で観察した破壊率(繊維壁が一
部開いたものを含む)は約40%であった。粉砕処理時
間15分のものは、繊維の細胞壁が更に壊れ、繊維幅2
〜4μmのフィブリルが多くなり、これらの繊維同士或
いは繊維幅の広いものととが相互に数本から数十本、一
部で結合した形状になっていた。更に粉砕処理を進める
と光学顕微鏡では繊維幅2〜4μmの繊維が数十本、一
部で結合した形状に見えるが走査電子顕微鏡で観察する
と繊維幅2〜4μmの繊維が、更に繊維幅0.05〜
0.7μmの微細な繊維物となっているのが判った。粘
度については、粉砕処理を進め水保持力が高い試料ほど
粘度も高くなった。
It can be seen that as the treatment time is lengthened, the water holding power is increased, but the fiber length is shortened. Regarding the fiber width, the untreated pulp fiber is about 20 μm, but the one having a crushing treatment time of 5 minutes has a fiber width of 2 to 4 because a part of the fiber is destroyed.
Fine fibers of μm came out like a beard from the fiber surface. At this time, the fracture rate of the pulp fiber observed under a microscope (including the one in which the fiber wall was partially opened) was about 40%. When the crushing time is 15 minutes, the cell wall of the fiber is further broken and the fiber width is 2
The number of fibrils of up to 4 μm increased, and the fibers had a shape in which several fibers or fibers having a wide fiber width were bonded to each other with a few fibers to a few dozen fibers. When the pulverization treatment is further advanced, it appears that several tens of fibers having a fiber width of 2 to 4 μm are combined in part by an optical microscope, but when observed by a scanning electron microscope, fibers having a fiber width of 2 to 4 μm are further formed. 05-
It was found that the fiber was a fine fiber of 0.7 μm. Regarding the viscosity, the higher the water retention, the more crushing treatment was performed, and the higher the viscosity was.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2 針葉樹漂白クラフトパルプの5重量%水懸濁液1500
mlを粉砕装置(MICROS−2型、奈良機械製作所
製、粉砕部有効容積1700ml)の粉砕室に入れ、回
転数1400rpmにて5分、15分、30分と処理時
間を変え、バッチ式にて湿式粉砕処理した。この際、リ
ング状粉砕媒体、および粉砕室の内壁はジルコニア製の
ものを用いた。また、粉砕容器の冷却を水の放流で行
い、粉砕室内の温度を30〜35℃に保った。表2に処
理時間と水保持力との関係を示す。なお、長さ加重平均
繊維長は、実施例1の場合と同様にして行った。表2か
ら分かるように、処理時間が長くなるに従い水保持力は
上昇し、処理時間30分で針葉樹パルプでも300%以
上に達するものが得られた。
Example 2 1500 wt% suspension of bleached softwood kraft pulp in water 1500
ml was put in a crushing chamber of a crusher (MICROS-2 type, Nara Machinery Co., Ltd., effective volume of crushing unit: 1700 ml), and the processing time was changed to 5 minutes, 15 minutes, 30 minutes at 1400 rpm and batch type. It was wet-milled. At this time, the ring-shaped grinding medium and the inner wall of the grinding chamber were made of zirconia. The crushing container was cooled by discharging water to keep the temperature in the crushing chamber at 30 to 35 ° C. Table 2 shows the relationship between treatment time and water retention. The length-weighted average fiber length was the same as in Example 1. As can be seen from Table 2, the water holding power increased as the treatment time became longer, and even the softwood pulp reached 300% or more after the treatment time of 30 minutes.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例3 セルロース粒子(山陽国策パルプ社製、商標:パルプフ
ロックW−4)を水にて濃度15重量%に調製したセル
ロース懸濁液1500mlを粉砕装置(MICRO−2
型、奈良機械製作所製、粉砕部有効容積1700ml)
の粉砕室に入れ、回転数1400rpmにて30分、6
0分、90分と処理時間を変え、バッチ式にて湿式粉砕
処理した。この際、リング状粉砕媒体、および容器内壁
はジルコニア製のものを用いた。また、粉砕容器の冷却
を水の放流で行い、粉砕室内の温度を30〜35℃に保
った。表3に処理時間と、得られるセルロース粉砕物の
粘度、水保持力、平均粒径との関係を示す。なお、粘度
の測定は、DVL−B型粘度計(東京計器製)を用い、
水懸濁液濃度2重量%、20℃、ローター回転数30r
pmの条件で行った。また、平均粒子径は、SA−CP
3型遠心粒度測定機(島津製作所製)を用いて測定し
た。表3から明かなように、60分間の粉砕処理で既に
粘度810cP、水保持力231%にまで達し、処理時
間が長くなるにしたがい粘度、水保持力とも更に増大し
た。また、処理時間を長くしても平均粒径の低下が少な
いないのは、処理を進めることにより、粒子が微細化す
ると同時に微細繊維間が広がるためと考えられる。
Example 3 Cellulose particles (trade name: Pulp Flock W-4, manufactured by Sanyo Kokusaku Pulp Co., Ltd.) were prepared with water to a concentration of 15% by weight, and 1500 ml of a cellulose suspension was pulverized (MICRO-2).
Type, manufactured by Nara Machinery Co., Ltd., effective volume of crushing section 1700 ml)
In a crushing chamber of 30 minutes at a rotation speed of 1400 rpm for 6 minutes.
The processing time was changed to 0 minutes and 90 minutes, and wet pulverization processing was performed in a batch system. At this time, the ring-shaped grinding medium and the inner wall of the container were made of zirconia. The crushing container was cooled by discharging water to keep the temperature in the crushing chamber at 30 to 35 ° C. Table 3 shows the relationship between the treatment time and the viscosity, water retention, and average particle diameter of the obtained ground cellulose product. The viscosity is measured using a DVL-B type viscometer (manufactured by Tokyo Keiki),
Water suspension concentration 2% by weight, 20 ° C, rotor speed 30r
It was performed under the condition of pm. The average particle size is SA-CP.
The measurement was performed using a type 3 centrifugal particle sizer (manufactured by Shimadzu Corporation). As is clear from Table 3, the viscosity of 810 cP and the water holding power of 231% were already reached by the crushing treatment for 60 minutes, and the viscosity and the water holding power were further increased as the treatment time became longer. Further, it is considered that the reason why the decrease in average particle diameter is not small even if the treatment time is extended is that the particles are made finer and the spaces between the fine fibers are expanded at the same time as the treatment is advanced.

【0026】[0026]

【表3】 [Table 3]

【0027】比較例1 実施例1と同じ広葉樹漂白クラフトパルプを用いて、パ
ルプの2重量%水懸濁液150mlと平均粒径1mmの
ガラスビーズ140mlを6筒式サンドミル(アイメッ
クス製、処理容量300ml)の粉砕容器に入れ、撹拌
機の回転数2000rpmで、冷却用循環水で温度を調
節しながら、処理温度20℃でバッチ式にて、3分、1
5分、30分と処理時間を変えて湿式粉砕処理を行っ
た。表4に処理時間と水保持力との関係を示す。表4か
ら分かるように、本発明による製造方法の方が、サンド
ミル処理より短い処理時間で水保持力の向上が図れる。
Comparative Example 1 Using the same hardwood bleached kraft pulp as in Example 1, 150 ml of a 2% by weight aqueous suspension of pulp and 140 ml of glass beads having an average particle diameter of 1 mm were mixed in a 6-cylinder sand mill (made by AIMEX, processing capacity 300 ml). ) In a crushing container, and the temperature is adjusted with circulating water for cooling at a rotation speed of a stirrer of 2000 rpm, and the temperature is 20 ° C. in a batch process for 3 minutes, 1 minute.
The wet pulverization treatment was performed by changing the treatment time to 5 minutes and 30 minutes. Table 4 shows the relationship between treatment time and water retention. As can be seen from Table 4, the production method according to the present invention can improve the water retention force in a shorter treatment time than the sand mill treatment.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【発明の効果】以上、説明したように、上述の粉砕装置
によりセルロース材料を湿式粉砕する本発明の方法によ
り、水保持力の高い微細繊維状セルロースを短時間で効
率的に製造することが可能となった。
As described above, according to the method of the present invention in which the cellulose material is wet pulverized by the above-mentioned pulverizing apparatus, it is possible to efficiently produce fine fibrous cellulose having a high water retaining ability in a short time. Became.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる粉砕装置の横断面説明図で
ある。
FIG. 1 is a cross-sectional explanatory view of a crushing device used in the present invention.

【図2】本発明に用いられる粉砕装置の上断面説明図で
ある。
FIG. 2 is an explanatory view of an upper cross section of a crushing device used in the present invention.

【符号の説明】 1・・・・主軸 2・・・・粉砕室 3・・・・粉砕室の内壁 4・・・・副軸 5・・・・リング状粉砕媒体 6・・・・主軸と副軸との連結板 7・・・・粉砕室の蓋 8・・・・冷却ジャケツト 9・・・・冷却水入口 10・・・・冷却水出口[Explanation of symbols] 1 ... Main spindle 2 ... Grinding chamber 3 ... Inner wall of grinding chamber 4 ... Secondary shaft 5 ... Ring-shaped grinding medium 6 ... Main shaft Connecting plate with counter shaft 7 ... Lid of grinding chamber 8 ... Cooling jacket 9 ... Cooling water inlet 10 ... Cooling water outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繊維状セルロースまたは粒子状セルロー
スからなるセルロース懸濁液を、0.1〜20重量%の
濃度で湿式粉砕する微細繊維状セルロースの製造方法に
おいて、前記セルロース懸濁液が、円筒形の粉砕室と、
前記粉砕室の中央部に設置され、かつ回転可能な主軸
と、前記主軸の周囲に前記主軸に対して対称となるよう
に設置され、かつ前記主軸と連結板によって連結された
複数の副軸と、前記副軸の各々に取付けられた多数枚の
リング状粉砕媒体とからなり、前記主軸の回転により、
前記リング状粉砕媒体が遠心力を受けて前記粉砕室の内
壁面に押し当てられ、前記粉砕室の内壁面上を自転・公
転して粉砕が行われる機構を有する粉砕装置により、粉
砕されることを特徴とする微細繊維状セルロースの製造
方法。
1. A method for producing fine fibrous cellulose, comprising wet pulverizing a cellulose suspension comprising fibrous cellulose or particulate cellulose at a concentration of 0.1 to 20% by weight, wherein the cellulose suspension is a cylinder. Shape crushing chamber,
A rotatable main shaft that is installed in the central portion of the crushing chamber, and a plurality of auxiliary shafts that are installed around the main shaft so as to be symmetrical with respect to the main shaft and that are connected to the main shaft by a connecting plate. , Consisting of a large number of ring-shaped grinding media attached to each of the sub shafts, and by the rotation of the main shaft,
The ring-shaped crushing medium is subjected to centrifugal force and pressed against the inner wall surface of the crushing chamber, and is crushed by a crushing device having a mechanism for rotating and revolving on the inner wall surface of the crushing chamber to perform crushing. A method for producing fine fibrous cellulose, comprising:
JP33140592A 1992-12-11 1992-12-11 Production of very fine fibrous cellulose Pending JPH06184975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33140592A JPH06184975A (en) 1992-12-11 1992-12-11 Production of very fine fibrous cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33140592A JPH06184975A (en) 1992-12-11 1992-12-11 Production of very fine fibrous cellulose

Publications (1)

Publication Number Publication Date
JPH06184975A true JPH06184975A (en) 1994-07-05

Family

ID=18243324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33140592A Pending JPH06184975A (en) 1992-12-11 1992-12-11 Production of very fine fibrous cellulose

Country Status (1)

Country Link
JP (1) JPH06184975A (en)

Similar Documents

Publication Publication Date Title
US5269470A (en) Method of producing finely divided fibrous cellulose particles
CA1307970C (en) Process for making expanded fiber
KR101178394B1 (en) Process for producing fibrillated fibers
US4483743A (en) Microfibrillated cellulose
Liimatainen et al. Characterization of highly accessible cellulose microfibers generated by wet stirred media milling
US4374702A (en) Microfibrillated cellulose
KR102229332B1 (en) Dry cellulose filaments and the method of making the same
US5385640A (en) Process for making microdenominated cellulose
CA2661230C (en) Process for producing nanofibers
FI105112B (en) Method and apparatus for defibrating fibrous material
JPS6344763B2 (en)
JPH0610288A (en) Production of fine fibrous cellulose
JP3036354B2 (en) Method for producing fine fibrillated cellulose
JP2012036508A (en) Manufacturing method for microfibrous cellulose
JP2012046848A (en) Method for producing microfibrous cellulose
JPH0610286A (en) Production of fine fibrous cellulose
JP2007100246A (en) Method for carrying out pretreating of cellulose microfibrillation
JP2013087132A (en) Method for producing fine fibrous cellulose
JPH06184975A (en) Production of very fine fibrous cellulose
JPH06212587A (en) Production of fine fibrous cellulose
JP3063396B2 (en) Method for producing fine fibrous cellulose
CN116685738A (en) High brightness non-wood pulp
JP4268574B2 (en) Method for producing high concentration fine cellulose fiber suspension
RU2810201C1 (en) Method for nanostructuring cellulose fibers
FI74309B (en) MICROFIBRILLATORS OF CELLULOSE AND FOUNDATION FOR FRAMSTAELLNING AV DENSAMMA.