JPS6346221A - Heat-resistant polyamide - Google Patents

Heat-resistant polyamide

Info

Publication number
JPS6346221A
JPS6346221A JP4768987A JP4768987A JPS6346221A JP S6346221 A JPS6346221 A JP S6346221A JP 4768987 A JP4768987 A JP 4768987A JP 4768987 A JP4768987 A JP 4768987A JP S6346221 A JPS6346221 A JP S6346221A
Authority
JP
Japan
Prior art keywords
polyamide
formula
polymer
dimethylacetamide
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4768987A
Other languages
Japanese (ja)
Other versions
JPH0331731B2 (en
Inventor
Takeo Teramoto
武郎 寺本
Kazuaki Harada
和明 原田
Hiroharu Inoue
博晴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to DE8787105719T priority Critical patent/DE3780341D1/en
Priority to EP87105719A priority patent/EP0242818B1/en
Priority to US07/041,249 priority patent/US4794159A/en
Publication of JPS6346221A publication Critical patent/JPS6346221A/en
Publication of JPH0331731B2 publication Critical patent/JPH0331731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PURPOSE:To provide the titled novel polymer having a specific structure and a controllable glass transition point and injection moldable while keeping high heat-resistance owing to the selectability of the combination of the glass transition point and heat-resistance over a wide range. CONSTITUTION:The objective polymer is composed of the structure of formula I [X is group of formula II (R is H, CH3, etc.); Y is group of formula III or IV (n is integer of 2-6); m is number of recurring units] wherein the ratio of the unit of formula II in the component Y is 1-99mol% and that of the unit of formula III is 99-1mol%. It has an intrinsic viscosity etainh of >=0.25dl/g measured at 30 deg.C as a solution produced by dissolving the polymer in dimethylacetamide at a concentration of 0.5g/100ml. The polymer can be produced e.g. by reacting a 9,9-bis(4-aminophenyl)fluorene compound with a mixture of terephthalic acid chloride and adipic acid chloride constituting the component Y in a solvent such as dimethylacetamide.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な共重合ポリアミドであって、耐熱性と成
形加工性に特徴があり、繊維、フィルムさらに射出成形
物の素材として使用可1赴なポリアミドに関する。
[Detailed description of the invention] Industrial application field The present invention is a novel copolyamide, which is characterized by heat resistance and moldability, and can be used as a material for fibers, films, and injection molded products. Regarding polyamide.

従来の技術 代表的全芳香族ポリアミド繊維のアラミドは、長期耐熱
温度が約220℃であり、高強度の繊維を形成する有用
なポリアミドとして知られている。
Aramid, which is a fully aromatic polyamide fiber representative of conventional technology, has a long-term heat resistance temperature of about 220° C. and is known as a useful polyamide that forms high-strength fibers.

しかしながら、この7ラミドを繊維とする場合にはまず
溶液とすることが必要であり、その際に溶剤として塩化
リチウムや塩化カルシウムを懸濁させたジメチルアセト
アミドやヘキサメチレンホスホルアミドを用いて溶液と
している。このため懸吊している塩化リチウムや塩化カ
ルシウムが管につまる原因となって、装置の故障が生ず
るなど生産の障害となっている。
However, in order to make this 7-lamid into fibers, it is first necessary to make it into a solution. There is. This causes suspended lithium chloride and calcium chloride to clog the pipes, causing equipment failure and other problems in production.

また、成形物を製作する場合には、その高い耐熱性のた
めに射出成形が困難であり、一般的には高性旋ではあっ
ても加工面に問題が残っている。
In addition, when producing molded products, injection molding is difficult due to their high heat resistance, and even if they are generally highly rotary, problems remain in the processing surface.

コルシャックらはジャーナル・オブ・マクロモレキュル
・サイx7ス(J、 Macromol、 Sci 、
 、 Rev。
Korshak et al., Journal of Macromolecules, Sci.
, Rev.

Macromol、 Chew、 、 C月、45.1
974年)に可溶性ポリアミドについて報告しているが
、耐熱性を高く保持したまま、射出成形性をも工夫した
例はこれまでになかった。
Macromol, Chew, , C month, 45.1
(1974) reported on soluble polyamides, but there has never been an example of improving injection moldability while maintaining high heat resistance.

発明が解決しようとする問題点 合成樹脂に溶解性を持たせることも加工性の向上につな
がるが、この場合には使用範囲が繊維、フィルムなどに
限定されてしまう0合成樹脂を成形加工するには射出成
形が応用範囲の広い方法であるが、この場合、用いる合
成樹脂の耐熱性が問題となる。
Problems to be solved by the invention Adding solubility to synthetic resins also leads to improved processability, but in this case, the range of use is limited to fibers, films, etc.0 It is difficult to mold and process synthetic resins. Injection molding is a method with a wide range of applications, but in this case, the heat resistance of the synthetic resin used is a problem.

射出成形の際の加熱温度を高温にすれば、合成樹脂が熱
分解を起こして、成形物の物性低下を招くため、一般に
結晶性合成樹脂では成形温度の下限は、その融点(T+
w)より30℃程高く、非品性高分子ではガラス転移点
(Tg)より 100℃程高いことが良いとされている
。またいずれの場合も射出成形の際の合成樹脂温度は、
合成樹脂の熱分解温度より略50℃以上低い温度で行な
わなければならない。
If the heating temperature during injection molding is set to a high temperature, the synthetic resin will undergo thermal decomposition, leading to a decrease in the physical properties of the molded product.In general, the lower limit of the molding temperature for crystalline synthetic resins is set at the melting point (T+
It is said that it is good to be about 30°C higher than w), and about 100°C higher than the glass transition point (Tg) for non-grade polymers. In both cases, the synthetic resin temperature during injection molding is
It must be carried out at a temperature approximately 50° C. or more lower than the thermal decomposition temperature of the synthetic resin.

すなわち、装置上射出成形における加熱温度の上限が4
00℃とすれば、結晶性高分子でT+aが370℃、非
晶質高分子でTg 300℃が上限である。
In other words, the upper limit of heating temperature in on-machine injection molding is 4
If it is 00°C, the upper limit for T+a is 370°C for crystalline polymers, and 300°C for amorphous polymers.

本発明は、ガラス転移点の制御が可能で、射出成形の際
の条件に応じて、前記の条件を満たすことができ、かつ
、必要な耐熱性の良好なポリアミドを提供しようとする
ものである。
The present invention aims to provide a polyamide whose glass transition point can be controlled, which can satisfy the above conditions depending on the injection molding conditions, and which has the necessary heat resistance. .

問題点を解決するための手段、作用 すなわち、本発明は、式(NH−X−NH−Y )mの
構造式(但し層は繰返し単位数)を有するポリアミドで
あって、 C2H5のいずれかを示す、)を表わし、GO−(但し
nは2〜6の正の整数を示す、)からなり、Y成分中の
(B)と(C)の組成割合が(B)1〜98モル%及ヒ
(C) 99〜1モル%であり、且つ前記ポリアミド0
.5gをジメチルアセトアミド 10〇−に溶解した溶
液を30℃で測定したときの固有粘度(η1nh)がo
、25dQ/g以上である耐熱性ポリアミドである。
Means for solving the problem, that is, the present invention provides a polyamide having a structural formula of the formula (NH-X-NH-Y)m (however, the number of repeating units in the layer) is a polyamide containing any of C2H5. ), consisting of GO- (where n is a positive integer of 2 to 6), and the composition ratio of (B) and (C) in the Y component is 1 to 98 mol% (B). (C) 99 to 1 mol%, and the polyamide 0
.. The intrinsic viscosity (η1nh) of a solution prepared by dissolving 5 g of dimethylacetamide at 30°C is o.
, 25 dQ/g or more.

本発明のポリアミドは、ジアミンとジカルボン酸が脱水
縮合して得られるアミド結合のある構造+NH−X −
NH−Y ’)mを有している。この場合、Xの原料と
なるジアミンとしては、9,9−ビス(4−アミノフェ
ニル)フルオレン、9.9−ビス(3−メチル−4−7
ミノフエニル)フルオレン、9.9−ビス(3−エチル
−4−7ミノフエニル)フルオレンが使用できる。Aは
ジアミンの両末端のアミン基を除いた残基を示している
The polyamide of the present invention has a structure with an amide bond obtained by dehydration condensation of a diamine and a dicarboxylic acid +NH-X-
NH-Y')m. In this case, the diamines used as raw materials for X include 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(3-methyl-4-7
Minophenyl)fluorene and 9,9-bis(3-ethyl-4-7minophenyl)fluorene can be used. A indicates the residue of the diamine excluding the amine groups at both ends.

又、Yの原料となるジカルボン酸としては芳香族ジカル
ボン酸(両末端の水酸基を除いた残基をBとする)と、
脂肪族ジカルボン酸(両末端の水酸基を除いた残基をC
とする)からなり、芳香族ジカルボン酸としてはテレフ
タル酸またはインフタル酸が好ましく、脂肪族ジカルボ
ン酸としては目的のガラス転移温度をえ易いジカルボン
酸、例えばnが2〜6のコハク酸(n=2)、グルタル
酸(n=3)、アジピン酸(n=4)、ピメル酸(n=
5)、及びスペル酸(n=6)等が挙げられ、さらに好
ましくはBはテレフタル酸残基、Cはnが4のアジピン
酸残基の組合せである。
In addition, the dicarboxylic acids that serve as raw materials for Y include aromatic dicarboxylic acids (the residues excluding the hydroxyl groups at both ends are B),
Aliphatic dicarboxylic acid (residues excluding hydroxyl groups at both ends are C
The aromatic dicarboxylic acid is preferably terephthalic acid or inphthalic acid, and the aliphatic dicarboxylic acid is a dicarboxylic acid that can easily obtain the desired glass transition temperature, such as succinic acid with n of 2 to 6 (n=2 ), glutaric acid (n=3), adipic acid (n=4), pimelic acid (n=
5) and superic acid (n=6), and more preferably B is a terephthalic acid residue and C is a combination of an adipic acid residue where n is 4.

さらに式中Yは鎖員BおよびCからなるが、好ましくは
モル比B:Cはl:99より99:lであり、さらに好
ましくは5:95より95:5であって、この場合、該
ポリアミドのガラス転移温度が射出成形可能なガラス転
移・°ムλ度!35°C〜350℃である。さらに13
5℃〜300℃のガラス転移温度が好ましい0以上のガ
ラス転移温度は先に述べたごとく射出成形するための好
適温度範囲である。即ち、現在の射出成形機の能力を考
慮した上で、選択された値である。該ポリアミドはB、
 Cの配合割合を選択することによりこれらに対応でき
るのが大きな特徴である。
Furthermore, in the formula, Y consists of chain members B and C, and preferably the molar ratio B:C is from 1:99 to 99:1, more preferably from 5:95 to 95:5; The glass transition temperature of polyamide is the glass transition temperature that allows injection molding! The temperature is 35°C to 350°C. 13 more
A glass transition temperature of 0 or more is preferably a glass transition temperature of 5 DEG C. to 300 DEG C., as mentioned above, is a suitable temperature range for injection molding. That is, the value is selected by taking into account the capabilities of the current injection molding machine. The polyamide is B,
A major feature is that these can be accommodated by selecting the blending ratio of C.

本発明のポリアミドにおいて、当該ポリアミド0.5g
をジメチルアセトアミド+00.dに溶解した溶液を3
0℃で測定した固有粘度(η1nh)が0.25dQ 
7g以上であって、好ましくは0.30dQ/g以上、
さらに好ましくは0.35dQ/g以上である。
In the polyamide of the present invention, 0.5 g of the polyamide
dimethylacetamide + 00. d solution dissolved in 3
Intrinsic viscosity (η1nh) measured at 0℃ is 0.25dQ
7 g or more, preferably 0.30 dQ/g or more,
More preferably, it is 0.35 dQ/g or more.

固有粘度の値が小さいと当該ポリアミドをフィルムまた
は成形物とした際、成形が困難で、かつ成形されたもの
が脆くなる。また、1g、分解温度も低下し、耐熱性が
不良となる。
If the value of intrinsic viscosity is small, when the polyamide is made into a film or a molded product, it is difficult to mold it and the molded product becomes brittle. Moreover, the decomposition temperature also decreases by 1 g, resulting in poor heat resistance.

また、射出成形時、熱がかけられるのが必至であるが、
芳香族アミンつまりアニリン誘導体は非常に酸化され易
いことは周知のごとくであり、該ポリアミドの末端アニ
リン基も同様に酸化を受は易い、そこで重合時にジカル
ボン酸(Yの原料)の使用モル数をジアミン(Xの原料
)の使用モル数より若干大とすることにより、末端にア
ニリン基があることをできるだけ防ぐか、または、むし
ろジアミンの使用モル数をジカルボン酸の使用モル数よ
り若干大として、この末端アミノ基を保護するようにし
てもよい0例えば好ましくはアルキルハライド、または
アシルハライド、さらに好ましくはアシルハライド、最
も好ましくはアセチルハライドまたはベンゾイルハライ
ドを前記の末端アミノ基に反応させて、末端をアミド基
に変換する。このことより、酸化による着色がかなり防
止できた。さらに、このポリアミド溶液は長期保存して
も着色はほとんど見られなかった。
Also, heat is inevitably applied during injection molding, but
It is well known that aromatic amines, that is, aniline derivatives, are very easily oxidized, and the terminal aniline group of the polyamide is also easily oxidized, so the number of moles of dicarboxylic acid (raw material for Y) used during polymerization is reduced. By making the number of moles used slightly larger than the number of moles used of diamine (raw material of This terminal amino group may be protected, for example by reacting the terminal amino group with preferably an alkyl halide or an acyl halide, more preferably an acyl halide, most preferably an acetyl halide or a benzoyl halide. Convert to amide group. As a result, discoloration due to oxidation could be significantly prevented. Furthermore, this polyamide solution showed almost no coloration even after long-term storage.

該ポリアミドはたとえば次のようにして合成することが
できる。すなわち、9.9−ビス(4−アミノフェニル
)フルオレン類をジメチルアセトアミド等の溶媒の溶液
に溶かし、5°C程度の低温でY成分を構成するテレフ
タル酸クロリドおよびアジピン酸クロリドの混合物等と
3時間程度反応させることにより、目的のポリアミドを
得ることができる。しかしながら、合成方法は限定され
るものではない。
The polyamide can be synthesized, for example, as follows. That is, 9.9-bis(4-aminophenyl)fluorenes are dissolved in a solution of a solvent such as dimethylacetamide, and 3 The desired polyamide can be obtained by reacting for about a period of time. However, the synthesis method is not limited.

尚、該ポリアミドは射出成形ばかりでなく、成る種の溶
媒に対して溶解性をもち、フィルム、繊維状にも十分成
形しうるちのである。
In addition, the polyamide is soluble not only in injection molding but also in various solvents, and can be sufficiently molded into films and fibers.

実施例 実施例1(末端ベンゾイル化した場合)9.9−ビス(
4−7ミノフエニル)フルオレン8.98gとトリエチ
ルアミン4.04gをジメチルアセトアミド100Jに
溶かし、5℃においてテレフタル酸クロリド2.03g
を粉末状で加えた。その後アジピン酸クロリド1.83
gを加え、3時間攪拌した。
Examples Example 1 (terminal benzoylated case) 9.9-bis(
4-7minophenyl) 8.98 g of fluorene and 4.04 g of triethylamine were dissolved in 100 J of dimethylacetamide, and 2.03 g of terephthalic acid chloride was dissolved at 5°C.
was added in powder form. Then adipic acid chloride 1.83
g and stirred for 3 hours.

さらに塩化ベンゾイル0.5−を加え、室温で2時間攪
拌した。トリエチルアミ241M塩をガラスフィルター
で濾過、メタノール中に注ぎ、ポリマーを得た。ジメチ
ルアセトアミド、メタノールを甲いて、二度再沈精製し
た。
Furthermore, 0.5-benzoyl chloride was added, and the mixture was stirred at room temperature for 2 hours. Triethylamide 241M salt was filtered through a glass filter and poured into methanol to obtain a polymer. Dimethylacetamide and methanol were added and the product was purified by reprecipitation twice.

さらに、テレフタル酸クロリド、アジピン酸クロリドの
仕込みモル比を変えて反応を行った。結果を第1表にま
とめて示した。但し、アジピン酸クロリドのみおよびテ
レフタル酸クロリドのみを用いた場合は比較例として列
挙した。
Furthermore, the reaction was carried out by changing the molar ratio of terephthalic acid chloride and adipic acid chloride. The results are summarized in Table 1. However, cases where only adipic acid chloride and only terephthalic acid chloride were used were listed as comparative examples.

実施例1においてアジピン酸/テレフタル酸=9/1 
のポリアミドの引張り強度9.5kgf/mm’、引張
弾性率450kgf/mrn’、体積抵抗率9×1O1
sΩcm、全光線透過量90.8%であった。
In Example 1, adipic acid/terephthalic acid = 9/1
The tensile strength of the polyamide is 9.5 kgf/mm', the tensile modulus is 450 kgf/mrn', and the volume resistivity is 9×1O1.
sΩcm, and the total light transmission amount was 90.8%.

実施例2(末端未処理の場合) 実施例1において、塩化ベンゾイルを加えない場合も同
様に行った。粘度、Tg、分解温度は両者同一であった
Example 2 (case where terminals were not treated) The same procedure as in Example 1 was carried out without adding benzoyl chloride. The viscosity, Tg, and decomposition temperature were the same for both.

(以下余白) 発明の効果 本発明のポリアミドはガラス転移温度と耐熱性の組み合
わせが巾広く、必要に応じてその中から組みあわせを選
択できることにより、成形方法が限定されず、利用範囲
が大きく広がることが期待できる。
(Left below) Effects of the Invention The polyamide of the present invention has a wide range of combinations of glass transition temperature and heat resistance, and since combinations can be selected from among them as necessary, the molding method is not limited, and the range of use is greatly expanded. We can expect that.

即ち、射出成形、繊維、フィルムなどほとんどの成形方
法が可能になることにより、従来使用されてきた電気、
電子部品、機械分野に留まらず、新しい分野、特に耐熱
性を要求される分野に用途が拡大され、産業発展に有用
なものである。
In other words, most molding methods such as injection molding, fiber, and film are now possible, making it possible to use electricity, which has traditionally been used.
Applications are expanding beyond electronic parts and mechanical fields to new fields, especially fields that require heat resistance, and are useful for industrial development.

Claims (2)

【特許請求の範囲】[Claims] (1)式−(NH−X−NH−Y)−mの構造式(但し
mは繰返し単位数)を有するポリアミドであって、式中
Xは(A)▲数式、化学式、表等があります▼(但しR
はH、CH_3、C_2H_5のいずれかを示す。)を
表わし、Yは(B)▲数式、化学式、表等があります▼
及び(C)−CO−CnH_2_n−CO−(但しnは
2〜6の正の整数を示す。)からなり、Y成分中の(B
)と(C)の組成割合が(B)1〜99モル%及び(C
)99〜1モル%であり、且つ前記ポリアミド0.5g
をジメチルアセトアミド100mlに溶解した溶液を3
0℃で測定したときの固有粘度(ηinh)が0.25
dl/g以上である耐熱性ポリアミド。
(1) A polyamide with the structural formula -(NH-X-NH-Y)-m (where m is the number of repeating units), where X is (A) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼(However, R
indicates either H, CH_3, or C_2H_5. ), and Y stands for (B)▲There are mathematical formulas, chemical formulas, tables, etc.▼
and (C) -CO-CnH_2_n-CO- (where n is a positive integer of 2 to 6), and (B
) and (C) have a composition ratio of (B) 1 to 99 mol% and (C
)99 to 1 mol%, and 0.5 g of the polyamide
was dissolved in 100 ml of dimethylacetamide.
Intrinsic viscosity (ηinh) when measured at 0°C is 0.25
A heat-resistant polyamide with a dl/g or higher.
(2)(B)と(C)の混合モル比が5:95から95
:5の範囲内のものである特許請求の範囲第(1)項記
載のポリアミド。
(2) The mixing molar ratio of (B) and (C) is 5:95 to 95
The polyamide according to claim (1), which is within the range of :5.
JP4768987A 1986-04-22 1987-03-04 Heat-resistant polyamide Granted JPS6346221A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8787105719T DE3780341D1 (en) 1986-04-22 1987-04-16 HEAT-RESISTANT POLYAMIDE.
EP87105719A EP0242818B1 (en) 1986-04-22 1987-04-16 Heat-resistant polyamide
US07/041,249 US4794159A (en) 1986-04-22 1987-04-22 Heat-resistant polyamide from bis(4-aminophenyl)fluorene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-91354 1986-04-22
JP9135486 1986-04-22

Publications (2)

Publication Number Publication Date
JPS6346221A true JPS6346221A (en) 1988-02-27
JPH0331731B2 JPH0331731B2 (en) 1991-05-08

Family

ID=14024056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4768987A Granted JPS6346221A (en) 1986-04-22 1987-03-04 Heat-resistant polyamide

Country Status (1)

Country Link
JP (1) JPS6346221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298590A (en) * 2004-04-08 2005-10-27 Toray Ind Inc Aromatic polyamide film and plastic substrate
JP2005298749A (en) * 2004-04-15 2005-10-27 Toray Ind Inc Aromatic polyamide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298590A (en) * 2004-04-08 2005-10-27 Toray Ind Inc Aromatic polyamide film and plastic substrate
JP2005298749A (en) * 2004-04-15 2005-10-27 Toray Ind Inc Aromatic polyamide film

Also Published As

Publication number Publication date
JPH0331731B2 (en) 1991-05-08

Similar Documents

Publication Publication Date Title
US4937315A (en) Transparent amorphous polyamide having high Tg from hindered aromatic diamine and branched chain aliphatic diamine
US3130182A (en) Wholly aromatic polyhydrazides
US4937322A (en) Crystallized semiaromatic polyamides having high Tg and Tm less than 290 degree C. from hindered aromatic diamine and branched chain aliphatic diamine
US4313868A (en) Glass filled polyamide-imide phthalamide copolymer
US3294759A (en) Linear copolyamides resistant to boiling water
JPS62156130A (en) Polyamide and its use
JPH0848775A (en) Polyamide-imide
US2989495A (en) Solution of wholly aromatic polyamides in liquid organic amine solvents
EP0242818B1 (en) Heat-resistant polyamide
US3554971A (en) Amorphous or weakly crystalline aromatic polyamides
EP4028450B1 (en) Polyamide-imide polymer and process for its manufacture
JPS6346221A (en) Heat-resistant polyamide
JP2534220B2 (en) Novel high melting point crystalline polyamide
US4833214A (en) Soluble heat-resistant aromatic polyamide terminated with aromatic amido moieties
US4393162A (en) Polyamides and copolyamides comprising -1,2-di(p-aminophenoxy) ethane moieties
JPS6399231A (en) Soluble and heat-resistant copolyamide
JPS63256622A (en) Production of aromatic-heterocyclic ring-containing block copolymer
JPS62225531A (en) Amorphous aromatic copolyamide and its production
US4734486A (en) Polyamide comprising fluorinated xylyene moieties
JPS63193925A (en) Aromatic polyazomethine
KR960015445B1 (en) Polyamide resin and method for manufacturing the same
JPH0725878B2 (en) polyamide
CN111454448A (en) Polyamide and method for producing same
JPS63309525A (en) Soluble polyamide-imide
KR20200050793A (en) Novel polyamide polymer having functional groups