JPH0618403A - Measuring method of porosity and pore size in solid material - Google Patents

Measuring method of porosity and pore size in solid material

Info

Publication number
JPH0618403A
JPH0618403A JP4197728A JP19772892A JPH0618403A JP H0618403 A JPH0618403 A JP H0618403A JP 4197728 A JP4197728 A JP 4197728A JP 19772892 A JP19772892 A JP 19772892A JP H0618403 A JPH0618403 A JP H0618403A
Authority
JP
Japan
Prior art keywords
pore
function
wave
porosity
solid material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4197728A
Other languages
Japanese (ja)
Other versions
JPH076955B2 (en
Inventor
Jiyunji Takatsubo
純治 高坪
Shigeyuki Yamamoto
茂之 山本
Hiroshi Yokogawa
洪 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4197728A priority Critical patent/JPH076955B2/en
Publication of JPH0618403A publication Critical patent/JPH0618403A/en
Publication of JPH076955B2 publication Critical patent/JPH076955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To calculate the porosity and pore size of a solid material accurately according to a specific formula pertaining to pore properties in the solid material by utilizing an ultrasonic wave. CONSTITUTION:A pair of ultrasonic sensors are set up at both ends of a solid material, while an ultrasonic wave is transmitted out of the sensor on one side and the response waveform is detected by the sensor on the other. In succession, the detected waveform is subjected to reverse convoluted integral processing by comparison with the response waveform obtained out of a solid material sample piece of the same material, where no pore exists at all, and thereby a pore function to be expressed in an equation I is found out. In this equation, tp shows propagation delay time in the pore function, tw is half-value width of each pore, H a peak value of the pore function, respectively. A graph, using axis of abscissa for the time, axis of ordinate for the pore function respectively, is drawn up, finding out tp, tw and H from this graph. In addition, porosity psi and means pore radius (r) are found out of functional equations II and III of pore properties. In the equations, Vp shows sound velocity of an incident wave, Vc the sound velocity of a bypass wave (a wave advancing along a pore surface), L a propagation distance of wave motion, respectively. With this constitution, the porosity and the pore radius can be sought without being swayed by material quality, form and measuring conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を用いて気孔率
又は気孔径を測定する方法に関するものである。さらに
詳しくいえば、本発明は、固体材料に入出力センサを取
り付けて超音波を発信させ、その応答波形を分析するこ
とによって、該材料を破壊せずに、材料内部に存在する
気孔の気孔率、平均気孔径を測定する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring porosity or pore diameter using ultrasonic waves. More specifically, according to the present invention, an input / output sensor is attached to a solid material, ultrasonic waves are emitted, and the response waveform is analyzed, so that the porosity of the pores existing inside the material can be obtained without destroying the material. , A method for measuring the average pore diameter.

【0002】[0002]

【従来の技術】従来、固体材料の気孔率を測定する方法
としては、例えばアルキメデス法による比重測定によっ
て気孔率を求める方法やX線吸収係数法による比重測定
によって気孔率を求める方法が実用化されている。しか
しながら、前者のアルキメデス法による方法は被検体の
局所気孔率を測定することができない上、測定が煩雑
で、精度が低いなどの欠点を有しているし、また、X線
吸収係数法による方法においては、大型の装置が必要で
あって実機材料の検査が不可能であり、かつ該装置は極
めて高価である上、気孔径を測定できないなどの欠点が
ある。
2. Description of the Related Art Conventionally, as a method of measuring the porosity of a solid material, for example, a method of determining the porosity by the specific gravity measurement by the Archimedes method or a method of determining the porosity by the specific gravity measurement by the X-ray absorption coefficient method has been put into practical use. ing. However, the former method by the Archimedes method cannot measure the local porosity of the subject, and has the drawbacks that the measurement is complicated and the accuracy is low, and the method by the X-ray absorption coefficient method is also available. In the above, there is a drawback in that a large-scale device is required, it is impossible to inspect an actual material, the device is extremely expensive, and the pore diameter cannot be measured.

【0003】他方、超音波を利用して非破壊的に、固体
材料の気孔率を測定する方法としては、超音波の音速が
気孔に当って減速する点に着目し、その減衰率との関係
から気孔率を求める方法が報告されている(「非破壊検
査」第36巻、第3号、第201〜205ページ)。
On the other hand, as a method of non-destructively measuring the porosity of a solid material using ultrasonic waves, attention is paid to the fact that the speed of sound of ultrasonic waves hits the pores and slows down, and its relationship with the attenuation rate. Has reported a method for obtaining porosity ("Non-destructive inspection", Vol. 36, No. 3, pages 201 to 205).

【0004】しかしながら、この方法は、気孔分布特性
と超音波伝播特性との間の定量的な関係の把握が不十分
なため気孔率や平均気孔径を正確に測定できないし、ま
た、同一の気孔分布であっても、材料の材質、形状、測
定条件によって測定結果が異なるため、普遍的な適用が
できない上に、0.1mm以下の気孔は検出できないな
どの欠点があるため、まだ、実用化されていない。
However, this method cannot accurately measure the porosity and the average pore diameter because the quantitative relationship between the pore distribution characteristics and the ultrasonic wave propagation characteristics is insufficient, and the same pores are not measured. Even if it is a distribution, the measurement result varies depending on the material, shape, and measurement conditions of the material, so it cannot be universally applied, and it has the drawback that pores of 0.1 mm or less cannot be detected. It has not been.

【0005】[0005]

【発明が解決しようとする課題】本発明は、超音波を利
用して、固体材料を破壊することなく、しかも材料の材
質や形状、あるいは測定条件などに左右されることな
く、材料の気孔率や気孔径を測定しうる実用化可能な方
法を提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention utilizes ultrasonic waves to destroy the porosity of a solid material without being affected by the material or shape of the material, or the measurement conditions. The purpose of the present invention is to provide a method that can measure the pore diameter and the pore size.

【0006】[0006]

【課題を解決するための手段】本発明者らは、超音波を
利用して、固体材料中の気孔特性を非破壊的に評価する
方法について鋭意研究を重ね、先に、超音波の入射波形
と材料を通過した後の波形とについて確率論的な処理を
行って得た気孔応答関数という特定の関数を用いること
により、固体材料の気孔率及び気孔径を求める方法を提
案したが〔日本機械学会論文集(A編)、第57巻、第
536号、第760〜803ページ〕、さらに研究を続
けた結果、固体材料の気孔物性に関する種々の関係を明
らかにする特定の関係式を用いることにより、さらに正
確な測定値が得られることを見出し、この知見に基づい
て本発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on a method of non-destructively evaluating pore characteristics in a solid material using ultrasonic waves. First, the incident waveform of ultrasonic waves We proposed a method to determine the porosity and pore diameter of solid materials by using a specific function called the stomatal response function obtained by performing stochastic processing on the waveform after passing through the material and Proceedings of the Conference (A), Vol. 57, No. 536, pp. 760-803], and as a result of further research, use specific relational expressions that clarify various relations regarding the pore physical properties of solid materials. It was found that a more accurate measurement value can be obtained, and the present invention has been completed based on this finding.

【0007】すなわち、本発明は、超音波を利用して固
体材料の気孔率又は気孔半径を測定するに当り、(イ)
固体材料試片の両側に一対の超音波センサを配置し、
一方のセンサから超音波を発信させ、もう一方のセンサ
でその応答波形を検出すること、(ロ) 検出された波
形を、気孔が全く存在しない同じ材質の固体材料試片か
ら得た応答波形との対比による逆たたみ込み積分処理し
て、式
That is, according to the present invention, when the porosity or pore radius of a solid material is measured using ultrasonic waves, (a)
Place a pair of ultrasonic sensors on both sides of the solid material sample,
The ultrasonic wave is emitted from one sensor and the response waveform is detected by the other sensor. (B) The detected waveform is compared with the response waveform obtained from a solid material sample of the same material with no pores. The inverse convolution integral processing by the comparison of

【数4】 (ただしtpは気孔関数の伝播遅れ時間、twは気孔関数
の半値幅、Hは気孔関数のピーク値)で表わされる気孔
関数を求めること、(ハ) 横軸を時間、縦軸を前記気
孔関数とするグラフを作成し、そのグラフから伝播遅れ
時間(tp)、気孔関数の半値幅(tw)及び気孔関数の
ピーク値(H)を求めること、及び(ニ) 前記伝播遅
れ時間(tp)、気孔関数の半値幅(tw)又は気孔関数
のピーク値(H)と気孔物性値との関係式を用いて気孔
率(ψ)又は気孔半径(r)を算出することを特徴とす
る測定方法を提供するものである。
[Equation 4] (However, t p is the propagation delay time of the stomatal function, t w is the half-value width of the stomatal function, and H is the peak value of the stomatal function). (C) The horizontal axis represents time, and the vertical axis represents the above. create a graph with pore function, the propagation delay time from the graph (t p), the half-value width (t w) and the peak value of the pore function pore function (H) to obtain the, and (d) the propagation delay time (t p), the half-value width (t w) or peak value of the pore function pore function (H) and the porosity using the relation expression between stomatal physical data to calculate the ([psi) or pore radius (r) A characteristic measuring method is provided.

【0008】次に、本発明の具体的な実施態様を説明す
ると、先ず図1に示されるように、固体材料試片1の両
側に、超音波のための送信センサ2及び受信センサ3を
配置し、超音波発振器4より超音波を出力させ、送信セ
ンサ2及び発信センサ3でキャッチした波形をデジタル
オシロスコープ5に収録する。このようにして得た情報
は、次いで、計測制御及び解析用のパーソナルコンピュ
ータ6で処理され、所望のデータとして出力される。
Next, a specific embodiment of the present invention will be described. First, as shown in FIG. 1, a transmitting sensor 2 and a receiving sensor 3 for ultrasonic waves are arranged on both sides of a solid material sample 1. Then, ultrasonic waves are output from the ultrasonic oscillator 4, and the waveforms caught by the transmission sensor 2 and the transmission sensor 3 are recorded in the digital oscilloscope 5. The information thus obtained is then processed by the personal computer 6 for measurement control and analysis and output as desired data.

【0009】前記した数式(I)は、超音波パラメータ
と気孔パラメータの相関関係を示すもので、次のように
して導かれたものである。
The above formula (I) shows the correlation between the ultrasonic parameters and the stomatal parameters, and is derived as follows.

【0010】すなわち、多孔体の内部構造を、等間隔に
分割されたN枚の断面上に気孔が一定の面積率で分布し
たモデルに置き換えれば、直接波(気孔に当たらずに到
達する波動)よりもj・Δt時間遅れて到達する波動の
確率F(t)は、式 F(t)=φj・(1−φ)N-jNj、(j=0、1、
2、…、N) (II) (ただし、φは気孔が1つの
断面に占める面積率、Nは断面積、Δtは波動が1個の
気孔に衝突して迂回するために生じる直接波との伝播時
間差であって、これは気孔形状に応じて異なり、例えば
球状気孔の場合は Δt=r・(π−2VC/VP)/(2VC) (III) 円盤状気孔の場合は Δt=r/VC であり、NjはN枚の中からj枚を選ぶ組合わせ数)で
表わされる。
That is, if the internal structure of the porous body is replaced with a model in which pores are distributed at a constant area ratio on N cross sections divided at equal intervals, direct waves (waves that reach without hitting the pores) The probability F (t) of a wave that arrives with a delay of j · Δt time from the equation is F (t) = φ j · (1−φ) Nj · N C j , (j = 0, 1,
2, ..., N) (II) (where φ is the area ratio of the pores in one cross section, N is the cross-sectional area, and Δt is the direct wave generated when the wave collides with one pore and detours. a propagation time difference, which depends on the pore geometry, for example in the case of spherical pore Δt = r · (π-2V C / V P) / (2V C) (III) in the case of disc-shaped pores Delta] t = r / V C , and N C j is represented by a combination number that selects j sheets from N sheets.

【0011】ここで、本発明者らは気孔関数h(t)
を、式 h(t)=F(j・Δt)・Δt-1 =φj・(1−φ)N-jNj・Δt-1、(j=0、1、
2、…、N)(IV)のように定義した。本発明者ら
は、さらに実験を重ねた結果、気孔に当たった波動のす
べてが迂回波になるわけではなく、極めて僅かではある
が、一部は散乱波となって消失することが分かった。し
たがって、気孔に当たった波動のうち、散乱消失されず
に迂回波となって進む波動の確率をZCとすると、1つ
の断面に入射した全波動のうち、これらが、迂回波とな
る確率はZC・φとなる。また、気孔に当たらない直接
波の割合は(1−φ)のままである。したがって、前記
数式(IV)は h(t)=(ZC・φ)j・(1−φ)N-j・Δt-1 (V) と書き換えられる。
Here, the present inventors have obtained a pore function h (t).
With the formula h (t) = F (j · Δt) · Δt −1 = φ j · (1-φ) Nj · N C j · Δt −1 , (j = 0, 1,
2, ..., N) (IV). As a result of further experimentation, the present inventors have found that not all of the waves that hit the pores are detour waves, but some of them disappear as scattered waves, although they are extremely small. Therefore, if the probability of the wave that hits the pores and propagates as a detour wave without being scattered and lost is Z C , the probability that these waves are detour waves among all the waves that are incident on one cross section is Z C · φ. Further, the proportion of direct waves that do not hit the pores remains (1-φ). Therefore, the formula (IV) can be rewritten as h (t) = (Z C · φ) j · (1-φ) Nj · Δt −1 (V).

【0012】次に、このままの形では、計算に時間がか
かる上、パラメータ間の相関式を求めることができない
ので、本発明者らは確率統計学を利用して、前記数式
(V)を、次式で近似することにした(Nが10以上で
あれば十分に近似でき、Nが無限大であれば等号が成立
する)。
[0012] Next, in this form as it is, since it takes time to calculate and the correlation equation between the parameters cannot be obtained, the present inventors utilize probability statistics to calculate the above equation (V) as It was decided to approximate by the following equation (if N is 10 or more, sufficient approximation is possible, and if N is infinite, the equal sign holds).

【0013】[0013]

【数5】 [Equation 5]

【0014】 ただし、a=N・φ σ2=N・φ・(1−φ) (VII) である。However, a = N · φ σ 2 = N · φ · (1-φ) (VII).

【0015】前記数式(VI)において、次の置換を行
えば、数式(I)が導かれる。
In the above formula (VI), the following permutation is carried out to obtain formula (I).

【0016】[0016]

【数6】 [Equation 6]

【0017】数式(I)の形から明らかなように、気孔
関数h(t)は、t=tpのときピーク値Hをとり、t
=tp±twのときH・e-1/2となる確率密度関数とな
る。
[0017] As is apparent from the form of equation (I), pore function h (t) takes a peak value H when t = t p, t
= T p ± t w, the probability density function is H · e −1/2 .

【0018】次に、横軸を時間tとし、気孔関数h
(t)を縦軸にとってグラフを作成すると図2に示すよ
うになる。
Next, the horizontal axis is time t, and the pore function h
A graph is created with (t) as the vertical axis, as shown in FIG.

【0019】そして、このグラフの形状は、図3に示さ
れるように固体材料の気孔率、気孔半径と相関関係を有
しており、伝播遅れ時間(tp)、気孔関数の半値幅
(tw)及び気孔関数のピーク値(H)は気孔パラメー
タとの間に次の関係を有している。
[0019] The shape of the graph, the porosity of the solid material, as shown in FIG. 3 has a correlation with the pore radius, propagation delay time (t p), the half width of pore function (t w ) and the peak value (H) of the pore function have the following relationship with the pore parameter.

【0020】[0020]

【数7】 [Equation 7]

【0021】[0021]

【数8】 [Equation 8]

【0022】[0022]

【数9】 [Equation 9]

【0023】これらの数式(IX)、(X)及び(X
I)は次のようにして導くことができる。
These expressions (IX), (X) and (X
I) can be derived as follows.

【0024】すなわち、固体内部に気孔がピッチpで等
間隔に配列したモデルを考えると、気孔率ψ、気孔径r
と気孔面積率φ、断面数Nとの間に、 N=L/p φ=πr2/p2 ψ=(4πr3/3)/p3 なる関係が成立する。これらの式よりpを消去すれば、 N=(4π/3ψ)-1/3・L/r φ=π(4π/3ψ)-2/3 (XII) となる。また、セラミックスなどの焼結体においては、
気孔形状を球形とみなすことができるので、Δtは前記
したように、 Δt=r・(π−2Vc/Vp)/(2Vc) (III) となり、またtpは前記したように tp=〔a+σ2・In(Zc)〕・Δt である。ここで実験結果より、Zcは極めて1に近い値
をとることが分かっているので、In(Zc)は零に近
い値となる。したがって、 tp=a・Δt と近似できる。この式に、前記数式(VII)及び(I
II)を代入すると tp=N・φ・(π−2Vc/Vp)・r/(2Vc) となる。さらに数式(XII)を代入すれば、前記数式
(IX)が導かれる。
That is, considering a model in which the pores are arranged in the solid at equal intervals with a pitch p, the porosity ψ and the pore diameter r
A pore area rate phi, between the section number N, N = L / p φ = πr 2 / p 2 ψ = (4πr 3/3) / p 3 the relationship is established. By clearing the p from these equations, N = (4π / 3ψ) -1/3 · L / r φ = π a (4π / 3ψ) -2/3 (XII ). Moreover, in the sintered body such as ceramics,
Since the pore shape can be regarded as a spherical shape, Δt is Δt = r · (π−2V c / V p ) / (2V c ) (III) as described above, and t p is t as described above. p = [a + σ 2 · In (Z c )] · Δt. Here, it is known from the experimental result that Z c takes a value extremely close to 1, so In (Z c ) becomes a value close to zero. Therefore, it can be approximated as t p = a · Δt. In this equation, the above equations (VII) and (I
Substituting II), t p = N · φ · (π−2V c / V p ) · r / (2V c ). By further substituting the equation (XII), the equation (IX) is derived.

【0025】また、数式(VIII)の第2式に、数式
(VII)及び(III)を代入して、 tw=σ・Δt ={N・φ・(1−φ)}1/2・{(π−2(Vc
p)}・r/(2Vc)を導き、この式に数式(XI
I)を代入して整理すると、前記数式(X)が導かれ
る。
Further, by substituting the expressions (VII) and (III) into the second expression of the expression (VIII), tw = σΔt = {Nφ (1-φ)} 1 / 2 { (Π-2 (V c /
V p )} · r / (2V c ), and the formula (XI
By substituting and substituting I), the formula (X) is derived.

【0026】さらに、数式(VIII)の第3式におい
て、In(Zc)を零とすれば H=Zc a/{Δt・σ(2π)1/2} となる。この式に、数式(VII)及び(III)を代
入して整理すれば
Further, in the third equation of the equation (VIII), if In (Z c ) is set to zero, then H = Z c a / {Δt · σ (2π) 1/2 }. By substituting equations (VII) and (III) into this equation,

【数10】 となり、さらに、この式に数式(XII)を代入して整
理すれば、前記数式(XI)が導かれる。
[Equation 10] Further, by substituting the formula (XII) into this formula and rearranging the formula, the formula (XI) is derived.

【0027】したがって、気孔率ψ及び平均気孔半径r
は、伝播遅れ時間tp、気孔関数の半値幅twの数値に基
づき、次式に従って求めることができる。
Therefore, the porosity ψ and the average pore radius r
Can be obtained according to the following equation based on the numerical values of the propagation delay time t p and the half-value width t w of the stomatal function.

【0028】[0028]

【数11】 及び[Equation 11] as well as

【数12】 [Equation 12]

【0029】なお、これらの数式は以下のようにして導
かれたものである。すなわち、前記数式(IX)をψに
ついて整理することにより、数式(XIII)が導かれ
る。
Note that these mathematical formulas are derived as follows. That is, the mathematical expression (XIII) is derived by rearranging the mathematical expression (IX) with respect to ψ.

【0030】また、前記数式(VIII)より、 (tw/tp2=σ2/{a+σ2・In(Zc)}2 が導かれ、In(Zc)は前記したように零に近い値と
なるので、 (tw/tp2=σ2/a2 と近似できる。この式に、前記数式(VII)を代入す
れば (tw/tp2=(1−φ)/(N・φ) が得られる。この式にさらに前記数式(XII)を代入
して整理すると、
Further, the from Equation (VIII), (t w / t p) 2 = σ 2 / {a + σ 2 · In (Z c)} 2 is guided, In (Z c) zero, as described above since the value close to, it can be approximated as (t w / t p) 2 = σ 2 / a 2. This equation, by substituting the formula (VII) (t w / t p) 2 = (1-φ) / (N · φ) is obtained. Substituting the mathematical formula (XII) into this formula and rearranging it,

【数13】 となり、この式をrについて整理すれば、[Equation 13] And rearranging this equation for r,

【数14】 が得られる。さらに、この式に、前記数式(XIII)
を代入して整理すれば、前記数式(XIV)が導かれ
る。
[Equation 14] Is obtained. Further, in this formula, the above formula (XIII)
By substituting and rearranging, the formula (XIV) is derived.

【0031】なお、以上の手法は逆解析によるものであ
るが、気孔パラメータを順次入れ換えて気孔関数を計算
し、該関数と気孔を全く有しない同じ材質の材料に対
し、たたみ込み積分を行い、観測波形が一致するような
気孔パラメータを見出すという順解析で気孔率、気孔径
を求めることも可能である。
Although the above method is based on the inverse analysis, the pore parameters are sequentially exchanged to calculate the pore function, and the convolution integral is performed on the material of the same material having no pores with the function. It is also possible to obtain the porosity and the pore diameter by the forward analysis of finding the pore parameters that match the observed waveforms.

【0032】[0032]

【発明の効果】本発明の超音波による気孔検出法は、従
来の手法に比べ非常に簡便である、気孔分布のばらつき
を測定することができる、気孔率のみならず気孔の平均
径も測定することができる、数ミクロンオーダの気孔検
出が可能である(従来は100ミクロン程度)、使用セ
ンサの感度特性や接着条件にほとんど依存しない、被検
体の材質や形状が異なっても簡単な補正で測定データを
比較できる、低価格で装置を構成できるなどの特徴を有
し、例えばセラミック焼結体をはじめ、各種多孔質材の
気孔率や気孔径の測定、石油化学プラント装置材料の水
素損傷の検出、製品の品質評価などに適用できる。
EFFECT OF THE INVENTION The ultrasonic pore detection method of the present invention is much simpler than the conventional method. It is possible to measure the variation of the pore distribution. Not only the porosity but also the average diameter of the pores is measured. Capable of detecting pores of the order of several microns (conventionally about 100 microns), it does not depend on the sensitivity characteristics of the sensor used or the adhesive conditions, and can be measured with simple correction even if the material or shape of the object is different. It has features that data can be compared and the device can be constructed at low cost. For example, measurement of porosity and pore diameter of various porous materials including ceramic sintered bodies, detection of hydrogen damage in petrochemical plant equipment materials. It can be applied to product quality evaluation.

【0033】[0033]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0034】実施例 本手法をセラミックス内部に残留した気孔の気孔率及び
平均気孔寸法の非破壊検出に適用した例を示す。
Example An example in which the present method is applied to the non-destructive detection of the porosity and the average pore size of the pores remaining inside the ceramic will be shown.

【0035】試料には、粉末粒度及び焼結温度を変えて
作製した4種類のアルミナ焼結体(板厚約15mm)を
用いた。これらの試料の気孔率及び平均気孔寸法をそれ
ぞれ従来のアルキメデス法及び顕微鏡画像解析(二値化
法)によって実測した結果を表1に示す。図4に本手法
で検出した超音波の観測波形を示す。試料1の気孔率は
0.2%であり、本試料を気孔が全く存在しない基準試
料とみなして試料2〜4の気孔関数を解析した結果を図
5に示す。本関数より求めた気孔率及び平均気孔径を表
2に示す。本検出値は、表1に示した別法による測定値
とよく対応している。
As the samples, four kinds of alumina sintered bodies (sheet thickness: about 15 mm) produced by changing the powder particle size and the sintering temperature were used. Table 1 shows the results of actual measurement of the porosity and average pore size of these samples by the conventional Archimedes method and microscopic image analysis (binarization method), respectively. Fig. 4 shows the observed waveform of ultrasonic waves detected by this method. Sample 1 has a porosity of 0.2%, and the results of analyzing the pore functions of Samples 2 to 4 by considering this sample as a reference sample having no pores are shown in FIG. Table 2 shows the porosity and average pore diameter obtained from this function. This detected value corresponds well with the measured value by the alternative method shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法を実施するための計測システムの
1例の概略図。
FIG. 1 is a schematic view of an example of a measurement system for carrying out the method of the present invention.

【図2】 気孔関数h(t)を示すグラフ。FIG. 2 is a graph showing a pore function h (t).

【図3】 固体材料の気孔率及び気孔半径と超音波伝播
波形との関係の1例を示す図。
FIG. 3 is a diagram showing an example of a relationship between a porosity and a pore radius of a solid material and an ultrasonic wave propagation waveform.

【図4】 実施例における各アルミナ焼結体についての
超音波の観測波形を示す図。
FIG. 4 is a diagram showing an ultrasonic observed waveform of each alumina sintered body in the example.

【図5】 図4より気孔関数を解析した結果を示すグラ
フ。
FIG. 5 is a graph showing the results of analyzing the stomatal function from FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超音波を利用して固体材料の気孔率又は
気孔半径を測定するに当り、(イ) 固体材料試片の両
側に一対の超音波センサを配置し、一方のセンサから超
音波を発信させ、もう一方のセンサでその応答波形を検
出すること、(ロ) 検出された波形を、気孔が全く存
在しない同じ材質の固体材料試片から得た応答波形との
対比による逆たたみ込み積分処理して、式 【数1】 (ただしtpは気孔関数の伝播遅れ時間、twは気孔関数
の半値幅、Hは気孔関数のピーク値)で表わされる気孔
関数を求めること、(ハ) 横軸を時間、縦軸を前記気
孔関数とするグラフを作成し、そのグラフから伝播遅れ
時間(tp)、気孔関数の半値幅(tw)及び気孔関数の
ピーク値(H)を求めること、及び(ニ) 前記伝播遅
れ時間(tp)、気孔関数の半値幅(tw)又は気孔関数
のピーク値(H)と気孔物性値との関係式を用いて気孔
率(ψ)又は気孔半径(r)を算出することを特徴とす
る測定方法。
1. When measuring the porosity or pore radius of a solid material using ultrasonic waves, (a) a pair of ultrasonic sensors are arranged on both sides of a solid material sample, and ultrasonic waves are emitted from one of the sensors. , And detect the response waveform with the other sensor. (B) Reverse convolution of the detected waveform with the response waveform obtained from a solid material sample of the same material with no pores. After integration processing, the equation (However, t p is the propagation delay time of the stomatal function, t w is the half-value width of the stomatal function, and H is the peak value of the stomatal function). (C) The horizontal axis represents time, and the vertical axis represents the above. create a graph with pore function, the propagation delay time from the graph (t p), the half-value width (t w) and the peak value of the pore function pore function (H) to obtain the, and (d) the propagation delay time (t p), the half-value width (t w) or peak value of the pore function pore function (H) and the porosity using the relation expression between stomatal physical data to calculate the ([psi) or pore radius (r) Characteristic measuring method.
【請求項2】 伝播遅れ時間(tp)、気孔関数の半値
幅(tw)又は気孔関数のピーク値(H)と気孔物性値
との関係式が 【数2】 〔ただし、ψは気孔率、VPは入射波(縦波)の音速、
Cは迂回波(気孔表面に沿って進む波)の音速、Lは
波動の伝播距離〕である請求項1記載の測定方法。
2. A propagation delay time (t p), the half width of pore function (t w) or peak value of the pore function (H) and [2 Number] relational expression between stomatal physical properties [Where ψ is the porosity, V P is the speed of sound of the incident wave (longitudinal wave),
The measurement method according to claim 1, wherein V C is a sound velocity of a detour wave (a wave traveling along the surface of the pores), and L is a propagation distance of the wave.
【請求項3】 伝播遅れ時間(tp)、気孔関数の半値
幅(tw)と気孔物性値との関係式が 【数3】 (ただし、rは平均気孔半径、Lは波動の伝播距離、V
Cは迂回波音速、VPは入射波の音速)である請求項1記
載の測定方法。
3. A propagation delay time (t p), the half-value width (t w) and Equation 3] is a relational expression between stomatal physical properties of pores function (Where r is the average pore radius, L is the wave propagation distance, and V is the
The measurement method according to claim 1, wherein C is the detour wave sound velocity, and V P is the incident wave sound velocity.
JP4197728A 1992-06-30 1992-06-30 Method for measuring porosity and pore diameter of solid material Expired - Lifetime JPH076955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4197728A JPH076955B2 (en) 1992-06-30 1992-06-30 Method for measuring porosity and pore diameter of solid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4197728A JPH076955B2 (en) 1992-06-30 1992-06-30 Method for measuring porosity and pore diameter of solid material

Publications (2)

Publication Number Publication Date
JPH0618403A true JPH0618403A (en) 1994-01-25
JPH076955B2 JPH076955B2 (en) 1995-01-30

Family

ID=16379358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4197728A Expired - Lifetime JPH076955B2 (en) 1992-06-30 1992-06-30 Method for measuring porosity and pore diameter of solid material

Country Status (1)

Country Link
JP (1) JPH076955B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218915A (en) * 2006-02-15 2007-08-30 General Electric Co <Ge> Device for measuring porosity rate
CN113192119A (en) * 2021-05-27 2021-07-30 宜宾学院 Quantitative statistical method for porosity of multi-scale pore surface
CN117214065A (en) * 2023-09-27 2023-12-12 兰州大学 Method for measuring solid surface porosity by utilizing infrared spectrum characteristic peak method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081226A2 (en) * 2002-03-19 2003-10-02 Millipore Corporation Ultrasonic detection of porous medium characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218915A (en) * 2006-02-15 2007-08-30 General Electric Co <Ge> Device for measuring porosity rate
CN113192119A (en) * 2021-05-27 2021-07-30 宜宾学院 Quantitative statistical method for porosity of multi-scale pore surface
CN113192119B (en) * 2021-05-27 2023-01-06 宜宾学院 Quantitative statistical method for porosity of multi-scale pore surface
CN117214065A (en) * 2023-09-27 2023-12-12 兰州大学 Method for measuring solid surface porosity by utilizing infrared spectrum characteristic peak method
CN117214065B (en) * 2023-09-27 2024-05-03 兰州大学 Method for measuring solid surface porosity by utilizing infrared spectrum characteristic peak method

Also Published As

Publication number Publication date
JPH076955B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US5600073A (en) Method and system for analyzing a two phase flow
CA1251852A (en) Method and apparatus for ultrasonic measurements of a medium
US6634233B2 (en) Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
Lavery et al. Determining dominant scatterers of sound in mixed zooplankton populations
US20040050165A1 (en) Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
Petcher et al. Mode mixing in shear horizontal ultrasonic guided waves
MXPA97004009A (en) Method and system to analyze a flow of dosfa
Honarvar et al. Nondestructive evaluation of cylindrical components by resonance acoustic spectroscopy
Pullin et al. Modal analysis of acoustic emission signals from artificial and fatigue crack sources in aerospace grade steel
JPH0618403A (en) Measuring method of porosity and pore size in solid material
JP3245606B2 (en) Measurement method of particle dispersion amount and particle size of solid material
WO2023240939A1 (en) Tree inspection method and apparatus and tree inspection device
CN107490627A (en) Focus ultrasonic probe parameter scaling method
Bakke et al. Ultrasonic Measurement of Sound Velocity in Whole Blood a Comparison between an Ultrasonic Method and the Conventional Packed-Cell-Volume Test for Hematocrit Determination
JP2000221076A (en) Ultrasonic sound velocity measuring method
JPH08189923A (en) Method for measuring physical properties of solid material
RU2650753C1 (en) Method for determining parameters of suspended particles
JP2007309850A5 (en)
Dourado et al. Evaluating of the ultrasonic transducers’ diameter on velocity measurement in nondestructive testing
JP3373609B2 (en) Ultrasonic material property value measuring device and its measuring method
RU2655728C1 (en) Device for determining parameters of suspended particles
RU2589751C2 (en) Method of determining the average grain diameter of metal products and device for its implementation
CN116295987A (en) High-spatial-resolution stress dynamic measurement method based on air-coupled ultrasound
El Kihel et al. Vibration characteristics of the front face of an ultrasonic transducer deduced from his acoustical radiation: Review of Progress in Quantitative Nondestructive Evaluation, Williamsburg, Virginia (United States), 22–26 Jun. 1987. Vol. 7A, pp. 603–608. Edited by DD Thompson and DE Chimenti, Plenum Press, 1988
van Deventer One dimensional modeling of a step-down ultrasonic densitometer for liquids

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term