JPH061840A - Polyamide resin - Google Patents

Polyamide resin

Info

Publication number
JPH061840A
JPH061840A JP18320592A JP18320592A JPH061840A JP H061840 A JPH061840 A JP H061840A JP 18320592 A JP18320592 A JP 18320592A JP 18320592 A JP18320592 A JP 18320592A JP H061840 A JPH061840 A JP H061840A
Authority
JP
Japan
Prior art keywords
resin
saturated hydrocarbon
heat resistance
flexibility
solvent resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18320592A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Ogasawara
強 小笠原
Takashi Yoshizawa
隆 吉澤
Takashi Mizoguchi
隆 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP18320592A priority Critical patent/JPH061840A/en
Publication of JPH061840A publication Critical patent/JPH061840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To impart solvent resistance, heat resistance, flexibility and the capability of being blended with another resin to a polyamide resin without detriment to the inherent excellent solvent resistance. CONSTITUTION:The title resin is prepared by polycondensing naphthalenedicarbonyl dichloride with a saturated hydrocarbon diamine, comprises structural units of the formula: HN-R-HNOC-Ar-CO wherein R is a saturated hydrocarbon group, and Ar is a naphthalene group and has a viscosity (etainh) of 0.3-2.0dl/g as measured in concentrated sulfuric acid in a resin concentration of 0.5g/dl at 30 deg.C. This resin has excellent heat resistance because of the introduced aromatic groups, i.e., naphthalene groups, an excellent flexibility and a capability of being blended with another resin because of the introduced saturated hydrocarbon groups, and still retains the inherent excellent solvent resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性および耐溶剤性
に優れるとともに、可撓性および他の樹脂とのブレンド
性をも備えたポリアミド樹脂に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyamide resin having excellent heat resistance and solvent resistance as well as flexibility and blendability with other resins.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】ナイ
ロン等を含むポリアミドは、耐溶剤性に優れるのみなら
ず、熱可塑性プラスチックの中でもオレフィン系やスチ
レン系等の樹脂に比して、一般に耐熱性に優れている。
また、より一層優れた耐熱性が求められている中で、ポ
リアミドを全芳香族化した全芳香族ポリアミドは、耐熱
性が向上することも知られている。
2. Description of the Related Art Polyamides including nylon are not only excellent in solvent resistance, but are generally more heat resistant than thermoplastic resins such as olefin and styrene resins. Is excellent.
Further, it is known that a wholly aromatic polyamide is a wholly aromatic polyamide, in which heat resistance is improved, while further excellent heat resistance is required.

【0003】しかし、全芳香族ポリアミドは、可撓性
が劣るために成型が容易にできず、融点が500℃と
いう高温域にあることから、他の樹脂とのブレンドが困
難であるという欠点がある。
However, the wholly aromatic polyamide cannot be easily molded due to its poor flexibility, and its melting point is in the high temperature range of 500 ° C., so that it is difficult to blend it with other resins. is there.

【0004】そこで、本発明は、耐溶剤性に優れたポリ
アミドに、全芳香族ポリアミドに近い耐熱性を付与する
とともに、可撓性や他の樹脂とのブレンド性をも兼備さ
せることを目的とする。
Therefore, an object of the present invention is to provide a polyamide having excellent solvent resistance with heat resistance close to that of a wholly aromatic polyamide, and also to have flexibility and blendability with other resins. To do.

【0005】[0005]

【課題を解決するための手段および作用】本発明者等
は、上記目的を達成するために鋭意研究を行った結果、
耐熱性向上のためにはナフタレン基を導入し、かつ可撓
性や他の樹脂とのブレンド性の改善のためには飽和炭化
水素基を導入して、ポリアミドを多環半芳香族ポリアミ
ドとすれば、従来の優れた耐溶剤性を維持したまま、単
環芳香族ポリアミドよりも耐熱性を向上させ、全芳香族
ポリアミドの欠点であった可撓性を改善し得るとの知見
を得て、本発明を完成するに至った。
Means and Actions for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result,
Introducing a naphthalene group to improve heat resistance, and introducing a saturated hydrocarbon group to improve flexibility and blendability with other resins, make polyamide a polycyclic semiaromatic polyamide. For example, while maintaining the excellent solvent resistance of the conventional, to improve the heat resistance than monocyclic aromatic polyamide, obtained the knowledge that it was possible to improve the flexibility was a drawback of wholly aromatic polyamide, The present invention has been completed.

【0006】すなわち、本発明は、化2の一般式で示さ
れる構造単位を有し、樹脂濃度が0.5dL/gのと
き、30℃の濃硫酸中で、粘度(ηinh)が、0.3
〜2.0dL/g(なお、「dL」はデシリットルを意
味し、以下、リットルを「L」と、ミリリットルを「m
L」とそれぞれ記す)であるポリアミド樹脂を要旨とす
る。
That is, the present invention has a structural unit represented by the general formula of Chemical Formula 2, and when the resin concentration is 0.5 dL / g, the viscosity (η inh ) is 0 in concentrated sulfuric acid at 30 ° C. .3
~ 2.0 dL / g (“dL” means deciliter, and hereinafter, liter is “L” and milliliter is “m”.
L ") is a polyamide resin.

【0007】[0007]

【化2】 [Chemical 2]

【0008】化2の一般式において、飽和炭化水素基
(R)は、炭素数6〜18、好ましくは10〜14を有
する基であり、例えば、オクタメチレン、ノナメチレン
等を挙げることができる。上記の飽和炭化水素基の炭素
数がこれよりも少なすぎると、相対的にナフタレン基
(Ar)の影響が強くなって、耐熱性は向上するが、可
撓性を改善することができなくなるともに、融点が高く
なるため、成型性や他樹脂とのブレンド性が悪くなる。
逆に、多すぎると、相対的にナフタレン基の影響が弱く
なって、可撓性は改善できるが、融点が低くなるため、
耐熱性が悪くなる。
In the general formula of Chemical formula 2, the saturated hydrocarbon group (R) is a group having 6 to 18 carbon atoms, preferably 10 to 14 carbon atoms, and examples thereof include octamethylene and nonamethylene. When the number of carbon atoms of the saturated hydrocarbon group is too small, the effect of the naphthalene group (Ar) becomes relatively strong and heat resistance is improved, but flexibility cannot be improved. Since the melting point becomes high, moldability and blendability with other resins deteriorate.
On the contrary, if the amount is too large, the influence of the naphthalene group is relatively weakened, and the flexibility can be improved, but the melting point is lowered,
Heat resistance deteriorates.

【0009】また、ナフタレン基は、どの位置でポリマ
ー鎖に結合されていても良いが、例えば、1,5−、
1,6−、1,7−、1,8−、2,6−、2,7−、
2,8−等の位置で結合されているものを挙げることが
できる。
The naphthalene group may be bonded to the polymer chain at any position. For example, 1,5-,
1,6-, 1,7-, 1,8-, 2,6-, 2,7-,
Mention may be made of those bonded at positions such as 2,8-.

【0010】粘度(インヒーレント粘度《ηinh》)
は、濃度に相関するものである。すなわち、濃度が高け
れば、粘度(ηinh)(以下、単に「粘度」と記すこ
ともある)も上昇するが、本発明の樹脂では、樹脂濃度
が0.5dL/gのとき、30℃の濃硫酸中で、0.3
〜2.0dL/g、好ましくは0.5〜1.5dL/g
の範囲を有する。これより大きければ、成型性が悪くな
り、小さければ、耐熱性や機械的強度等の必要とする物
性が得られなくなる。なお、このときの濃硫酸とは、濃
度95%以上の硫酸を指す。
Viscosity (inherent viscosity << η inh >>)
Is a function of concentration. That is, when the concentration is high, the viscosity (η inh ) (hereinafter sometimes simply referred to as “viscosity”) also rises, but in the resin of the present invention, when the resin concentration is 0.5 dL / g, 0.3 in concentrated sulfuric acid
~ 2.0 dL / g, preferably 0.5-1.5 dL / g
Has a range of. If it is larger than this, the moldability becomes poor, and if it is smaller, the required physical properties such as heat resistance and mechanical strength cannot be obtained. The concentrated sulfuric acid at this time refers to sulfuric acid having a concentration of 95% or more.

【0011】本発明の樹脂は、例えば、ナフタレンジカ
ルボニルジクロリドと飽和炭化水素ジアミンを重合させ
ることにより得ることができる。このとき原料となるナ
フタレンジカルボニルジクロリドは、重合に支障のない
ものであれば、何でも使用できる。例を挙げれば、酸ク
ロリド基が1,8−、2,6−、2,7−、2,8−等
に位置するものなどである。これらは、一般に用いられ
る製法、例えば、塩化チオニルとナフタレンジカルボン
酸を用い、ジメチルホルムアミドの存在下で合成する方
法等により得られる。
The resin of the present invention can be obtained, for example, by polymerizing naphthalene dicarbonyl dichloride and saturated hydrocarbon diamine. At this time, as the raw material, naphthalene dicarbonyl dichloride can be used as long as it does not hinder the polymerization. Examples include those in which the acid chloride groups are located at 1,8-, 2,6-, 2,7-, 2,8-, etc. These can be obtained by a commonly used production method, for example, a method of synthesizing thionyl chloride and naphthalenedicarboxylic acid in the presence of dimethylformamide.

【0012】また、上記のナフタレンジカルボニルジク
ロリドと重縮合させる飽和炭化水素ジアミンは、炭化水
素部分が、直鎖のものでも、分岐したものでもよいが、
最長炭素鎖(主鎖)の炭素数が6〜18、好ましくは1
0〜14のものを用いる。
The saturated hydrocarbon diamine to be polycondensed with the above naphthalene dicarbonyl dichloride may have a linear or branched hydrocarbon moiety.
The longest carbon chain (main chain) has 6 to 18 carbon atoms, preferably 1
The thing of 0-14 is used.

【0013】ナフタレンジカルボニルジクロリドと飽和
炭化水素ジアミンは、等モル比で用いることが望まし
い。どちらかが多すぎて他方が少なすぎると、重合反応
は起きるが、重合度が下がるため、十分な耐熱性、ある
いは十分な収率が得られない。
It is desirable that naphthalene dicarbonyl dichloride and saturated hydrocarbon diamine are used in an equimolar ratio. If either one is too large and the other is too small, a polymerization reaction will occur, but the degree of polymerization will decrease, so that sufficient heat resistance or sufficient yield cannot be obtained.

【0014】重合方法は、ナフタレンジカルボニルジク
ロリドと飽和炭化水素ジアミンが十分に重縮合する方法
であれば、いかなる方法でもよく、低温溶液法や亜リン
酸トリフェニル法などが挙げられるが、リンの後処理等
を考慮すると、低温溶液法の方が簡便である。
The polymerization method may be any method as long as it sufficiently polycondenses naphthalene dicarbonyl dichloride and saturated hydrocarbon diamine, and examples thereof include a low temperature solution method and a triphenyl phosphite method. The low temperature solution method is simpler in consideration of post-treatment and the like.

【0015】低温溶液法は、次の条件で行うことが好ま
しい。温度は、−10℃〜+50℃、好ましくは0℃〜
室温、圧力は、加圧下で行うこともできるが、常圧でも
十分反応は進む。窒素雰囲気下で、1〜48時間、好ま
しくは3時間以上反応させる。溶媒としては、N−メチ
ルピロリドンやジメチルアセトアミドのようなアミド系
溶媒、またはこれに塩化リチウム等を混合した混合溶媒
等を用いることができる。溶媒の使用量は、原料10m
olに対して5〜20mLの割合とすることが好まし
い。原料に対する溶媒の量がこれより少なければ原料が
系に溶け難くくなり、多すぎれば原料の濃度が下がるた
め、反応性が低下する。
The low temperature solution method is preferably carried out under the following conditions. The temperature is -10 ° C to + 50 ° C, preferably 0 ° C to
Room temperature and pressure may be carried out under pressure, but the reaction proceeds sufficiently even at normal pressure. The reaction is carried out in a nitrogen atmosphere for 1 to 48 hours, preferably 3 hours or more. As the solvent, an amide-based solvent such as N-methylpyrrolidone or dimethylacetamide, or a mixed solvent obtained by mixing lithium chloride or the like with it can be used. The amount of solvent used is 10 m of raw material
It is preferable that the ratio is 5 to 20 mL with respect to ol. If the amount of the solvent with respect to the raw material is less than this, it becomes difficult for the raw material to dissolve in the system, and if the amount is too large, the concentration of the raw material decreases, and the reactivity decreases.

【0016】以上により得られる重合物については、赤
外スペクトル(IR)によりその構造を特定し、さらに
分子量を測定することにより重合物自身を特定できる
が、本発明の樹脂は、溶剤に対して著しい耐性を示すた
め、分子量を測定することが困難である。従って、得ら
れる樹脂は、赤外スペクトルと粘度を測定することによ
り、特定される。
With respect to the polymer obtained as described above, its structure can be specified by infrared spectrum (IR), and the polymer itself can be specified by measuring the molecular weight. It is difficult to measure the molecular weight due to its marked resistance. Therefore, the obtained resin is specified by measuring the infrared spectrum and the viscosity.

【0017】なお、以上により得られる本発明の樹脂
は、化2の一般式の構造単位を有し、かつ上記範囲内の
粘度を有するものが種々の割合で混合した状態、言い換
えれば樹脂組成物の状態となっているのが一般的であ
る。
The resin of the present invention obtained as described above is in a state in which those having the structural unit represented by the general formula (2) and having a viscosity within the above range are mixed in various ratios, in other words, the resin composition. It is generally in the state of.

【0018】このような状態の本発明の樹脂は、溶融ブ
レンドに適する融点を有するため、他の樹脂とブレンド
することができる。例えば、ポリフェニレンエーテル、
スチレン系共重合体などのような優れた電気特性を有す
るポリマーとブレンドすることができ、このブレンド体
は、耐熱性、電気特性、耐溶剤性、可撓性、成型性等に
優れたもので、各種の電子材料として有益である。
Since the resin of the present invention in such a state has a melting point suitable for melt blending, it can be blended with other resins. For example, polyphenylene ether,
It can be blended with polymers with excellent electrical properties such as styrene copolymers, and this blend has excellent heat resistance, electrical properties, solvent resistance, flexibility, moldability, etc. , Useful as various electronic materials.

【0019】このとき、本発明の樹脂と被ブレンド樹脂
とのブレンド割合は適宜のものでよいが、ブレンド体に
本発明の樹脂の特性を持ち込むためには、本発明の樹脂
5〜95体積%に対し、被ブレンド樹脂95〜5体積%
とすることが好ましく、より好ましくは、20〜90体
積%に対し、80〜10体積%とする。
At this time, the blending ratio of the resin of the present invention and the resin to be blended may be appropriate, but in order to bring the characteristics of the resin of the present invention into the blend, the resin of the present invention is 5 to 95% by volume. To 95% by volume of the blended resin
It is preferable that the amount is 20% to 90% by volume, and more preferably 80% to 10% by volume.

【0020】ブレンド方法は、本発明の樹脂と被ブレン
ド樹脂が均一にブレンドされる方法であれば、いかなる
方法を用いても良い。例えば、200〜400℃、好ま
しくは230〜350℃の温度で、反応時間が1〜60
分、好ましくは2〜20分の条件で行う溶融ブレンドな
どが挙げられる。
As the blending method, any method may be used as long as the resin of the present invention and the resin to be blended are uniformly blended. For example, at a temperature of 200 to 400 ° C, preferably 230 to 350 ° C, a reaction time of 1 to 60
Minutes, preferably 2 to 20 minutes, for example, melt blending.

【0021】[0021]

【実施例】【Example】

実施例1 ドデカメチレンジアミン1.00g(5mmol)を窒
素置換した100mLのナス型フラスコにとり、N,N
−ジメチルアセトアミド10mLに塩化リチウム0.5
gを溶かした溶液を加え、30分間攪拌した。ナス型フ
ラスコの内容物をドライアイス/アセトン浴にて凍結
し、2,6−ナフタレンジカルボニルジクロリド1.2
5g(5mmol)を加え、浴を氷浴にし、30分間攪
拌した。この後、室温で1時間攪拌し、2日間放置した
後、反応液を1Lの蒸留水中に投入して析出物を濾過し
た。濾過物を500mLのメタノールに投入し、これを
濾過して得た濾過物を300mLのメタノール中で30
分間加熱還流した後、再度濾過し、濾過物を300mL
のクロロホルム中で30分間加熱還流した。これを濾過
して得た濾過物を室温で減圧乾燥し、樹脂を0.95g
得た。
Example 1 1.00 g (5 mmol) of dodecamethylenediamine was placed in a 100 mL eggplant-shaped flask whose atmosphere was replaced with nitrogen.
-0.5 mL of lithium chloride in 10 mL of dimethylacetamide.
A solution in which g was dissolved was added and stirred for 30 minutes. The contents of the eggplant-shaped flask were frozen in a dry ice / acetone bath to prepare 2,6-naphthalenedicarbonyldichloride 1.2.
5 g (5 mmol) was added, the bath was changed to an ice bath, and the mixture was stirred for 30 minutes. Then, the mixture was stirred at room temperature for 1 hour and left for 2 days, then, the reaction solution was poured into 1 L of distilled water and the precipitate was filtered. The filtrate was put into 500 mL of methanol, and the filtrate obtained by filtering this was added to 30 mL of 300 mL of methanol.
After heating under reflux for 1 minute, filter again and filter the filtrate to 300 mL.
It was heated under reflux in chloroform for 30 minutes. The filtered material obtained by filtering this was dried at room temperature under reduced pressure to obtain 0.95 g of resin.
Obtained.

【0022】KBr法を用いて得られた樹脂の赤外吸収
スペクトル(IR)を測定したところ、1530(cm
−1)、1630(cm−1)付近にアミドの吸収、3
300(cm−1)付近にNH基の吸収が認められ、2
800(cm−1)、2900(cm−1)付近にCH
基の吸収が見られた。
The infrared absorption spectrum (IR) of the resin obtained by the KBr method was measured and found to be 1530 (cm
−1 ), absorption of amide near 1630 (cm −1 ), 3
Absorption of NH group was observed around 300 (cm −1 ) and 2
CH around 800 (cm -1 ) and 2900 (cm -1 )
Two absorptions were seen.

【0023】また、得られた樹脂0.10gを20mL
の濃硫酸(濃度95%以上)に溶かして0.5g/dL
とし、オストワルドの粘度計を用い、30℃にて粘度
(ηinh)を測定したところ、0.75dL/gであ
った。さらに、得られた樹脂の融点を示差走査熱量計を
用い、DSC法により測定したところ、246℃であっ
た。
20 mL of 0.10 g of the obtained resin
0.5g / dL by dissolving in concentrated sulfuric acid (concentration 95% or more)
When the viscosity (η inh ) was measured at 30 ° C. using an Ostwald viscometer, it was 0.75 dL / g. Further, the melting point of the obtained resin was measured by the DSC method using a differential scanning calorimeter and found to be 246 ° C.

【0024】実施例2 ヘキサメチレンジアミン0.58g(5mmol)を窒
素置換した100mLのナス型フラスコにとり、N,N
−ジメチルアセトアミド10mL中で30分間攪拌し、
ナス型フラスコをドライアイス/アセトン浴にして内容
物を凍結させ、2,6−ナフタレンジカルボニルジクロ
リド1.25g(5mmol)を加え、浴を氷浴にし、
30分間攪拌した。その後、浴をはずして室温で30分
間攪拌し、反応液を350mLの蒸留水中に投入し、析
出物を濾過し、濾過物を200mLのメタノール中で3
0分間加熱還流した。再度濾過し、濾過物を室温で減圧
乾燥して0.63gの樹脂を得た。
Example 2 0.58 g (5 mmol) of hexamethylenediamine was placed in a 100 mL eggplant-shaped flask whose atmosphere was replaced with nitrogen, and N, N
Stirring in 10 mL of dimethylacetamide for 30 minutes,
The eggplant type flask was put in a dry ice / acetone bath to freeze the contents, 1.25 g (5 mmol) of 2,6-naphthalenedicarbonyldichloride was added, and the bath was turned into an ice bath,
Stir for 30 minutes. Then, the bath was removed, and the mixture was stirred at room temperature for 30 minutes, the reaction solution was poured into 350 mL of distilled water, the precipitate was filtered, and the filtered material was mixed with 200 mL of methanol in 3 mL.
Heated to reflux for 0 minutes. It was filtered again, and the filtrate was dried under reduced pressure at room temperature to obtain 0.63 g of resin.

【0025】得られた樹脂の赤外スペクトル(IR)
は、実施例1と同様に測定し、同様の吸収帯を示した。
また、得られた樹脂の粘度(ηinh)を、実施例1と
同様に測定したところ、0.31dL/gであった。さ
らに、得られた樹脂の融点を実施例1と同様にして測定
したところ、360℃であった。
Infrared spectrum (IR) of the obtained resin
Was measured in the same manner as in Example 1 and showed the same absorption band.
Further, the viscosity (η inh ) of the obtained resin was measured in the same manner as in Example 1, and it was 0.31 dL / g. Furthermore, when the melting point of the obtained resin was measured in the same manner as in Example 1, it was 360 ° C.

【0026】比較例1 ドデカメチレンジアミン1.00g(5mmol)を窒
素置換した100mLのナス型フラスコにとり、N,N
−ジメチルアセトアミド10mL中で30分間攪拌し、
ナス型フラスコをドライアイス/アセトン浴にして内容
物を凍結させ、1,4−ベンゼンジカルボニルジクロリ
ド1.02g(5mmol)を加え、浴を氷浴にし、3
0分間攪拌した。その後、浴をはずして室温で30分間
攪拌し、反応液を350mLの蒸留水中に投入し、析出
物を濾過した。濾過物を200mLのメタノール中で3
0分間加熱還流し、再度濾過し、濾過物を室温で減圧乾
燥して0.45gの樹脂を得た。
Comparative Example 1 1.00 g (5 mmol) of dodecamethylenediamine was placed in a 100 mL eggplant-shaped flask whose atmosphere was replaced with nitrogen.
Stirring in 10 mL of dimethylacetamide for 30 minutes,
The eggplant-shaped flask was placed in a dry ice / acetone bath to freeze the contents, 1.02 g (5 mmol) of 1,4-benzenedicarbonyldichloride was added, and the bath was set to an ice bath.
Stir for 0 minutes. Then, the bath was removed, the mixture was stirred at room temperature for 30 minutes, the reaction solution was poured into 350 mL of distilled water, and the precipitate was filtered. The filtrate is taken up in 200 mL of methanol 3 times
The mixture was heated under reflux for 0 minutes, filtered again, and the filtrate was dried under reduced pressure at room temperature to obtain 0.45 g of resin.

【0027】得られた樹脂の赤外スペクトル(IR)
は、実施例1と同様に測定し、同様の吸収帯を示した。
また、得られた樹脂の融点を実施例1と同様にして測定
したところ、237℃であった。
Infrared spectrum (IR) of the obtained resin
Was measured in the same manner as in Example 1 and showed the same absorption band.
The melting point of the obtained resin was measured in the same manner as in Example 1 and found to be 237 ° C.

【0028】比較例2 ヘキサメチレンジアミン0.58g(5mmol)を窒
素置換した100mLのナス型フラスコにとり、N,N
−ジメチルアセトアミド10mL中で30分間攪拌し、
ナス型フラスコをドライアイス/アセトン浴にして内容
物を凍結させ、1,4−ベンゼンジカルボニルジクロリ
ド1.02g(5mmol)を加え、浴を氷浴にし、3
0分間攪拌した。その後、浴をはずして室温で30分間
攪拌した後、反応液を350mLの蒸留水中に投入し、
析出物を濾過し、濾過物を200mLのメタノール中で
30分間加熱還流した。再度濾過し、濾過物を室温で減
圧乾燥して0.63gの樹脂を得た。
Comparative Example 2 Hexamethylenediamine (0.58 g, 5 mmol) was placed in a 100 mL eggplant-shaped flask which had been purged with nitrogen.
Stirring in 10 mL of dimethylacetamide for 30 minutes,
The eggplant-shaped flask was placed in a dry ice / acetone bath to freeze the contents, 1.02 g (5 mmol) of 1,4-benzenedicarbonyldichloride was added, and the bath was set to an ice bath.
Stir for 0 minutes. Then, after removing the bath and stirring at room temperature for 30 minutes, the reaction solution was poured into 350 mL of distilled water,
The precipitate was filtered, and the filtrate was heated under reflux in 200 mL of methanol for 30 minutes. It was filtered again, and the filtrate was dried under reduced pressure at room temperature to obtain 0.63 g of resin.

【0029】得られた樹脂の赤外スペクトル(IR)
は、実施例1と同様に測定し、同様の吸収帯を示した。
また、得られた樹脂の融点を実施例1と同様にして測定
したところ、340℃であった。
Infrared spectrum (IR) of the obtained resin
Was measured in the same manner as in Example 1 and showed the same absorption band.
Further, the melting point of the obtained resin was measured in the same manner as in Example 1, and it was 340 ° C.

【0030】実施例1〜2の本発明のポリアミド樹脂と
比較例1〜2の単環芳香族ポリアミドとの融点を比較す
ると、本発明のポリアミド樹脂は、耐熱性が向上してい
ることがわかる。また、前述のように全芳香族ポリアミ
ドの融点は約500℃であるのに対し、実施例1〜2の
本発明の樹脂は、これに比して融点が低くなっており、
他樹脂とのブレンドが容易になっていることがわかる。
When the melting points of the polyamide resins of the present invention of Examples 1-2 and the monocyclic aromatic polyamides of Comparative Examples 1-2 are compared, it can be seen that the polyamide resins of the present invention have improved heat resistance. . Further, as described above, the melting point of the wholly aromatic polyamide is about 500 ° C., whereas the resins of the present invention of Examples 1 and 2 have a lower melting point,
It can be seen that blending with other resins has become easier.

【0031】実施例1で得られた樹脂10mgを、ジメ
チルアセトアミド、ジメチルクロムアミド、N−メチル
ピロリドン、o−クロロフェノールの各15mLに投入
し、50℃で1時間攪拌して一晩放置したが、樹脂は全
ての溶媒に不溶であった。これから、本発明の樹脂が耐
溶剤性に優れていることがわかる。
10 mg of the resin obtained in Example 1 was added to 15 mL each of dimethylacetamide, dimethylchromamide, N-methylpyrrolidone and o-chlorophenol, and the mixture was stirred at 50 ° C. for 1 hour and left overnight. , The resin was insoluble in all solvents. From this, it is understood that the resin of the present invention has excellent solvent resistance.

【0032】[0032]

【発明の効果】以上詳述したように、本発明のポリアミ
ド樹脂は、半分のみが芳香族化されたものではあるが、
この芳香族基としてナフタレン基が使用さており、これ
により全芳香族ポリアミドに近い耐熱性を示すことがで
きる。また、本発明のポリアミド樹脂は、残りの半分に
飽和炭化水素基が導入されており、これにより、優れた
可撓性、あるいは他の樹脂との優れたブレンド性を得る
ことができる。しかも、本発明のポリアミド樹脂は、ポ
リアミド樹脂が本来有する優れた耐溶剤性をそのまま維
持することができる。
As described above in detail, although the polyamide resin of the present invention is only half-aromatized,
A naphthalene group is used as the aromatic group, and thus it can exhibit heat resistance close to that of a wholly aromatic polyamide. In addition, the polyamide resin of the present invention has a saturated hydrocarbon group introduced into the other half, whereby it is possible to obtain excellent flexibility or excellent blendability with other resins. Moreover, the polyamide resin of the present invention can maintain the excellent solvent resistance originally possessed by the polyamide resin.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式 【化1】 で示される構造単位を有し、 樹脂濃度が0.5dL/gのとき、30℃の濃硫酸中
で、粘度(ηinh)が、0.3〜2.0dL/gであ
るポリアミド樹脂。
1. A general formula: A polyamide resin having a structural unit represented by: and a viscosity (η inh ) of 0.3 to 2.0 dL / g in concentrated sulfuric acid at 30 ° C. when the resin concentration is 0.5 dL / g.
JP18320592A 1992-06-17 1992-06-17 Polyamide resin Pending JPH061840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18320592A JPH061840A (en) 1992-06-17 1992-06-17 Polyamide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18320592A JPH061840A (en) 1992-06-17 1992-06-17 Polyamide resin

Publications (1)

Publication Number Publication Date
JPH061840A true JPH061840A (en) 1994-01-11

Family

ID=16131620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18320592A Pending JPH061840A (en) 1992-06-17 1992-06-17 Polyamide resin

Country Status (1)

Country Link
JP (1) JPH061840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585429A (en) * 1995-03-27 1996-12-17 Amoco Corporation Polyphthalamide resin formulations
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585429A (en) * 1995-03-27 1996-12-17 Amoco Corporation Polyphthalamide resin formulations
EP0735082A3 (en) * 1995-03-27 1997-04-02 Amoco Corp Polyphtalamide resin formulations
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath

Similar Documents

Publication Publication Date Title
AU597279B2 (en) A process for the production of a liquid crystalline extendedchain polymer composition
US4229566A (en) Articulated para-ordered aromatic heterocyclic polymers containing diphenoxybenzene structures
JPH06500147A (en) Aromatic copolyamides, their preparation and their use for the production of shaped structures
JPH08134362A (en) Molecular composite material comprising liquid crystalline polymer and thermoplastic polymer and its production
KR940007322B1 (en) Novel aromatic polyimide and preparation thereof
JPH061840A (en) Polyamide resin
JPS6296561A (en) Resin composition and production thereof
JPH06500595A (en) Binary alloys based on polyether-amides and cycloolefin polymers
US5218081A (en) Method of producing aromatic polythiazole
US3461096A (en) Heterocyclic polymers of improved thermal stability consisting of polyisoindoloquinazoline diones and analogs thereof
Lehtinen et al. Chelation of poly (O‐isophthaloylisophthalamide oxime) with copper (II) ions
KR960002962B1 (en) Ether-imide copolymer
JPH0238426A (en) Polyamide resin and its manufacture
JPH01292019A (en) Soluble heat-resistant polyurea
Kandile et al. New polyamides and polyesteramides incorporated with bis (carboxy‐substituted) hydrazines: Synthesis and characterization
EP0242818A2 (en) Heat-resistant polyamide
Hsiao et al. Synthesis and properties of aromatic polyamides based on 4, 4′‐(1, 5‐naphthalenedioxy) dibenzoic acid
Hamciuc et al. Fluorinated poly (1, 3, 4‐oxadiazole‐imide‐amide) s
KR930003716B1 (en) Poly amide resin
JPS6346221A (en) Heat-resistant polyamide
CN108192095B (en) Preparation method of polymer with amido bond in main chain
JPS63193925A (en) Aromatic polyazomethine
JPH02255723A (en) New polyamide resin
JPS6399231A (en) Soluble and heat-resistant copolyamide
JPS61133231A (en) Novel polymer and its production