JPH06184008A - Production of 2,3-dimethylnaphthalene and intermediate therefor - Google Patents

Production of 2,3-dimethylnaphthalene and intermediate therefor

Info

Publication number
JPH06184008A
JPH06184008A JP4339039A JP33903992A JPH06184008A JP H06184008 A JPH06184008 A JP H06184008A JP 4339039 A JP4339039 A JP 4339039A JP 33903992 A JP33903992 A JP 33903992A JP H06184008 A JPH06184008 A JP H06184008A
Authority
JP
Japan
Prior art keywords
tetrahydronaphthalene
methyl
dimethylnaphthalene
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4339039A
Other languages
Japanese (ja)
Other versions
JP3131056B2 (en
Inventor
Takashi Suzuki
隆史 鈴木
Haruhiko Takeya
晴彦 竹矢
Susumu Tanaka
享 田中
Toshio Shimizu
俊夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP04339039A priority Critical patent/JP3131056B2/en
Publication of JPH06184008A publication Critical patent/JPH06184008A/en
Application granted granted Critical
Publication of JP3131056B2 publication Critical patent/JP3131056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To inexpensively mass produce 2,3-dimethylnaphthalene useful as a synthetic intermediate for 2,3-naphthalenedicarboxylic acid, etc., from 6- methyl-1,2,3,4-tetrahydronaphthalene industrially obtainable in a large amount. CONSTITUTION:6-Methyl-1,2,3,4-tetrahydronaphthalene is made to react with formaldehyde and a hydrogen halide in the presence of an acid catalyst, the prepared 6-halomethyl-7-methyl-1,2,3,4-tetrahydronaphthalene is hydrogenated and then the prepared 6,7-dimethyl-1,2,3,4-tetrahydronaphthalene is dehydrogenated to produce 2,3-dimethylnaphthalene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐候性顔料や染料の合
成原料として重要な、2,3−ナフタレンジカルボン酸
の原料として有用な2,3−ジメチルナフタレンの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing 2,3-dimethylnaphthalene, which is useful as a raw material for 2,3-naphthalenedicarboxylic acid, which is important as a raw material for synthesizing weather-resistant pigments and dyes.

【0002】[0002]

【従来の技術】2,3−ジメチルナフタレンの誘導体で
ある2,3−ナフタレンジカルボン酸は染料、顔料等の
中間体として注目されている化合物であり、その合成法
として多くの提案がなされている(例えば特開昭61−
194048号公報、同61−221151号公報な
ど)。これらの2,3−ナフタレンジカルボン酸の合成
法は、いずれも2,3−ジメチルナフタレンの液相空気
酸化を利用し、収率も良好である。しかしながら、これ
らの合成法に用いられる2,3−ジメチルナフタレン
は、従来コールタール留分や石油留分からの分離回収に
依存しており、これら留分中のジメチルナフタレン含有
量の低さや10種にのぼるジメチルナフタレン異性体か
らの分離の困難性の問題から、これらの合成法は実施困
難なものとなっている。かかる事情から2,3−ナフタ
レンジカルボン酸の製造は、アントラセンの酸化による
アントラキノン合成の際に副生物として少量得られるも
のを分離回収する方法に頼っており、大量供給が困難で
ある。
2. Description of the Related Art 2,3-Naphthalenedicarboxylic acid, which is a derivative of 2,3-dimethylnaphthalene, is a compound attracting attention as an intermediate for dyes, pigments and the like, and many proposals have been made for its synthesis method. (For example, JP-A-61-1
No. 194048, No. 61-221151, etc.). All of these methods for synthesizing 2,3-naphthalenedicarboxylic acid utilize liquid-phase air oxidation of 2,3-dimethylnaphthalene, and the yield is good. However, 2,3-dimethylnaphthalene used in these synthetic methods has hitherto been dependent on separation and recovery from coal tar fractions and petroleum fractions, and the dimethylnaphthalene content in these fractions is as low as 10 or. The difficulty of separation from climbing dimethylnaphthalene isomers makes these synthetic methods difficult to carry out. Under such circumstances, the production of 2,3-naphthalenedicarboxylic acid relies on a method of separating and recovering a small amount of by-products obtained during the anthraquinone synthesis by the oxidation of anthracene, and it is difficult to supply a large amount thereof.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明の目的
は2,3−ナフタレンジカルボン酸等の合成中間体とし
て有用な2,3−ジメチルナフタレンを選択的、かつ安
価、大量に製造する方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing 2,3-dimethylnaphthalene, which is useful as a synthetic intermediate for 2,3-naphthalenedicarboxylic acid, selectively, inexpensively and in large quantities. To provide.

【0004】[0004]

【課題を解決するための手段】かかる実状において、本
発明者は2,3−ジメチルナフタレンの選択的な製造法
について検討を重ねた結果、工業的に大量入手が容易な
6−メチル−1,2,3,4−テトラヒドロナフタレン
を原料として用い、これに酸触媒の存在下にホルムアル
デヒド及びハロゲン化水素を反応させれば選択的に7位
ハロメチル化物が得られ、当該ハロメチル化物を脱ハロ
ゲン、脱水素することにより、効率良く2,3−ジメチ
ルナフタレンが得られることを見出し、本発明を完成す
るに至った。
Under these circumstances, the present inventor has conducted extensive studies on a selective method for producing 2,3-dimethylnaphthalene, and as a result, 6-methyl-1, which is industrially easily available in large quantities, By using 2,3,4-tetrahydronaphthalene as a raw material and reacting it with formaldehyde and hydrogen halide in the presence of an acid catalyst, a 7-position halomethylated product is selectively obtained, and the halomethylated product is dehalogenated and dehydrated. It has been found that 2,3-dimethylnaphthalene can be efficiently obtained by priming, and the present invention has been completed.

【0005】本発明方法は、次の反応式で表わされる。The method of the present invention is represented by the following reaction formula.

【0006】[0006]

【化1】 [Chemical 1]

【0007】すなわち、本発明は6−メチル−1,2,
3,4−テトラヒドロナフタレンに酸触媒の存在下にホ
ルムアルデヒド及びハロゲン化水素を反応させることに
より得られる新規な6−ハロメチル−7−メチル−1,
2,3,4−テトラヒドロナフタレンを水素化し、得ら
れた6,7−ジメチル−1,2,3,4−テトラヒドロ
ナフタレンを脱水素反応に付すことを特徴とする2,3
−ジメチルナフタレンの製造法である。
That is, the present invention provides 6-methyl-1,2,
Novel 6-halomethyl-7-methyl-1, obtained by reacting 3,4-tetrahydronaphthalene with formaldehyde and hydrogen halide in the presence of an acid catalyst
Hydrogenating 2,3,4-tetrahydronaphthalene and subjecting the resulting 6,7-dimethyl-1,2,3,4-tetrahydronaphthalene to a dehydrogenation reaction 2,3
-A method for producing dimethylnaphthalene.

【0008】また、本発明は製造中間体として有用な6
−ハロメチル−7−メチル−1,2,3,4−テトラヒ
ドロナフタレンに係るものである。
The present invention is also useful as a production intermediate.
-Halomethyl-7-methyl-1,2,3,4-tetrahydronaphthalene.

【0009】上記反応式の各工程について説明する。ま
ず、6−メチル−1,2,3,4−テトラヒドロナフタ
レンから6−ハロメチル−7−メチル−1,2,3,4
−テトラヒドロナフタレンを得る工程は、芳香族ハロメ
チル化反応であり、酸触媒の存在下にホルムアルデヒド
及びハロゲン化水素を反応させることにより行われる。
Each step of the above reaction formula will be described. First, from 6-methyl-1,2,3,4-tetrahydronaphthalene to 6-halomethyl-7-methyl-1,2,3,4
The step of obtaining tetrahydronaphthalene is an aromatic halomethylation reaction and is carried out by reacting formaldehyde and hydrogen halide in the presence of an acid catalyst.

【0010】反応に用いるホルムアルデヒドは、ガスと
して導入しても実施可能であるが、パラホルムアルデヒ
ド、トリオキサン等の重合物を用いた方が操作が容易で
あり、好ましい。ハロゲン化水素としては、塩化水素、
臭化水素等が挙げられ、これらは塩酸、臭化水素酸の形
態でも使用できる。酸触媒としてはプロトン酸、ルイス
酸のいずれも使用可能であり、用いる反応溶媒により適
宜いずれかを選択して用いるのが好ましい。例えば酢酸
溶媒の場合はリン酸、硫酸等のプロトン酸を触媒とする
のが好適であり、クロロホルム、ジクロロメタン等の溶
媒を用いる場合には塩化亜鉛、塩化スズ等のルイス酸も
触媒として使用できる。
The formaldehyde used in the reaction can be carried out even if introduced as a gas, but it is preferable to use a polymer such as paraformaldehyde or trioxane because the operation is easy. As hydrogen halide, hydrogen chloride,
Examples thereof include hydrogen bromide, and these can be used in the form of hydrochloric acid or hydrobromic acid. As the acid catalyst, either a protic acid or a Lewis acid can be used, and it is preferable to select and use any one depending on the reaction solvent used. For example, in the case of an acetic acid solvent, it is preferable to use a protonic acid such as phosphoric acid or sulfuric acid as a catalyst, and when a solvent such as chloroform or dichloromethane is used, a Lewis acid such as zinc chloride or tin chloride can also be used as a catalyst.

【0011】反応は、通常常圧下にて約20〜100℃
で、溶媒の沸点以下の温度で実施できるが、反応時間の
短縮と副反応、過反応の防止の面から、40〜60℃の
範囲が好ましい。また、反応時間は3〜10時間が好ま
しい。本反応で得られる6−ハロメチル−7−メチル−
1,2,3,4−テトラヒドロナフタレンは、必要に応
じ蒸留による精製が可能であり、またクロマトグラフィ
ーによる分取も容易である。また、当該6−ハロメチル
−7−メチル−1,2,3,4−テトラヒドロナフタレ
ンは文献未記載の新規化合物である。
The reaction is usually carried out at about 20 to 100 ° C. under normal pressure.
Although it can be carried out at a temperature not higher than the boiling point of the solvent, the range of 40 to 60 ° C. is preferable from the viewpoint of shortening the reaction time and preventing side reactions and overreactions. The reaction time is preferably 3 to 10 hours. 6-halomethyl-7-methyl-obtained by this reaction
If necessary, 1,2,3,4-tetrahydronaphthalene can be purified by distillation, and can be easily separated by chromatography. In addition, the 6-halomethyl-7-methyl-1,2,3,4-tetrahydronaphthalene is a novel compound not described in the literature.

【0012】6−ハロメチル−7−メチル−1,2,
3,4−テトラヒドロナフタレンの水素化反応は、通常
の金属触媒を用いた水素化反応が採用でき、例えば溶媒
の存在下又は不存在下、金属触媒を用いて大気圧〜5気
圧の水素雰囲気下で行われる。金属触媒としてはVIII族
金属又は、VIII族金属を、非酸性担体に担持させたもの
であれば、特に限定されず、VIII族金属としては、白
金、パラジウム、ニッケル等が、非酸性担体としては活
性炭、硫酸バリウム、アルカリで酸性を迎えたシリカ、
アルミナを用いることができる。より具体的な例とし
て、パラジウム触媒の場合例えば5%パラジウム−炭素
を基質に対して3〜20重量%用いるのが好ましい。溶
媒は中性の有機溶媒であれば特に制限されないが、反応
速度、溶解性、安定性等からメタノール、酢酸エチル等
が好適である。また反応系内に1当量の炭酸カリウム、
炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム等
の塩基を共存させることは、反応を低温で行う上で好ま
しく、反応温度は塩基共存下では0〜30℃が好まし
い。塩基が存在しない場合には、100℃以上の高温を
要するが、この場合には反応終了時に水素雰囲気から窒
素雰囲気に条件変更することでひきつづき脱水素工程に
移行できる。反応時間は、いずれの場合も1〜10時間
が好ましい。当該水素化分解工程で得られた6,7−ジ
メチル−1,2,3,4−テトラヒドロナフタレンは、
濾過により触媒を除いた後、蒸留によって精製できる
他、少量合成の場合には、非水溶性の有機溶媒に溶解さ
せ、水洗により無機塩及び塩基を除き、溶媒を留去すれ
ば、少量であっても全量回収できる。
6-halomethyl-7-methyl-1,2,
As the hydrogenation reaction of 3,4-tetrahydronaphthalene, a hydrogenation reaction using an ordinary metal catalyst can be adopted. For example, in the presence or absence of a solvent, a hydrogen atmosphere of atmospheric pressure to 5 atm is used using the metal catalyst. Done in. The metal catalyst is not particularly limited as long as it is a group VIII metal or a group VIII metal supported on a non-acidic carrier, and as the group VIII metal, platinum, palladium, nickel, etc. are used as the non-acidic carrier. Activated carbon, barium sulfate, silica acidified with alkali,
Alumina can be used. As a more specific example, in the case of a palladium catalyst, for example, 5% palladium-carbon is preferably used in an amount of 3 to 20% by weight based on the substrate. The solvent is not particularly limited as long as it is a neutral organic solvent, but methanol, ethyl acetate and the like are preferable in view of reaction rate, solubility, stability and the like. In addition, 1 equivalent of potassium carbonate in the reaction system,
The coexistence of a base such as sodium carbonate, sodium hydroxide or potassium hydroxide is preferable in order to carry out the reaction at a low temperature, and the reaction temperature is preferably 0 to 30 ° C. in the presence of a base. In the absence of a base, a high temperature of 100 ° C. or higher is required. In this case, however, the condition can be changed from the hydrogen atmosphere to the nitrogen atmosphere at the end of the reaction so that the dehydrogenation step can be continued. In any case, the reaction time is preferably 1 to 10 hours. The 6,7-dimethyl-1,2,3,4-tetrahydronaphthalene obtained in the hydrocracking step is
After removing the catalyst by filtration, it can be purified by distillation.In the case of a small amount of synthesis, the amount is small if dissolved in a water-insoluble organic solvent, washed with water to remove the inorganic salt and base, and distilled off the solvent. However, the entire amount can be recovered.

【0013】6,7−ジメチル−1,2,3,4−テト
ラヒドロナフタレンの脱水素反応は、常法、例えばパラ
ジウム等の貴金属を始めとする遷移金属触媒を使用し、
150〜400℃の温度で、溶媒の存在下又は不存在下
で実施できる外、一当量以上のイオウを用いて触媒、溶
媒の不存在下でも実施できる。反応温度は150〜20
0℃の範囲が好ましく、特に貴金属触媒を用いる場合に
は、高温では異性化反応を起こすため250℃以上の温
度は好ましくない。反応時間は一般に3〜10時間が好
ましい。反応後は、触媒反応の場合には、濾過により触
媒を除去し、イオウを用いた場合には水洗の後、蒸留を
行えば目的とする2,3−ジメチルナフタレンの白色結
晶が得られる。
The dehydrogenation reaction of 6,7-dimethyl-1,2,3,4-tetrahydronaphthalene is carried out by a conventional method, for example, using a transition metal catalyst such as a noble metal such as palladium,
It can be carried out at a temperature of 150 to 400 ° C. in the presence or absence of a solvent, as well as in the absence of a catalyst and a solvent using 1 equivalent or more of sulfur. Reaction temperature is 150 to 20
The range of 0 ° C. is preferable, and particularly when a noble metal catalyst is used, a temperature of 250 ° C. or higher is not preferable because an isomerization reaction occurs at a high temperature. Generally, the reaction time is preferably 3 to 10 hours. After the reaction, in the case of a catalytic reaction, the catalyst is removed by filtration, and when sulfur is used, the target white crystals of 2,3-dimethylnaphthalene can be obtained by carrying out distillation after washing with water.

【0014】なお、本発明の原料化合物である6−メチ
ル−1,2,3,4−テトラヒドロナフタレンの製造方
は、特に限定されないが一般的な方法としては、石油留
分中に豊富に含まれる2−メチルナフタレンの水素化に
よる方法が簡便である。この方法では6−メチル−1,
2,3,4−テトラヒドロナフタレンと共に、2−メチ
ル−1,2,3,4−テトラヒドロナフタレンが生成す
るが、これらは蒸留により容易に分離できる。
The method for producing 6-methyl-1,2,3,4-tetrahydronaphthalene, which is the starting material compound of the present invention, is not particularly limited, but as a general method, it is abundant in petroleum fractions. The method by hydrogenation of 2-methylnaphthalene is simple. In this method, 6-methyl-1,
2-Methyl-1,2,3,4-tetrahydronaphthalene is formed together with 2,3,4-tetrahydronaphthalene, which can be easily separated by distillation.

【0015】[0015]

【実施例】以下に実施例をあげて、本発明を詳細に説明
するが、本発明はこれらに限定されるものではない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0016】実施例1 6−メチル−1,2,3,4−テトラヒドロナフタレン
1.96g(13.4mmol)を4.5mlの酢酸、3.0
mlの85%リン酸、5.5mlの濃塩酸、823mgのパラ
ホルムアルデヒド(ホルムアルデヒドとして27.4mm
ol)とともに、フラスコへ入れ、90℃で6時間反応を
行った。反応後、30mlの酢酸エチルを加えて水洗し、
無水硫酸マグネシウムを用いて脱水を行った後、酢酸エ
チルを留去して得られた白色固体をシリカゲルカラムク
ロマトグラフィーで分離したところ6−クロロメチル−
7−メチル−1,2,3,4−テトラヒドロナフタレン
を主成分とするクロロメチル化物1.07gが得られ、
未反応原料792mgが回収された(転化率60%,選択
率91%)。1 H-NMR(CDCl3,TMS標準,90MHz)δ(ppm): 1.55〜1.98(4H,m,-CH2CH2 CH2 CH2-) 2.29、2.37、2.40(3H,each s,芳香族水素) 2.50〜3.00(4H,m,-CH2 CH2CH2CH2 -) 4.56、4.65、4.74(2H,each s,-CH2 Cl) 6.75〜7.15(2H,m,芳香族水素)
Example 1 1.96 g (13.4 mmol) of 6-methyl-1,2,3,4-tetrahydronaphthalene was added to 4.5 ml of acetic acid, 3.0
ml 85% phosphoric acid, 5.5 ml concentrated hydrochloric acid, 823 mg paraformaldehyde (27.4 mm as formaldehyde)
ol) was put into a flask and reacted at 90 ° C. for 6 hours. After the reaction, add 30 ml of ethyl acetate and wash with water.
After dehydration using anhydrous magnesium sulfate, ethyl acetate was distilled off and the obtained white solid was separated by silica gel column chromatography to give 6-chloromethyl-
1.07 g of a chloromethylated compound containing 7-methyl-1,2,3,4-tetrahydronaphthalene as a main component was obtained,
792 mg of unreacted raw material was recovered (conversion rate 60%, selectivity 91%). 1 H-NMR (CDCl 3 , TMS standard, 90 MHz) δ (ppm): 1.55 to 1.98 (4H, m, -CH 2 C H 2 C H 2 CH 2- ) 2.29, 2.37, 2.40 (3H, each s, Aromatic hydrogen) 2.50 ~ 3.00 (4H, m, -C H 2 CH 2 CH 2 C H 2- ) 4.56, 4.65, 4.74 (2H, each s, -C H 2 Cl) 6.75 ~ 7.15 (2H, m, Aromatic hydrogen)

【0017】実施例2 攪拌機、還流冷却器、温度計及びガス導入管をとりつけ
た100ml四つ口フラスコに、6−メチル−1,2,
3,4−テトラヒドロナフタレン2.01g(13.7
mmol)、パラホルムアルデヒド831mg(ホルムアルデ
ヒドとして27.7mmol)、塩化亜鉛1.03g及びク
ロロホルム50mlを加え、60℃で攪拌下に塩化水素ガ
スを10ml/minの速度で導入しつつ5時間反応を行っ
た。反応後、クロロホルム溶液を水洗し、無水硫酸ナト
リウムを用いて脱水した後、濾過し次いでクロロホルム
を留去し、シリカゲルカラムクロマトグラフィーにより
分離を行ったところ、6−クロロメチル−7−メチル−
1,2,3,4−テトラヒドロナフタレンを主成分とす
るクロロメチル化物1.12gが得られ、未反応原料6
78mgが回収された(転化率66%,選択率95%)。
Example 2 In a 100 ml four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a gas introduction tube, 6-methyl-1,2,
2.01 g of 3,4-tetrahydronaphthalene (13.7
mmol), 831 mg of paraformaldehyde (27.7 mmol as formaldehyde), 1.03 g of zinc chloride and 50 ml of chloroform were added, and the reaction was carried out at 60 ° C. for 5 hours while introducing hydrogen chloride gas at a rate of 10 ml / min with stirring. . After the reaction, the chloroform solution was washed with water, dehydrated with anhydrous sodium sulfate, filtered, and then chloroform was distilled off, followed by separation by silica gel column chromatography to find that 6-chloromethyl-7-methyl-
1.12 g of a chloromethylated product containing 1,2,3,4-tetrahydronaphthalene as a main component was obtained, and unreacted raw material 6
78 mg was recovered (66% conversion, 95% selectivity).

【0018】実施例3 実施例1で得られたクロロメチル化物1.00g(5.
14mmol)を5%パラジウム−炭素30mg及び無水炭酸
ナトリウム270mg(2.55mmol)、メタノール20
mlとともにフラスコに入れ、大気圧の水素雰囲気下、室
温で1時間攪拌を行った。濾過により触媒を除いた後、
n−ヘキサン100mlを加え、水洗で無機塩を除いた
後、無水硫酸マグネシウムを用いて脱水し、ヘキサンを
留去して無色液状のジメチル−1,2,3,4−テトラ
ヒドロナフタレン818mg(99%)を得た。得られた
ジメチル−1,2,3,4−テトラヒドロナフタレン
を、ガスクロマトグラフィーにより分析した結果、選択
率75%で6,7−ジメチル−1,2,3,4−テトラ
ヒドロナフタレンが生成していることが確認された。
Example 3 1.00 g of the chloromethylated product obtained in Example 1 (5.
14 mmol) 5% palladium-carbon 30 mg and anhydrous sodium carbonate 270 mg (2.55 mmol), methanol 20
It was put in a flask together with ml and stirred at room temperature for 1 hour under a hydrogen atmosphere at atmospheric pressure. After removing the catalyst by filtration,
After adding 100 ml of n-hexane and removing inorganic salts by washing with water, dehydration was performed using anhydrous magnesium sulfate, hexane was distilled off, and 818 mg (99%) of colorless liquid dimethyl-1,2,3,4-tetrahydronaphthalene. ) Got. The obtained dimethyl-1,2,3,4-tetrahydronaphthalene was analyzed by gas chromatography, and as a result, 6,7-dimethyl-1,2,3,4-tetrahydronaphthalene was produced with a selectivity of 75%. Was confirmed.

【0019】実施例4 実施例3で得られた6,7−ジメチル−1,2,3,4
−テトラヒドロナフタレン510mgを10%パラジウム
−炭素50mgとともに還流冷却器を備えたフラスコに入
れ、窒素気流中220℃で10時間攪拌を行った。反応
後、室温まで放冷し、固化した生成物をn−ヘキサンに
溶解し、濾過により触媒を除去、次いでn−ヘキサンを
留去して白色結晶490mgを得た。この結晶をガスクロ
マトグラフィーで分析した結果、ジメチルテトラリン
(原料)23%、ジメチルナフタレン77%、さらに、
ジメチルナフタレン中の、2,3−ジメチルナフタレン
75%、その他異性体合計25%であった(転化率77
%,選択率99%以上)。
Example 4 6,7-Dimethyl-1,2,3,4 obtained in Example 3
-Tetrahydronaphthalene (510 mg) was put in a flask equipped with a reflux condenser together with 10% palladium-carbon (50 mg), and the mixture was stirred at 220 ° C for 10 hours in a nitrogen stream. After the reaction, the mixture was left to cool to room temperature, the solidified product was dissolved in n-hexane, the catalyst was removed by filtration, and then n-hexane was distilled off to obtain 490 mg of white crystals. As a result of analyzing the crystals by gas chromatography, dimethyltetralin (raw material) 23%, dimethylnaphthalene 77%, and
The content of 2,3-dimethylnaphthalene in dimethylnaphthalene was 75%, and the total of other isomers was 25% (conversion rate 77
%, Selectivity over 99%).

【0020】[0020]

【発明の効果】本発明によれば2,3−ナフタレンジカ
ルボン酸等の合成中間体として有用な2,3−ジメチル
ナフタレンを工業的に大量入手が容易な6−メチル−
1,2,3,4−テトラヒドロナフタレンから選択的、
かつ安価、大量に製造することができる。
INDUSTRIAL APPLICABILITY According to the present invention, 6,3-dimethyl-naphthalene, which is useful as a synthetic intermediate for 2,3-naphthalenedicarboxylic acid and the like, is industrially easily available in large quantities in 6-methyl-
Selective from 1,2,3,4-tetrahydronaphthalene,
And it is cheap and can be manufactured in large quantities.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の6−クロロメチル−7−メチル−
1,2,3,4−テトラヒドロナフタレン含有生成物の
1H−NMRスペクトルを示す図である。
FIG. 1 6-chloromethyl-7-methyl-of Example 1
1,2,3,4-tetrahydronaphthalene-containing product
It is a figure which shows a < 1 > H-NMR spectrum.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 22/04 9280−4H // C07B 61/00 300 (72)発明者 田中 享 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 (72)発明者 清水 俊夫 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C07C 22/04 9280-4H // C07B 61/00 300 (72) Inventor Ryo Tanaka Satte City, Saitama Prefecture Gonendo 1134-2 Cosmo Research Institute R & D Center (72) Inventor Toshio Shimizu Gongen 1134-2, Saitama Prefecture Cosmo Research R & D Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 6−ハロメチル−7−メチル−1,2,
3,4−テトラヒドロナフタレンを水素化し、得られた
6,7−ジメチル−1,2,3,4−テトラヒドロナフ
タレンを脱水素反応に付すことを特徴とする2,3−ジ
メチルナフタレンの製造法。
1. 6-halomethyl-7-methyl-1,2,
A method for producing 2,3-dimethylnaphthalene, which comprises hydrogenating 3,4-tetrahydronaphthalene and subjecting the obtained 6,7-dimethyl-1,2,3,4-tetrahydronaphthalene to a dehydrogenation reaction.
【請求項2】 6−メチル−1,2,3,4−テトラヒ
ドロナフタレンに酸触媒の存在下にホルムアルデヒド及
びハロゲン化水素を反応させ、得られた6−ハロメチル
−7−メチル−1,2,3,4−テトラヒドロナフタレ
ンを水素化し、次いで得られた6,7−ジメチル−1,
2,3,4−テトラヒドロナフタレンを脱水素反応に付
すことを特徴とする2,3−ジメチルナフタレンの製造
法。
2. 6-Halomethyl-7-methyl-1,2, obtained by reacting 6-methyl-1,2,3,4-tetrahydronaphthalene with formaldehyde and hydrogen halide in the presence of an acid catalyst. Hydrogenation of 3,4-tetrahydronaphthalene, then the resulting 6,7-dimethyl-1,
A method for producing 2,3-dimethylnaphthalene, which comprises subjecting 2,3,4-tetrahydronaphthalene to a dehydrogenation reaction.
【請求項3】 6−ハロメチル−7−メチル−1,2,
3,4−テトラヒドロナフタレン。
3. 6-halomethyl-7-methyl-1,2,
3,4-tetrahydronaphthalene.
JP04339039A 1992-12-18 1992-12-18 Process for producing 2,3-dimethylnaphthalene and intermediates thereof Expired - Fee Related JP3131056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04339039A JP3131056B2 (en) 1992-12-18 1992-12-18 Process for producing 2,3-dimethylnaphthalene and intermediates thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04339039A JP3131056B2 (en) 1992-12-18 1992-12-18 Process for producing 2,3-dimethylnaphthalene and intermediates thereof

Publications (2)

Publication Number Publication Date
JPH06184008A true JPH06184008A (en) 1994-07-05
JP3131056B2 JP3131056B2 (en) 2001-01-31

Family

ID=18323697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04339039A Expired - Fee Related JP3131056B2 (en) 1992-12-18 1992-12-18 Process for producing 2,3-dimethylnaphthalene and intermediates thereof

Country Status (1)

Country Link
JP (1) JP3131056B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195722A (en) * 2009-02-26 2010-09-09 Asahi Kagaku Kogyo Kk Process for producing 2,7-bishalomethylfluorene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195722A (en) * 2009-02-26 2010-09-09 Asahi Kagaku Kogyo Kk Process for producing 2,7-bishalomethylfluorene

Also Published As

Publication number Publication date
JP3131056B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
CN109232212B (en) Method for synthesizing methyl heptenone from isopentenol
US4595765A (en) Process for preparing 5,6-dihydroxyindole
JP3131056B2 (en) Process for producing 2,3-dimethylnaphthalene and intermediates thereof
US5777170A (en) Process for the preparation of a naphthylbutanone
EP0421759B1 (en) Method for producing 1-indanone derivatives
JP2001206860A (en) Method for producing fluorenes
US4965399A (en) 1,5-diaryl-3-pentanol compounds and processes for the preparation thereof
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
JP4072341B2 (en) Method for producing ethyl group-containing alicyclic tertiary alcohol
US4169858A (en) Process for preparing a ketone
JP2516222B2 (en) Process for producing 4- (4-hydroxyphenyl) -cyclohexanol
JP3177420B2 (en) Method for producing 4-methoxy-2,2 &#39;, 6&#39;-trimethyldiphenylamine
JPH06184007A (en) Production of 2,3-dimethylnaphthalene
JP3177350B2 (en) Method for producing dinonyldiphenylamine
JP3357147B2 (en) Method for producing 5-phenylpentanoic acid
JP3159522B2 (en) Method for producing high-purity m-phenylenediamine
JP3112995B2 (en) Method for producing biphenyl compound
JP3008296B2 (en) Method for producing diaryl glycolic acid
JP2784203B2 (en) Method for producing 6-fluoro-4-chromanone-2-carboxylic acid
CN116655454A (en) Synthesis method of cis-1, 4-cyclohexanediol
JPH0660130B2 (en) Method for producing 1-bromoethylhydrocarbonyl carbonate
JP3177393B2 (en) Method for producing 4-methoxy-2,2 &#39;, 6&#39;-trimethyldiphenylamine
JP2740853B2 (en) Method for producing 2,2-diaryl glycolic acid
JP2820333B2 (en) Method for producing tridecadienyl acetate
JPH09143104A (en) Production of 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene, and production of their intermediate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees