JPH06183711A - Separation of fullerene - Google Patents

Separation of fullerene

Info

Publication number
JPH06183711A
JPH06183711A JP4152671A JP15267192A JPH06183711A JP H06183711 A JPH06183711 A JP H06183711A JP 4152671 A JP4152671 A JP 4152671A JP 15267192 A JP15267192 A JP 15267192A JP H06183711 A JPH06183711 A JP H06183711A
Authority
JP
Japan
Prior art keywords
fullerene
organic solvent
supercritical
carbon dioxide
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4152671A
Other languages
Japanese (ja)
Inventor
Muneo Saito
宗雄 斎藤
Masao Bounoshita
雅夫 坊之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP4152671A priority Critical patent/JPH06183711A/en
Publication of JPH06183711A publication Critical patent/JPH06183711A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE:To extremely save a quantity of an organic solvent used for separation by successively extracting a fullerene-containing sample with a supercritical CO2, a supercritical mixed fluid of CO2 with a fullerene soluble organic solvent and a vapor-liquid two-phase solvent of CO2 and the fullerene-soluble organic solvent. CONSTITUTION:A fullerene separation device 10 is composed of a liquefied CO2 storage tank 12, an organic solvent storage tank 14, a mixer 16, an extracting vessel 18 and a recovering vessel 20. The liquefied CO2 is supplied to a preheating coil 30 by closing a valve 28, opening a valve 24 and operating a pump 22 and is made to be supercritical CO2 by rising the temp. A pressure adjusting valve 34 is controlled to be above the critical pressure of CO2 on the upstream side of the system. As a result, only the supercritical CO2 is supplied to the extracting vessel 18 and only an aromatic compound of the impurity is extracted. Next, a mixture containing a large quantity of C60 fullerene is extracted by opening the valve 28 and adding 25-50v/v% organic solvent (e.g. toluene) by operating the pump 26. Succeedingly, a mixture containing a large quantity of above C70 and CO84 fullerene is extracted by successively increasing the ratio of the organic solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフラーレンの分離方法、
特に分離溶媒の改良に関する。
The present invention relates to a method for separating fullerenes,
In particular, it relates to improvement of the separation solvent.

【0002】[0002]

【従来の技術】通常、炭素原子が形成する固体はグラフ
ァイト、ダイヤモンド及びアモルファスの三種類であ
る。しかしながら、特定の条件下では炭素原子がサッカ
ーボール状あるいはラグビーボール状の分子を形成する
ことが発見され、これらをフラーレンと呼んでいる。前
記サッカーボール状フラーレンは炭素数が60であり、
一般にC60フラーレンと表現され、一方前記ラグビーボ
ール状フラーレンは炭素数が70でありC70フラーレン
と表現される。このようなフラーレンは化学的、物理的
に極めて安定であり、全く新しい材料物質として各種分
野での利用が期待され、さらにC60フラーレンはカリウ
ム等の金属をドープすることにより、超電導転移を示す
ことが知られている。
2. Description of the Related Art Usually, solids formed by carbon atoms are of three types: graphite, diamond and amorphous. However, under certain conditions, it was discovered that carbon atoms form soccer ball-like or rugby ball-like molecules, and these are called fullerenes. The soccer ball-shaped fullerene has 60 carbon atoms,
Generally, it is expressed as C 60 fullerene, while the rugby ball-shaped fullerene has 70 carbon atoms and is expressed as C 70 fullerene. Such fullerenes are extremely stable chemically and physically, and are expected to be used in various fields as completely new materials. Furthermore, C 60 fullerenes exhibit superconducting transition by doping with metals such as potassium. It has been known.

【0003】現在、このフラーレンを合成するには、稀
ガス雰囲気中で炭素電極をアーク放電させ、この時発生
するススにC60、C70フラーレンが多く含まれているこ
とから、これを抽出、生成する方法をとる場合が多い。
しかしながら、このススにはC60、C70フラーレン以外
にも低分子量の不純物、あるいはC76、C84あるいはそ
れ以上の高分子量のものも存在しており、各フラーレン
の特性を解明するためにはこれらの有効且つ効率的な分
離が強く望まれていた。
At present, in order to synthesize this fullerene, a carbon electrode is subjected to arc discharge in a rare gas atmosphere, and soot generated at this time contains a large amount of C 60 and C 70 fullerenes. In many cases, the method of generation is used.
However, in addition to C 60 and C 70 fullerenes, low molecular weight impurities or C 76 , C 84 or higher molecular weight impurities also exist in this soot, and in order to clarify the characteristics of each fullerene There has been a strong demand for effective and efficient separation of these.

【0004】C60、C70フラーレンは、通常の有機分子
とは異なった性質を有しており、一般に無極性溶媒(ベ
ンゼン、シクロヘキサン、四塩化炭素、クロロホルム
等)に可溶であり、極性溶媒(水、アルコール、アセト
ニトリル等)には難溶性を示す。そこで、従来は前記ス
スからフラーレンをトルエン等の有機溶媒で抽出した
後、この抽出物からカラムクロマトグラフィーを用いて
60、C70フラーレン成分を分画していた。
C 60 and C 70 fullerenes have different properties from ordinary organic molecules, and are generally soluble in nonpolar solvents (benzene, cyclohexane, carbon tetrachloride, chloroform, etc.) and polar solvents. It is sparingly soluble in (water, alcohol, acetonitrile, etc.). Therefore, conventionally, fullerene was extracted from the soot with an organic solvent such as toluene, and then the C 60 and C 70 fullerene components were fractionated from this extract using column chromatography.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな有機溶媒による抽出、カラムクロマトグラフィーに
よる分離は、非常に時間がかかり、さらにはトルエン等
の引火性の溶媒を多量に必要とする等の課題があった。
本発明は前記従来技術の課題に鑑みなされたものであ
り、その目的はフラーレンの選択的抽出を安全且つ迅速
に行うことのできるフラーレン分離方法を提供すること
にある。
However, such extraction with an organic solvent and separation by column chromatography take a very long time, and further, a large amount of flammable solvent such as toluene is required. was there.
The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a fullerene separation method capable of safely and quickly performing selective extraction of fullerenes.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本出願の請求項1記載のフラーレンの分離方法は、
フラーレン含有試料を、超臨界二酸化炭素、二酸化炭素
とフラーレン可溶有機溶媒の超臨界混合流体、二酸化炭
素とフラーレン可溶有機溶媒の気液二相溶媒で順次抽出
することを特徴とする。
In order to achieve the above object, the method for separating fullerenes according to claim 1 of the present application comprises:
It is characterized in that a fullerene-containing sample is sequentially extracted with supercritical carbon dioxide, a supercritical fluid mixture of carbon dioxide and a fullerene-soluble organic solvent, and a gas-liquid two-phase solvent of carbon dioxide and a fullerene-soluble organic solvent.

【0007】また、請求項2記載の方法は、フラーレン
可溶有機溶媒はトルエンよりなり、トルエンを20〜5
0v/v%加えることによりC60フラーレン高濃度分画を
得、トルエンを75〜100v/v%加えることによりC
70フラーレン高濃度分画を得ることを特徴とする。
In the method according to claim 2, the fullerene-soluble organic solvent is toluene, and the toluene is 20 to 5
A high concentration fraction of C 60 fullerene was obtained by adding 0 v / v%, and C was obtained by adding 75-100 v / v% of toluene.
It is characterized by obtaining a high-concentration fraction of 70 fullerenes.

【0008】[0008]

【実施例】以下、図面に基づき本発明の好適な実施例を
説明する。図1には本発明の一実施例にかかるフラーレ
ン分離装置が示されている。同図に示すフラーレン分離
装置10は、液化二酸化炭素貯留槽12と、有機溶媒貯
留槽14と、混合器16と、抽出容器18と、回収容器
20とを含む。そして、液化二酸化炭素貯留槽12から
の液化二酸化炭素はポンプ22及びストップ弁24を介
して、また有機溶媒貯留槽14からの有機溶媒はポンプ
26及びストップ弁28を介してそれぞれ混合器16に
送られ、液化二酸化炭素及び有機溶媒が混合された後、
予熱コイル30により予熱され、混合媒体として抽出容
器18に導入される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a fullerene separation device according to an embodiment of the present invention. The fullerene separation device 10 shown in the figure includes a liquefied carbon dioxide storage tank 12, an organic solvent storage tank 14, a mixer 16, an extraction container 18, and a recovery container 20. The liquefied carbon dioxide from the liquefied carbon dioxide storage tank 12 is sent to the mixer 16 via the pump 22 and the stop valve 24, and the organic solvent from the organic solvent storage tank 14 is sent to the mixer 16 via the pump 26 and the stop valve 28, respectively. And after the liquefied carbon dioxide and the organic solvent are mixed,
It is preheated by the preheating coil 30 and introduced into the extraction container 18 as a mixed medium.

【0009】該抽出容器18にはフラーレン含有試料が
投入されており、前記混合媒体により抽出作用が行われ
る。抽出容器18からの抽出媒体は吸着剤カラム32及
び圧力調製弁34を介して回収容器20に回収される。
なお、予熱コイル30、抽出容器18、吸着剤カラム3
2は恒温槽36内に設置されており、槽内を所望の温度
(例えば臨界温度以上)に保つことができる。このよう
な構成の装置は、超臨界流体抽出装置として公知である
が、超臨界流体抽出の場合には、例え混合流体を用いる
場合でも該混合流体の臨界温度・圧力を越えた超臨界領
域で操作するのが常識であり、気液二相状態で運転する
ことは避けられていた。また、フラーレンは前述したよ
うに難溶性であり、超臨界二酸化炭素には全く溶解しな
い。
A fullerene-containing sample is placed in the extraction container 18, and an extraction action is performed by the mixed medium. The extraction medium from the extraction container 18 is recovered in the recovery container 20 via the adsorbent column 32 and the pressure adjusting valve 34.
The preheating coil 30, the extraction container 18, the adsorbent column 3
No. 2 is installed in a constant temperature bath 36, and the inside of the bath can be maintained at a desired temperature (for example, a critical temperature or higher). An apparatus having such a configuration is known as a supercritical fluid extraction apparatus. However, in the case of supercritical fluid extraction, even in the case of using a mixed fluid, it can be used in a supercritical region exceeding the critical temperature and pressure of the mixed fluid. It was common sense to operate, and it was avoided to operate in a gas-liquid two-phase state. Further, fullerenes are hardly soluble as described above, and do not dissolve in supercritical carbon dioxide at all.

【0010】しかしながら、本発明者らは分子量の小さ
な不純物が超臨界流体二酸化炭素に溶解すること、また
有機溶媒(トルエン等)へ二酸化炭素を混合することに
より大きな分子の溶解度が著しく低下することに着目
し、超臨界二酸化炭素、超臨界混合流体(二酸化炭素と
有機溶媒)、気液二相状態の溶媒(二酸化炭素と有機溶
媒)と、順次抽出条件を変化させることにより、フラー
レンをその分子量に応じて抽出、分離精製が可能である
ことを見出したのである。すなわち、本発明者らは超臨
界流体二酸化炭素と有機溶媒(トルエン)の混合流体を
用いて、フラーレン含有試料(スス)より抽出操作を行
った。
However, the present inventors have found that impurities having a small molecular weight are dissolved in carbon dioxide of a supercritical fluid, and that the solubility of large molecules is significantly lowered by mixing carbon dioxide with an organic solvent (toluene, etc.). Focusing on supercritical carbon dioxide, supercritical mixed fluid (carbon dioxide and organic solvent), solvent in the gas-liquid two-phase state (carbon dioxide and organic solvent), by changing the extraction conditions in order, the fullerene becomes its molecular weight Therefore, they have found that extraction, separation and purification are possible. That is, the present inventors performed an extraction operation from a fullerene-containing sample (soot) using a mixed fluid of supercritical fluid carbon dioxide and an organic solvent (toluene).

【0011】まず初めに、ストップ弁28を閉じた状態
でストップ弁24を開け、ポンプ22を作動させて混合
器16を介して予熱コイル30に液化二酸化チタンを供
給する。該予熱コイル30は二酸化炭素の気液臨界温度
以上に前記液化二酸化炭素を昇温させ、超臨界二酸化炭
素とする。また、圧力調製弁34は、系の上流側が二酸
化炭素の臨界圧力以上となるように設定される。この結
果、抽出容器18には超臨界二酸化炭素だけが供給さ
れ、フラーレンは溶解せず、不純物として含まれる芳香
族化合物が抽出される。なお、容器20は開放されてい
るので、超臨界二酸化炭素は直ちに揮散する。次にスト
ップ弁28を開き、ポンプ26を作動させて有機溶媒を
トルエンを25〜50v/v%加えることにより、前記
同様にして容器20にはC60フラーレンを多く含む
60、C70フラーレンの混合物が抽出される。
First, the stop valve 24 is opened with the stop valve 28 closed, and the pump 22 is operated to supply liquefied titanium dioxide to the preheating coil 30 via the mixer 16. The preheating coil 30 raises the temperature of the liquefied carbon dioxide above the gas-liquid critical temperature of carbon dioxide to make it supercritical carbon dioxide. Further, the pressure adjusting valve 34 is set such that the upstream side of the system has a pressure equal to or higher than the critical pressure of carbon dioxide. As a result, only the supercritical carbon dioxide is supplied to the extraction container 18, the fullerene is not dissolved, and the aromatic compound contained as an impurity is extracted. Since the container 20 is open, the supercritical carbon dioxide immediately evaporates. Next, the stop valve 28 is opened, the pump 26 is operated, and 25 to 50 v / v% of toluene is added to the organic solvent, whereby the container 20 contains C 60 and C 70 fullerenes containing a large amount of C 60 fullerenes in the same manner as described above. The mixture is extracted.

【0012】さらにトルエンの組成比を増加して50〜
75v/v%とすることによりC70フラーレンを多く含む
混合物が抽出される。トルエンの組成比を増やして75
〜100v/v%とすることにより、C84以上のフラーレ
ンを抽出することが可能となる。この時の操作温度は1
00℃であった。この温度はトルエンの臨界温度(31
8.7℃)よりはるかに低いので、トルエンの比率が5
0〜100%の間で混合流体の超臨界条件が破れて気液
二相状態となった。
Further, the composition ratio of toluene is increased to 50 to 50%.
A mixture containing a large amount of C 70 fullerenes is extracted by adjusting the amount to 75 v / v%. Increase the composition ratio of toluene to 75
By setting it to be 100 v / v%, it becomes possible to extract fullerenes of C 84 or more. The operating temperature at this time is 1
It was 00 ° C. This temperature is the critical temperature of toluene (31
8.7 ° C), so the ratio of toluene is 5
Between 0 and 100%, the supercritical condition of the mixed fluid was broken and the gas-liquid two-phase state was formed.

【0013】図2にはこのようにして得た抽出物(トル
エン25〜50%画分)のクロマトグラムを示す。ま
た、図3には対象として有機溶媒(トルエン)のみを用
いた場合の抽出物のクロマトグラムを示す。図3より明
らかなように、有機溶媒のみで抽出した場合にはC60
70フラーレンだけではなく、これより小さな分子量あ
るいは大きな分子量の不純物も含まれていることが理解
される。一方、図2に示されるように本発明にかかる方
法を用いた場合には、C60フラーレンを多く含む画分が
得られており、同様にトルエン50〜75%溶出物より
70フラーレンを含む多く含む画分を得ることができ、
さらに小さな分子量あるいは大きな分子量の不純物は殆
ど除去されている。
FIG. 2 shows a chromatogram of the extract (toluene 25-50% fraction) thus obtained. Further, FIG. 3 shows a chromatogram of the extract when only the organic solvent (toluene) was used as a target. As is clear from FIG. 3, when the organic solvent alone is extracted, C 60 ,
It is understood that not only C 70 fullerene but also impurities of lower or higher molecular weight are included. On the other hand, as shown in FIG. 2, when the method according to the present invention was used, a fraction containing a large amount of C 60 fullerene was obtained, and similarly, a fraction containing a C 70 fullerene from a 50 to 75% toluene eluate was obtained. You can get a lot of fractions,
Impurities of smaller or larger molecular weight are mostly removed.

【0014】以上のように本実施例にかかる方法によれ
ば、有機溶媒の使用量を大幅に減少させることができ、
操作の殆どを不活性な二酸化炭素雰囲気中で行うことが
できるので、従来法に比較し、安全にフラーレン分離を
行うことができる。また、本実施例にかかる装置によれ
ば、圧力を二酸化炭素の臨界圧力(72.8気圧)以
上、温度を臨界温度(31.3℃)以上で操作すること
ができ、さらに二酸化炭素と有機溶媒の混合比を時間的
に変化させることが可能となる。また、抽出容器18と
回収容器20の間に圧力調製弁34を設けているので、
抽出容器18内を所望の圧力に調整することができる。
As described above, according to the method of this embodiment, the amount of the organic solvent used can be greatly reduced,
Since most of the operations can be performed in an inert carbon dioxide atmosphere, fullerene separation can be performed safely as compared with the conventional method. Further, according to the apparatus of this example, the pressure can be operated at the critical pressure of carbon dioxide (72.8 atm) or higher and the temperature at the critical temperature (31.3 ° C.) or higher. It is possible to change the mixing ratio of the solvent with time. Further, since the pressure adjusting valve 34 is provided between the extraction container 18 and the recovery container 20,
The inside of the extraction container 18 can be adjusted to a desired pressure.

【0015】なお、本実施例において吸着剤カラム32
を設けているので、抽出媒体中の微量成分の除去を行
い、より純度の高いフラーレンを得ることを可能として
いる。なお、図4に示すように回収容器を加圧回収容器
120とし、圧力調製弁134と加圧回収容器120の
間にストップ弁140、容器120を大気と練通させる
排気圧力調製弁142、及び容器120を保温する恒温
槽144を設け、フラーレンを液状で回収するとも好適
である。本実施例にかかる装置によれば、抽出物の回収
をその時の二酸化炭素と有機溶媒が気相と液相の二相に
なる温度圧力に回収容器120を調整することが可能と
なる。
In this embodiment, the adsorbent column 32 is used.
Since it is provided, it is possible to remove the trace components in the extraction medium and obtain fullerene with higher purity. As shown in FIG. 4, the pressure recovery container 120 is used as the recovery container, the stop valve 140 is provided between the pressure adjustment valve 134 and the pressure recovery container 120, the exhaust pressure adjustment valve 142 for allowing the container 120 to communicate with the atmosphere, and It is also suitable to provide a constant temperature bath 144 for keeping the temperature of the container 120 and collect the fullerene in a liquid state. According to the apparatus according to the present embodiment, it becomes possible to adjust the recovery container 120 to recover the extract at a temperature and pressure at which the carbon dioxide and the organic solvent at that time become two phases of the gas phase and the liquid phase.

【0016】[0016]

【発明の効果】以上説明したように本発明にかかるフラ
ーレン分離方法によれば、フラーレンの抽出、分離に使
用される有機溶媒量を大幅に減少させることが可能とな
り、作業の安全化が図られる。
As described above, according to the fullerene separation method of the present invention, it is possible to significantly reduce the amount of the organic solvent used for the extraction and separation of fullerenes, thereby ensuring the safety of work. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる方法が適用されたフ
ラーレン分離装置の説明図である。
FIG. 1 is an explanatory diagram of a fullerene separation device to which a method according to an embodiment of the present invention is applied.

【図2】図1に示した装置によるC60フラーレンの分離
状態の説明図である。
FIG. 2 is an explanatory view of a separated state of C 60 fullerene by the device shown in FIG.

【図3】有機溶媒のみによるフラーレンの分離状態の説
明図である。
FIG. 3 is an explanatory diagram of a separated state of fullerene using only an organic solvent.

【図4】本発明のフラーレン分離装置の他の例の説明図
である。
FIG. 4 is an explanatory diagram of another example of the fullerene separation device of the present invention.

【符号の説明】[Explanation of symbols]

10 フラーレン分離装置 12 液化二酸化炭素貯留槽 14 有機溶媒貯留槽 16 混合器 18 抽出容器 10 Fullerene Separation Device 12 Liquefied Carbon Dioxide Storage Tank 14 Organic Solvent Storage Tank 16 Mixer 18 Extraction Container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フラーレン含有試料を、超臨界二酸化炭
素、二酸化炭素とフラーレン可溶有機溶媒の超臨界混合
流体、二酸化炭素とフラーレン可溶有機溶媒の気液二相
溶媒で順次抽出することを特徴とするフラーレンの分離
方法。
1. A fullerene-containing sample is sequentially extracted with supercritical carbon dioxide, a supercritical fluid mixture of carbon dioxide and a fullerene-soluble organic solvent, and a gas-liquid two-phase solvent of carbon dioxide and a fullerene-soluble organic solvent. How to separate fullerenes.
【請求項2】 請求項1記載の方法において、フラーレ
ン可溶有機溶媒はトルエンよりなり、トルエンを20〜
50v/v%加えることによりC60フラーレン高濃度分画
を得、トルエンを75〜100v/v%加えることにより
70フラーレン高濃度分画を得ることを特徴とするフラ
ーレンの分離方法。
2. The method according to claim 1, wherein the fullerene-soluble organic solvent comprises toluene, and the toluene content is 20 to 20%.
A method for separating fullerenes, characterized in that a high concentration fraction of C 60 fullerene is obtained by adding 50 v / v%, and a high concentration fraction of C 70 fullerene is obtained by adding 75 to 100 v / v% of toluene.
JP4152671A 1992-05-20 1992-05-20 Separation of fullerene Pending JPH06183711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152671A JPH06183711A (en) 1992-05-20 1992-05-20 Separation of fullerene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152671A JPH06183711A (en) 1992-05-20 1992-05-20 Separation of fullerene

Publications (1)

Publication Number Publication Date
JPH06183711A true JPH06183711A (en) 1994-07-05

Family

ID=15545560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152671A Pending JPH06183711A (en) 1992-05-20 1992-05-20 Separation of fullerene

Country Status (1)

Country Link
JP (1) JPH06183711A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237913A (en) * 1994-02-25 1995-09-12 Agency Of Ind Science & Technol Method and device for producing fullerene
WO2003076335A1 (en) * 2002-03-13 2003-09-18 Mitsubishi Chemical Corporation Process for production of fullerenes and method for separation thereof
CN104225953A (en) * 2013-06-21 2014-12-24 中国石油化工股份有限公司 Absorption apparatus for absorbing aromatic hydrocarbon in geological sample through supercritical carbon dioxide extraction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237913A (en) * 1994-02-25 1995-09-12 Agency Of Ind Science & Technol Method and device for producing fullerene
WO2003076335A1 (en) * 2002-03-13 2003-09-18 Mitsubishi Chemical Corporation Process for production of fullerenes and method for separation thereof
CN104225953A (en) * 2013-06-21 2014-12-24 中国石油化工股份有限公司 Absorption apparatus for absorbing aromatic hydrocarbon in geological sample through supercritical carbon dioxide extraction

Similar Documents

Publication Publication Date Title
US5281406A (en) Recovery of C60 and C70 buckminsterfullerenes from carbon soot by supercritical fluid extraction and their separation by adsorption chromatography
US4529412A (en) Process for obtaining high concentration argon by pressure-swing-adsorption
Onuska et al. Supercritical fluid extraction of 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin from sediment samples
JPH0891815A (en) Method for separating and refining carbon nanotube
Stevenson et al. Automated HPLC separation of endohedral metallofullerene Sc@ C2n and Y@ C2n fractions
Fat’hi et al. Solubilities of some recently synthesized 1, 8-dihydroxy-9, 10-anthraquinone derivatives in supercritical carbon dioxide
Levy et al. The use of alternative fluids in on‐line supercritical fluid extraction–capillary gas chromatography
JPH06183711A (en) Separation of fullerene
US4675101A (en) Step-wise supercritical extraction of carbonaceous residua
Ashraf-Khorassani et al. Effect of pressure, temperature, modifier, modifier concentration, and sample matrix on the supercritical fluid extraction efficiency of different phenolic compounds
Doome et al. Purification of C60 by fractional crystallization
EP1258275A2 (en) Materials treatment apparatus
JPS6229988A (en) Purification of ethanol from aqueous solution thereof
JPS6229990A (en) Purification of ethanol
Zhang et al. A new method to recover the nanoparticles from reverse micelles: recovery of ZnS nanoparticles synthesized in reverse micelles by compressed CO2
JPH07138009A (en) Device for producing fullerene and method for recovering the same
CA2025618C (en) Process for isolating xylene isomer(s) and/or ethylbenzene and inclusion-complexing agent for use in isolation of xylene isomer(s) and/or ethylbenzene
JPS6225983A (en) Method of concentrating and purifying alcohol
AU643317B2 (en) Method of extracting dinitrogen pentoxide from its mixture with nitric acid
Saim et al. Supercritical fluid extraction of fullerenes C60 and C70 from carbon soot
JPS6225984A (en) Method of concentrating and purifying alcohol
Friedrich et al. Supercritical CO2-assisted liquid extraction of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and-furans from solid matrices
JPS6225982A (en) Method of concentrating and purifying alcohol
JPH05282938A (en) Manufacture of metal stored fullerene and the like
McDaniel et al. Modification of the collection solvent to enhance liquid trapping efficiencies after supercritical fluid extraction