JPH0618461A - Monitoring method for activity of ion oxidizing bacteria - Google Patents

Monitoring method for activity of ion oxidizing bacteria

Info

Publication number
JPH0618461A
JPH0618461A JP17295392A JP17295392A JPH0618461A JP H0618461 A JPH0618461 A JP H0618461A JP 17295392 A JP17295392 A JP 17295392A JP 17295392 A JP17295392 A JP 17295392A JP H0618461 A JPH0618461 A JP H0618461A
Authority
JP
Japan
Prior art keywords
electrodes
double layer
activity
oxidizing bacteria
layer capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17295392A
Other languages
Japanese (ja)
Inventor
Fumio Kajiyama
文夫 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP17295392A priority Critical patent/JPH0618461A/en
Publication of JPH0618461A publication Critical patent/JPH0618461A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the activity of iron oxidizing bacteria to be monitored by immersing two platinum electrodes in a culture solution containing iron- oxidizing bacteria, and applying the specific value of sinusoidal wave voltage across the electrodes for the calculation of electrical double layer capacity. CONSTITUTION:A culture solution 2 is poured into a culture solution tank 1 and two platinum plate electrodes 3 and 3a are vertically fixed with a holder 4. Both electrodes 3 and 3a have the same exposure area, shape and thickness. An AC impedance meter 5 applies sinusoidal wave voltage between 10Hz and 10kHz to the electrodes 3 and 3a, and the voltage is detected with a response sinusoidal wave detector circuit 6. Furthermore, an electrical double layer capacity operation circuit 7 calculates the size of electrical double layer capacity from an impedance locus. In this case, the electrical double layer capacity increases according to an increase in the amount of iron oxidizing bacteria adhering to the electrodes 3 and 3a. Thus, the activity of the bacteria can be monitored, on the basis of the size of the electrical double layer capacity. The activity can be understood very simply, quickly and accurately, and displayed at a display circuit 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉱石のバクテリア・リ
ーチングに際して用いられる鉄酸化細菌を含む培養液の
活性度をモニタリングする方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring the activity of a culture solution containing iron-oxidizing bacteria, which is used for bacterial leaching of ores.

【0002】[0002]

【従来の技術】鉄酸化細菌を含む培養液の活性は、効率
(生産性)に大きく影響することから、その活性度を定
期的にモニタリングすることが必要である。
2. Description of the Related Art Since the activity of a culture solution containing iron-oxidizing bacteria greatly affects the efficiency (productivity), it is necessary to regularly monitor the activity.

【0003】従来のモニタリング方法としては、(1)
鉄酸化細菌の増殖速度を経験的にとらえることによって
培養液の交換を行う方法、(2)培養液のpH,イオン
の分析(pH,Fe2+,SO 2−1等)を行う方法
が知られている。
The conventional monitoring method is (1)
A method of exchanging the culture solution by empirically grasping the growth rate of iron-oxidizing bacteria, and (2) a method of analyzing the pH and ion of the culture solution (pH, Fe 2+ , SO 4 2-1 etc.) are known. Has been.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記モニタリ
ング方法においては、次のような欠点がある。
However, the above-mentioned monitoring method has the following drawbacks.

【0005】a.上記(1)の方法は、必ずしも正確で
はなく、又経験が必要である。
A. The above method (1) is not always accurate and requires experience.

【0006】b.上記(2)の方法は、時間と手数がか
かる。
B. The above method (2) requires time and trouble.

【0007】本発明の目的は、上記a、bの欠点を有し
ないモニタリング方法を提供することである。
An object of the present invention is to provide a monitoring method that does not have the above-mentioned drawbacks a and b.

【0008】[0008]

【課題を解決するための手段】本発明に係る鉄酸化細菌
の活性度をモニタリングする方法は次のとおりである。
A method for monitoring the activity of iron-oxidizing bacteria according to the present invention is as follows.

【0009】鉄酸化細菌を含む培養液中に、2枚の白金
板から成る電極を浸漬し、この2枚の電極間に10kH
zから10Hzまでの正弦波電圧を印加して求まるイン
ピーダンス軌跡から電気二重層容量を算出し、この容量
の大きさから鉄酸化細菌の活性度をモニタリングする方
法。
An electrode composed of two platinum plates was immersed in a culture solution containing iron-oxidizing bacteria, and 10 kH was applied between the two electrodes.
A method of calculating the electric double layer capacity from an impedance locus obtained by applying a sine wave voltage from z to 10 Hz, and monitoring the activity of iron-oxidizing bacteria from the size of the capacity.

【0010】上記構成において、電極として用いられる
白金は不溶性であり、かつ反応活性が高いため、本発明
に用いる電極用としては最も好ましい金属である。印加
する10KHz〜10Hzの電圧は電気二重層容量を求
めるのに十分なインピーダンス軌跡を得るためである。
In the above structure, platinum used as an electrode is insoluble and has high reaction activity, and is the most preferable metal for the electrode used in the present invention. The voltage of 10 KHz to 10 Hz applied is for obtaining an impedance locus sufficient for obtaining the electric double layer capacitance.

【0011】[0011]

【作用】培養液は適当な液槽内に入れ、これに2枚の電
極を同じ条件にて浸漬する。そして、ACインピーダン
スメーターから2枚の電極間に10kHzから10Hz
までの正弦波電圧(10mVrms)を印加して、イン
ピーダンス軌跡を求める。次に、このインピーダンス軌
跡から電気二重層容量を算出する。鉄酸化細菌の活性が
高い程、つまり電極に対する鉄酸化細菌が付着するほど
電気二重層容量が大きくなるので、この容量の大きさに
より、鉄酸化細菌の活性度のモニタリングが可能であ
る。なお、モニタリングは連続して行ってもよいが、通
常は24時間毎に一回位でもよい。
The culture solution is placed in a suitable liquid tank, and two electrodes are immersed in the same solution under the same conditions. And 10kHz to 10Hz between the AC impedance meter and the two electrodes
The sine wave voltage (10 mVrms) up to is applied to obtain the impedance locus. Next, the electric double layer capacitance is calculated from this impedance locus. The higher the activity of the iron-oxidizing bacterium, that is, the more the iron-oxidizing bacterium adheres to the electrode, the larger the electric double layer capacity. Therefore, the activity of the iron-oxidizing bacterium can be monitored by the size of this capacity. The monitoring may be carried out continuously, but usually it may be carried out once every 24 hours.

【0012】[0012]

【実施例】図1にモニタリング装置を示す。1は培養液
槽にして、この培養液槽1には鉄酸化細菌を含む培養液
2が入っている。3、3aは2枚の白金板から電極にし
て、この電極3、3aはホルダー4により同一条件(露
出面積が同一、同じ形状、同じ厚さ)で培養液槽1に垂
直に固定されている。5はACインピーダンスメーター
にして、このACインピーダンスメーター5は前記電極
3、3aに対して10kHzから10Hzまでの正弦波
電圧が印加できる。6は応答正弦波検出回路、7は電気
二重層容量演算回路にして、この回路7により算出され
た活性度は表示回路8に表示される。
EXAMPLE FIG. 1 shows a monitoring device. Reference numeral 1 denotes a culture solution tank, and the culture solution tank 1 contains a culture solution 2 containing iron-oxidizing bacteria. 3 and 3a are electrodes from two platinum plates, and the electrodes 3 and 3a are vertically fixed to the culture solution tank 1 by the holder 4 under the same condition (exposed area is the same, same shape, same thickness). . 5 is an AC impedance meter, and this AC impedance meter 5 can apply a sine wave voltage of 10 kHz to 10 Hz to the electrodes 3, 3a. 6 is a response sine wave detection circuit, 7 is an electric double layer capacitance calculation circuit, and the activity calculated by this circuit 7 is displayed on the display circuit 8.

【0013】図2に経時的な電気二重層容量の変化を示
す。
FIG. 2 shows the change in electric double layer capacity over time.

【0014】この図2から明らかなように、無菌状態で
は1000μF/cm位であるが、10セル/ml
生息していると3000μF/cmを超えることが判
る。また、鉄酸化細菌が増殖すると電気二重層容量の値
は増加の一途をたどる。
As is clear from FIG. 2, it is about 1000 μF / cm 2 in a sterile state, but 10 6 cells / ml.
It can be seen that the habitat exceeds 3000 μF / cm 2 . When the iron-oxidizing bacteria grow, the value of electric double layer capacity keeps increasing.

【0015】[0015]

【本発明の効果】本発明は以上のように、白金板から成
る電極間に10kHz〜10Hzの正弦波電圧を印加
し、この応答正弦波電流を測定することにより、電気二
重層容量の大きさを算出できるので、この容量の大きさ
により、鉄酸化細菌の活性度を極めて簡単かつ迅速に、
そして正確に知ることができる。この結果、効率的なバ
クテリア・リーチングを行うことができる。
As described above, the present invention applies the sine wave voltage of 10 kHz to 10 Hz between the electrodes made of platinum plates and measures the response sine wave current to determine the magnitude of the electric double layer capacitance. Therefore, the activity of iron-oxidizing bacteria can be extremely easily and quickly determined by the size of this capacity.
And you can know exactly. As a result, efficient bacterial leaching can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るバクテリア・リーチングに使用さ
れている鉄酸化細菌の活性度をモニタリングする方法を
実施するための装置の説明図。
FIG. 1 is an explanatory view of an apparatus for carrying out a method for monitoring the activity of iron-oxidizing bacteria used for bacterial leaching according to the present invention.

【図2】経時的な電気二重層容量の変化の説明図。FIG. 2 is an explanatory diagram of changes in electric double layer capacity over time.

【符号の説明】[Explanation of symbols]

1 培養液槽 2 培養液 3、3a 電極 4 ホルダー 5 ACインピーダンスメーター 6 応答正弦波電流測定回路 7 電気二重層容量演算回路 8 表示回路 1 culture liquid tank 2 culture liquid 3, 3a electrode 4 holder 5 AC impedance meter 6 response sine wave current measurement circuit 7 electric double layer capacity calculation circuit 8 display circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄酸化細菌を含む培養液中に、2枚の白
金板から成る電極を浸漬し、この2枚の電極間に10k
Hzから10Hzまでの正弦波電圧を印加して求まるイ
ンピーダンス軌跡から電気二重層容量を算出し、この容
量の大きさから鉄酸化細菌の活性度をモニタリングする
方法。
1. An electrode composed of two platinum plates is immersed in a culture solution containing iron-oxidizing bacteria, and 10 k is placed between the two electrodes.
A method of calculating an electric double layer capacity from an impedance locus obtained by applying a sinusoidal voltage of 10 Hz to 10 Hz, and monitoring the activity of iron-oxidizing bacteria from the size of the capacity.
JP17295392A 1992-06-30 1992-06-30 Monitoring method for activity of ion oxidizing bacteria Pending JPH0618461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17295392A JPH0618461A (en) 1992-06-30 1992-06-30 Monitoring method for activity of ion oxidizing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17295392A JPH0618461A (en) 1992-06-30 1992-06-30 Monitoring method for activity of ion oxidizing bacteria

Publications (1)

Publication Number Publication Date
JPH0618461A true JPH0618461A (en) 1994-01-25

Family

ID=15951428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17295392A Pending JPH0618461A (en) 1992-06-30 1992-06-30 Monitoring method for activity of ion oxidizing bacteria

Country Status (1)

Country Link
JP (1) JPH0618461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330752A (en) * 2001-05-08 2002-11-19 Sanden Corp Apparatus for counting number of microorganisms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002330752A (en) * 2001-05-08 2002-11-19 Sanden Corp Apparatus for counting number of microorganisms

Similar Documents

Publication Publication Date Title
US7309414B2 (en) Method for measuring localized corrosion rate with a multi-electrode array sensor
CN100385231C (en) Electrochemical noise technique for corrosion
JPH021262B2 (en)
Hause et al. Electrode and electrolyte impedance in the detection of bacterial growth
JP2000125846A (en) Device for measuring number of microorganism and method therefor
Baboian et al. Electrochemical Studies on Zirconium and Hafnium in Molten LiCl‐KCl Eutectic
DE2967619D1 (en) Method and apparatus for measuring ph
JPS6363858B2 (en)
FR2356935A1 (en) METHOD AND APPARATUS FOR DETECTION OF THE CONCENTRATION OF AN ELECTROACTIVE CONSTITUENT IN A COATING SOLUTION
JP2003000224A (en) Apparatus for determination of microbial activity and method for determination of microbial activity
Dorset et al. Excess electrical noise during current flow through porous membranes separating ionic solutions
US3479256A (en) Process for testing the corrosion resistance of a metallic surface
JPH0618461A (en) Monitoring method for activity of ion oxidizing bacteria
US7041492B2 (en) Extracellular recording electrode
Li et al. A new approach to the mechanism of chlorine evolution: Separate examination of the kinetic steps using ac impedance on a rotating thin ring electrode
JPS60200153A (en) Metal corrosion measuring apparatus
US20040020772A1 (en) Method and system for measuring active animal glue concentration in industrial electrolytes
US2732335A (en) glass
EP0608037B1 (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
JPS63304622A (en) Impurity doping method and equipment therefor
Naneva et al. Adsorption of halide ions Cl−, Br− and I− on the basal face of a cadmium single crystal
JPH04172241A (en) Apparatus for measuring corrosion underneath paint film
Wang Anodic stripping voltammetry: an instrumental analysis experiment
JPH03295460A (en) Rotary electrode and concentration measuring method
JPH02501953A (en) Microorganism detection method