JPH06182412A - Method for predicting structural distribution of section of bar steel or steel bar - Google Patents

Method for predicting structural distribution of section of bar steel or steel bar

Info

Publication number
JPH06182412A
JPH06182412A JP4336391A JP33639192A JPH06182412A JP H06182412 A JPH06182412 A JP H06182412A JP 4336391 A JP4336391 A JP 4336391A JP 33639192 A JP33639192 A JP 33639192A JP H06182412 A JPH06182412 A JP H06182412A
Authority
JP
Japan
Prior art keywords
procedure
distribution
section
rolling
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4336391A
Other languages
Japanese (ja)
Inventor
Naohiro Furukawa
直宏 古川
Tetsuo Toyoda
哲夫 十代田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4336391A priority Critical patent/JPH06182412A/en
Publication of JPH06182412A publication Critical patent/JPH06182412A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the yield by executing three dimensional rolling analytical calculation, temperature analytical calculation of temperature distribution in a section, considering strain in the section, rate of strain and temperature distri bution and predicting the final structure. CONSTITUTION:Procedures 1-6 are calculated successively and the distribution of structure of sections of a bar steel etc., is predicted based on them. In the procedure 1, strain, rate of strain and temperature distribution on the outlet side of rolling are calculated. In the procedure 2, the change of the temperature distribution in the section between passes is calculated. In the procedure 3, gammarecrystallization structure, unrecrystallization structure, distribution of residual strain are calculated. In the procedure 4, these calculation results are calculated continuously and repeatedly and calculations of gamma grain structure, residual strain, temperature distribution state are completed. In the procedure 5, change of temperature distribution is calculated and, in the procedure 6, the final structure distribution after cooling is completed is calculated. In this way, the structure of the final product of the bar steel, etc., in which ununiformity of the structure in a section is generated can be predicted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱間圧延および冷却によ
って製造される条鋼または棒鋼の最終製品の断面内の組
織分布を予測する方法に関し、詳細には断面内で不均一
な組織の分布についても正確に予想する事のできる手段
を確立する事によって、目的組織を得るための加工条件
の設定、あるいは圧延孔型の設計に貢献することのでき
る条鋼または棒鋼の断面の組織分布予測方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting a microstructure distribution in a cross section of a final product of a steel bar or a steel bar manufactured by hot rolling and cooling, and more particularly to a nonuniform microstructure distribution in the cross section. By establishing a method that can also accurately predict the structure, it is possible to set the processing conditions to obtain the target structure or to contribute to the design of the rolling hole type. Is.

【0002】[0002]

【従来の技術】条鋼や棒鋼(以下、鋼で代表することが
ある)製品の特性は、化学成分に追うところが大きい
が、熱間加工後の機械的特性は熱間加工条件や変態時の
冷却速度によっても大きく左右されることが知られてい
る。従って、希望の機械的性質を有する条鋼製品を得た
いときには、化学成分の他、熱間加工条件や冷却条件等
の製造条件を適切に制御することが重要である。しかし
ながら、従来では、同一製品・大量生産をベースとして
いるので、実験的・経験的に少しづつ改良・修正しなが
ら最適の製造条件に到達するというのが一般的な手法と
されてきた。
2. Description of the Related Art The properties of bar steel and bar products (hereinafter sometimes referred to as steel) have a great deal to do with the chemical composition, but the mechanical properties after hot working are the hot working conditions and cooling during transformation. It is known that it is also greatly affected by speed. Therefore, when it is desired to obtain a steel bar product having desired mechanical properties, it is important to appropriately control not only chemical components but also manufacturing conditions such as hot working conditions and cooling conditions. However, in the past, since the same product / mass production was used as a base, it has been generally accepted that the optimum manufacturing conditions are reached while experimentally and empirically gradually improving / correcting.

【0003】近年、社会的ニーズの多用化によって多品
種・少量生産への適応体制を整える必要が生じており、
実験的・経験的手法に頼る従来法では対応することがで
きなくなっている。また製品に対する品質向上の要求も
年々厳しくなっており、例えば製品形状精度(真円度な
ど)についても従来以上に厳格になってきている。その
ため、最適孔型設計、圧延時のロールギャップの微調
整、形状修正軽圧下(スキンパス)圧延などが行われて
いるが、孔型圧延の場合断面内の歪分布が不均一なため
条件によっては断面内の一部にオーステナイト組織の粗
大化等の組織異常が認められることがある。
In recent years, due to the diversification of social needs, it is necessary to prepare a system for adapting to high-mix low-volume production.
Conventional methods that rely on experimental and empirical methods are no longer available. Further, demands for quality improvement of products have become stricter year by year, and for example, product shape accuracy (roundness etc.) has become more strict than ever. Therefore, optimal groove design, fine adjustment of roll gap during rolling, shape correction light reduction (skin pass) rolling, etc. are performed, but in the case of groove rolling, the strain distribution in the cross section is uneven, so depending on the conditions Structural abnormalities such as coarsening of the austenite structure may be observed in a part of the cross section.

【0004】上記の様な問題に対応するためには、製造
条件と製品の機械的性質の相関を正確に把握し、希望の
機械的性質を発現する為の製造条件を最初から確立的に
設定していくことができる様な技術の開発が急務となっ
ている。
In order to cope with the above problems, the correlation between the manufacturing conditions and the mechanical properties of the product is accurately grasped, and the manufacturing conditions for expressing the desired mechanical properties are established from the beginning. There is an urgent need to develop technologies that can be used.

【0005】多パス熱間圧延および冷却後の組織さらに
は材質の予測方法としては、例えば特開昭62−158
816号公報、特開平4−4911号公報等に示される
様な技術が提案されている。即ち、特開昭62−158
816号公報では、圧延時の歪、歪速度、温度は一定と
した予測手法を示している。また特開平4−4911号
公報では、各パスごとの入側および出側の鋼材の厚み、
パス間時間、圧延機のロール径およびロール回転数等に
よって、板厚表面から中心に向かう複数の点について計
算した圧延時の相当歪、歪速度等に基づいて圧延後のオ
ーステナイト粒径、転位密度、残留歪等を算出し、この
算出結果および冷却条件に基づいてフェライト粒等のα
粒径および組織分率を算出し、これらによって鋼板の材
質を予測する手法を示している。
As a method for predicting the structure and the material after multi-pass hot rolling and cooling, for example, JP-A-62-158 is used.
Techniques such as those disclosed in Japanese Patent Laid-Open No. 816 and Japanese Patent Laid-Open No. 4-4911 have been proposed. That is, JP-A-62-158
Japanese Patent No. 816 discloses a prediction method in which the strain, the strain rate, and the temperature during rolling are constant. Further, in Japanese Patent Laid-Open No. 4-4911, the thickness of the steel material on the inlet side and the outlet side for each pass,
The austenite grain size and dislocation density after rolling based on the equivalent strain during rolling, strain rate, etc. calculated for multiple points from the plate thickness surface to the center by the time between passes, the roll diameter of the rolling mill, the number of roll revolutions, etc. , Residual strain, etc. are calculated, and based on the calculation results and cooling conditions,
It shows a method of predicting the material quality of the steel sheet by calculating the grain size and the microstructure fraction.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
各種技術は、鋼板を製品対象としているので、圧延時に
断面内で歪、歪速度および温度の2次元分布が見られる
様な条鋼や棒鋼製品の正確な最終製品組織について予測
することは不可能である。本発明はこのような技術的課
題を解決する為になされたものであって、その目的は、
条鋼や棒鋼製品の断面組織を正確に予測することのでき
る方法を確立することにある。
However, since the above-mentioned various techniques are intended for steel sheets as products, the above-mentioned various techniques are not applicable to products such as bar steel and steel bar products in which a two-dimensional distribution of strain, strain rate and temperature is observed in the cross section during rolling. It is impossible to predict the exact end product organization. The present invention has been made to solve such a technical problem, and its purpose is to:
The aim is to establish a method that can accurately predict the cross-sectional structure of steel bar and bar products.

【0007】[0007]

【課題を解決する為の手段】上記目的を達成し得た本発
明方法とは、下記手順1〜6による計算を順次行ない、
この計算結果に基づき条鋼または棒鋼の断面の組織分布
を予測する点に要旨を有する条鋼または棒鋼の断面の組
織分布予測方法である。 (手順1) 被加工鋼材の第1段目の圧延時の歪、歪速
度、温度の断面内での分布について、3次元圧延解析手
法により連成計算を行う。 (手順2) 前記手順1で求めた圧延直後の断面内の温
度分布について、次段圧延開始直前までのパス間での温
度変化を温度解析手法により計算を行う。 (手順3) 前記手順1で得た断面内の歪、歪速度、お
よび第2手順で得たパス間の温度分布の変化によって、
次段圧延直前の断面内のオーステナイト再結晶・未再結
晶組織および残留歪の分布の計算を行う。 (手順4) 前記手順1〜3を、次段圧延から最終圧延
まで、前段の温度、残留歪み分布に関する計算結果を引
き継ぎながら順次繰り返し計算を行い、最終圧延直後の
断面内のオーステナイト再結晶・未再結晶組織および残
留歪の分布の計算を行う。 (手順5) 前記手順4で求めた最終圧延直後の断面内
の温度分布の冷却終了までの温度変化について、温度解
析手法により計算を行う。 (手順6) 前記手順4で得た最終圧延直後の断面内の
オーステナイト再結晶・未再結晶組織および残留歪の分
布、および前記手順5で得た冷却終了までの温度変化に
よって、断面内の最終組織の分布を計算する。
According to the method of the present invention which has achieved the above-mentioned object, the following steps 1 to 6 are carried out in order,
This is a method for predicting the microstructure distribution of a steel bar or a steel bar, which is based on the point of predicting the microstructure distribution of a steel bar or a steel bar based on the result of this calculation. (Procedure 1) Coupling calculation is performed by a three-dimensional rolling analysis method for the distribution of strain, strain rate, and temperature in the cross section during the first stage rolling of the steel material to be processed. (Procedure 2) With respect to the temperature distribution in the cross section immediately after rolling obtained in Procedure 1, the temperature change between the passes immediately before the start of the next rolling is calculated by the temperature analysis method. (Procedure 3) By the change in the strain in the cross section obtained in the above procedure 1, the strain rate, and the temperature distribution between the paths obtained in the second procedure,
The distribution of austenite recrystallized / non-recrystallized structure and residual strain in the cross section just before the next stage rolling is calculated. (Procedure 4) The above procedures 1 to 3 are sequentially repeated from the next rolling to the final rolling while inheriting the calculation results regarding the temperature and residual strain distribution of the former stage, and the austenite recrystallization / non-recrystallization in the cross section immediately after the final rolling is performed. The recrystallization structure and residual strain distribution are calculated. (Procedure 5) The temperature change in the temperature distribution in the cross section immediately after the final rolling obtained in the procedure 4 until the end of cooling is calculated by a temperature analysis method. (Procedure 6) By the distribution of the austenite recrystallized / unrecrystallized structure and residual strain in the cross section immediately after the final rolling obtained in the above procedure 4 and the temperature change until the end of cooling obtained in the above procedure 5, the final cross section Calculate tissue distribution.

【0008】[0008]

【作用】本発明は上述の如く構成されるが、要するに、
圧延時の断面内の歪、歪速度および温度分布を正確に予
測するモデルと、パス間の断面内の温度分布の変化を計
算するモデルと、得られた計算結果からパス間のオース
テナイト再結晶・未再結晶組織、残留歪等の分布を正確
に求めるモデルを設けたのである。
The present invention is constructed as described above, but in short,
A model that accurately predicts strain, strain rate, and temperature distribution in the cross section during rolling, a model that calculates changes in temperature distribution in the cross section between passes, and austenite recrystallization between passes from the obtained calculation results. A model was provided to accurately determine the distribution of unrecrystallized structure, residual strain, etc.

【0009】そして上記構成を採用することによって、
熱間圧延および冷却によって製造される条鋼や棒鋼の最
終製品の断面内の組織分布を正確に求めることができた
のである。これによって、目的組織を得るための圧延条
件の設定および圧延孔型の設計の際に、あらかじめ品質
上問題となるオーステナイト組織粗大化等の組織異常が
予測可能となり、製品開発の歩留りが向上しコスト低減
をはかることができる様になったのである。本発明の構
成および作用を、図面に基づき更に詳細に説明する。
By adopting the above configuration,
It was possible to accurately determine the microstructure distribution in the cross section of the final product of the bar steel and bar steel manufactured by hot rolling and cooling. This makes it possible to predict structural abnormalities such as coarsening of the austenite structure, which is a quality problem in advance, when setting the rolling conditions and designing the rolling hole die to obtain the target structure, improving the product development yield and reducing costs. It became possible to reduce the amount. The configuration and operation of the present invention will be described in more detail with reference to the drawings.

【0010】図1は、本発明による組織分布予測方法の
手順を示すフローチャートである。また図2は冷却終了
後の最終組織の予測方法のフローチャートである。まず
図1に示す条鋼断面の組織分布予測方法について説明す
る。尚図1の処理を実行するには、これを実現するソフ
トウェアを作成し、これを用いて計算を行えばよい。
FIG. 1 is a flow chart showing the procedure of the tissue distribution prediction method according to the present invention. Further, FIG. 2 is a flowchart of a method for predicting the final structure after cooling is completed. First, a method for predicting the microstructure distribution of the steel strip cross section shown in FIG. 1 will be described. In order to execute the processing of FIG. 1, software for realizing this may be created and calculation may be performed using this.

【0011】本発明による条鋼断面の組織分布予測方法
は、大別して以下の6つ手順に分けることができる。前
述の通り、条鋼製造において用いられる孔型圧延時にお
いては、断面内で歪、歪速度、温度の不均一が生じ、こ
れが最終組織の不均一に影響を及ぼしている。そこで手
順1として被加工鋼材の1段目の圧延時の出側断面内の
歪、歪速度、温度の分布について連成解析が可能な3次
元圧延解析手法を用いて計算を行う。このとき圧延によ
る加工発熱、ロールや大気若しくは冷却媒体等との接触
による抜熱等、歪、歪速度解析と同時に連成計算が可能
な有限要素法による3次元圧延解析手法を採用し計算を
行うのが最も有利である。この手法の詳細については、
日本機械学会論文集(A編),51,469(昭60−
9)や、日本機械学会論文集(A編),53,494
(昭62−10)等に記載されている。このとき十分な
精度を得るためには、1/4対称の分割で要素数10×
10×12以上、すなわち出側断面の要素分割10×1
0(要素数100)以上で計算を行うのが良い。
The method for predicting the microstructural distribution of a steel strip cross section according to the present invention can be roughly classified into the following six procedures. As described above, strain, strain rate, and temperature nonuniformity occur in the cross section during the groove rolling used in the production of bar steel, which affects the nonuniformity of the final structure. Therefore, as procedure 1, the strain, strain rate, and temperature distribution in the exit cross-section during the first rolling of the steel to be processed are calculated using a three-dimensional rolling analysis method that enables coupled analysis. At this time, calculation is performed by adopting a three-dimensional rolling analysis method by the finite element method that enables simultaneous calculation of strain and strain rate, such as processing heat generated by rolling, heat removal caused by contact with a roll, the atmosphere, or a cooling medium. Is most advantageous. For more information on this technique,
Proceedings of the Japan Society of Mechanical Engineers (A), 51 , 469 (Sho 60-
9), Proceedings of the Japan Society of Mechanical Engineers (A), 53 , 494
(Sho 62-10) and the like. At this time, in order to obtain sufficient accuracy, the number of elements is 10 ×
10 × 12 or more, that is, element division of the output side section 10 × 1
It is better to perform the calculation with 0 (100 elements) or more.

【0012】上記手順1によって第1段目の圧延の出側
直後の断面内温度分布についての情報を得ることができ
るが、次段パスまでのパス間で大気あるいは冷却媒体と
の接触により表面より抜熱が起こる。そのためパス間で
温度分布に変化がみられる。次の手順2においては、パ
ス間における情報(パス間時間、冷却能力など)を取り
入れて、有限要素法により温度解析を行う。この計算に
より次段圧延直前の断面内の温度分布を計算できる。
Information on the temperature distribution in the cross section immediately after the exit side of the first stage rolling can be obtained by the procedure 1 described above, but it is possible to obtain information from the surface by contact with the atmosphere or the cooling medium between the passes up to the next stage pass. Heat removal occurs. Therefore, the temperature distribution changes between passes. In the following procedure 2, the information between the passes (interpass time, cooling capacity, etc.) is taken in and temperature analysis is performed by the finite element method. By this calculation, the temperature distribution in the cross section just before the next rolling can be calculated.

【0013】上記の計算により圧延時の歪、歪速度およ
びパス間での温度分布の変化についての情報を得ること
によって、パス間での断面内の再結晶の進行について計
算が可能となる。即ち、圧延直後のオーステナイト組織
のパス間での断面内の任意位置での再結晶挙動を計算す
ることが可能である。手順3において、出側(n×n)
要素それぞれのもしくは任意の位置の再結晶挙動を予測
計算する。この計算により次段圧延直前の断面内の残留
歪分布、再結晶・未再結晶組織の分布が計算できる。
By obtaining information about the strain during rolling, the strain rate and the temperature distribution change between passes by the above calculation, it is possible to calculate the progress of recrystallization in the cross section between passes. That is, it is possible to calculate the recrystallization behavior at an arbitrary position in the cross section between the passes of the austenite structure immediately after rolling. In step 3, outgoing side (n × n)
Predictive calculation of recrystallization behavior of each element or arbitrary position. By this calculation, the residual strain distribution and the recrystallized / non-recrystallized structure distribution in the cross section immediately before the next stage rolling can be calculated.

【0014】手順2および手順3によって計算された温
度、残留歪み、再結晶に関する情報を次段パスの解析に
引き継いで手順1〜手順3を繰り返して各パス毎に行う
作業が手順4である。この計算により最終圧延直後の断
面内の温度分布および圧延時の歪、歪速度分布が計算で
きる。
The procedure 4 is a procedure in which the information about the temperature, the residual strain, and the recrystallization calculated in the procedure 2 and the procedure 3 is taken over to the analysis of the next pass and the procedure 1 to 3 is repeated to perform each pass. By this calculation, the temperature distribution in the cross section immediately after the final rolling and the strain and strain rate distribution during rolling can be calculated.

【0015】圧延後の冷却条件(冷却時間、冷却停止温
度、冷却能力など)に関する情報を取り入れて冷却過程
での断面内での温度分布の変化について手順5で計算を
行う。これは手順2と全く同じ計算プログラムを用いて
いる。この計算により冷却過程での断面内任意位置での
温度変化が計算できる。
Information on cooling conditions (cooling time, cooling stop temperature, cooling capacity, etc.) after rolling is taken in and the change in the temperature distribution in the cross section during the cooling process is calculated in step 5. This uses exactly the same calculation program as in Procedure 2. By this calculation, the temperature change at any position in the cross section during the cooling process can be calculated.

【0016】手順4および手順5によって計算された最
終圧延直後の歪、歪速度の分布および冷却過程での断面
各位値での温度変化に関する情報より、手順6において
冷却終了後の最終製品の組織に関する計算を行ってい
る。このときの詳細なフローチャートについては図2に
示している。即ち、成分から熱力学計算によって求めら
れるフェライト変態開始点までの冷却過程では、上記で
述べた再結晶予測式を用いて断面内(n×n)要素それ
ぞれもしくは任意の位置での再結晶進行の計算を行いオ
ーステナイト粒径、残留歪の計算を行う。変態開始点以
下の温度域では相変態予測式を用いて各組織の分率およ
びフェライト粒径の計算を行う。
From the information on the strain immediately after the final rolling, the distribution of the strain rate, and the temperature change at each cross-section value during the cooling process calculated by the procedure 4 and the procedure 5, the structure of the final product after the cooling is finished in the procedure 6. I'm doing the calculation. A detailed flowchart at this time is shown in FIG. That is, in the cooling process from the component to the ferrite transformation start point obtained by thermodynamic calculation, the recrystallization progress at each (n × n) element in the cross section or at an arbitrary position is calculated using the recrystallization prediction formula described above. The austenite grain size and residual strain are calculated. In the temperature range below the transformation start point, the fraction of each structure and the ferrite grain size are calculated using the phase transformation prediction formula.

【0017】[0017]

【実施例】次に、実際に本発明の方法を用いて計算を行
った結果について示す。表1は、JIS S43C棒鋼
(直径50mm)を対象とした、実際の棒鋼圧延ライン上
の(12段)圧延後の断面内の組織分布を本発明手法と
従来法を比較した結果を示したものである。なお従来法
では断面内の歪、歪分布分、温度分布を考慮にいれて計
算することができないため歪εについては一般に広く用
いられている下記の式を用い、歪速度については求めら
れたεと、ロール径および回転数から求めた値を用い、
さらには温度については操業で用いられる推定値を用い
た。 ε= ln(h2/h1) h 1:圧延後最大高さ h 2:圧延前最大高さ
EXAMPLES Next, the results of actual calculations using the method of the present invention will be shown. Table 1 shows the results of comparison between the method of the present invention and the conventional method for the microstructure distribution in the cross section after (12 steps) rolling on the actual steel bar rolling line for JIS S43C steel bar (diameter 50 mm). Is. In the conventional method, strain in the cross section, strain distribution, and temperature distribution cannot be calculated, so strain ε is calculated by using the following widely used equation, and strain rate is calculated as ε. And using the value obtained from the roll diameter and the number of revolutions,
Furthermore, for temperature, the estimated value used in the operation was used. ε = ln (h2 / h1) h 1: Maximum height after rolling h 2: Maximum height before rolling

【0018】[0018]

【表1】 [Table 1]

【0019】表1に見られるように、特に太径の棒材に
おいて、断面内の組織の不均一が生じる。従来法ではこ
れらの組織の不均一を予測することは不可能であり、意
味をなさない代表的な値を計算しているに過ぎない。一
方、本発明の方法を用いることによって、孔型圧延材の
ように圧延時の断面内の歪、温度が不均一で且つ冷却過
程において不均一に冷却される材料においてすら精度良
く製品最終組織の予測を行うことができる。表2は、J
IS SUP7N条鋼(直径11mm)を用い、試験圧延
機で800℃でスキンパス圧延を行った結果生じた異常
粒成長(γ粒径:オーステナイト粒径)について各方法
によって予測した結果を示したものである。
As can be seen from Table 1, the nonuniformity of the structure in the cross section occurs especially in the bar having a large diameter. It is impossible to predict the heterogeneity of these tissues by the conventional method, and a typical value that does not make sense is calculated. On the other hand, by using the method of the present invention, the strain in the cross section during rolling, such as a hole-type rolled material, the temperature is non-uniform and even in a material that is cooled non-uniformly in the cooling process accurately You can make predictions. Table 2 shows J
It shows the results predicted by each method for abnormal grain growth (γ grain size: austenite grain size) resulting from skin pass rolling at 800 ° C. using a test rolling mill using IS SUP7N bar steel (diameter 11 mm). .

【0020】[0020]

【表2】 [Table 2]

【0021】表2にみられるように、本発明法を適用す
ることによって、従来は予測不可能であった表面近傍の
一部にみられる場合のある異常粒成長についても高精度
で予測することが可能である。なお手順3で計算を行う
オーステナイトの単パス加工後の再結晶組織予測式とし
ては、以下の式を用い、平均転位密度は再結晶率から求
めた。
As shown in Table 2, by applying the method of the present invention, it is possible to predict with high accuracy abnormal grain growth that may be seen in a part of the surface vicinity, which was conventionally unpredictable. Is possible. The following formula was used as the formula for predicting the recrystallized structure of austenite after the single pass processing, and the average dislocation density was calculated from the recrystallization rate.

【0022】<動的再結晶率(Xdyn )> Xdyn =(Ddyn /Ddyno1.5 ・Xdyno 1)dyno=1−exp {−0.693 [(ε−εc )/ε0.5
2 } ε0.5 =1.144 ×10-3・D0 0.28 ・ε0.05・exp (6420
/T) εc =4.76×10-4・exp (8000/T) ε =b-1・ln[c・(c−bρ0-1]+△ε b =9850・εV -0.315 ・exp (-8000 /T) c =8.5 ×1010・(1+D0 -0.5 ) △ε:新たに加えられた加工歪 ρ0 :初期転位密度(cm-2) T :絶対温度(K) D0 :初期粒径(μm) Ddyno:圧延直後の動的再結晶粒径(μm) Xdyno:圧延直後の動的再結晶率 ε0.5 :Xdyno=0.5 となる歪量 εc :臨界歪 ε :加工歪 εV :歪速度
<Dynamic Recrystallization Rate (X dyn )> X dyn = (D dyn / D dyno ) 1.5 · X dyno 1) X dyno = 1-exp {-0.693 [(ε-ε c ) / ε 0.5 ]
2 } ε 0.5 = 1.144 × 10 -3 · D 0 0.28 · ε 0.05 · exp (6420
/ T) ε c = 4.76 × 10 -4 · exp (8000 / T) ε = b -1 · ln [c · (c-bρ 0 ) -1 ] + Δε b = 9850 · ε V -0.315 · exp (-8000 / T) c = 8.5 × 10 10 · (1 + D 0 -0.5 ) Δε: Newly added processing strain ρ 0 : Initial dislocation density (cm -2 ) T: Absolute temperature (K) D 0 : Initial grain size (μm) D dyno : Dynamic recrystallization grain size immediately after rolling (μm) X dyno : Dynamic recrystallization rate immediately after rolling ε 0.5 : Strain amount at which X dyno = 0.5 ε c : Critical strain ε: Processing strain ε V : Strain rate

【0023】<動的再結晶粒径(Ddyn )> Ddyn =Ddyno+1.1 (Dpd−Ddyno)Y(μm)1) 但し、Ddyn >Dpdの場合は以下のように粒成長する。 dDdyn /dt=72・Ddyn -1 ・exp (-63800/RT) Dpd=5380・exp (-6840 /T) Y =1−exp {−295 ・ε0.1 ・exp (-8000 /T)
t} Ddyno=22600 ・Z-0.27 Z =εV ・exp (63800 /RT) R =1.99(cal/mol/K ) Dpd:動的再結晶粒が転位密度差により成長できる最大
の粒径(μm)
<Dynamic recrystallized grain size (D dyn )> D dyn = D dyno +1.1 (D pd −D dyno ) Y (μm) 1) However, in the case of D dyn > D pd , Grain grows. dD dyn / dt = 72 ・ D dyn -1・ exp (-63800 / RT) D pd = 5380 ・ exp (-6840 / T) Y = 1-exp {-295 ・ ε 0.1・ exp (-8000 / T)
t} D dyno = 22600 ・ Z -0.27 Z = ε V・ exp (63800 / RT) R = 1.99 (cal / mol / K) D pd : The maximum grain size at which dynamic recrystallized grains can grow due to the dislocation density difference. (Μm)

【0024】<動的再結晶粒内の転位密度(ρdyn )> ρdyn =87300 ・Z0.248 (cm)1) 但し、上記式は加工直後を示し、加工後は未再結晶部と
同様に転位密度が減少する。 <静的再結晶率(Xst)> Xst=1−exp {-0.693(t/t0.521)0.5 =0.286 ×10-7・Sv-0.5・εV -2 ・exp (1800
0 /T) Sv=(24/πD0)(0.491・exp(ε)+0.155・exp(−ε)+0.14
3・exp(-3ε)) t0.5 :Xst=0.5 となるまでに要する時間(sec ) Sv:単位体積当たりの粒界面積(μm-1) q :加工に従う粒界面積の増加率
<Dislocation Density in Dynamic Recrystallized Grain (ρ dyn )> ρ dyn = 87300 · Z 0.248 (cm) 1) However, the above formula indicates immediately after processing, and after processing the same as the unrecrystallized portion. The dislocation density is reduced. <Static recrystallization ratio (X st)> X st = 1-exp {-0.693 (t / t 0.5) 2} 1) t 0.5 = 0.286 × 10 -7 · Sv -0.5 · ε V -2 · exp ( 1800
0 / T) Sv = (24 / πD 0 ) (0.491 ・ exp (ε) +0.155 ・ exp (−ε) +0.14
3 · exp (−3ε)) t 0.5 : time required until X st = 0.5 (sec) Sv: grain boundary area per unit volume (μm −1 ) q: increase rate of grain boundary area following processing

【0025】<静的再結晶粒径(Dst)> Dst=1.536 ・Dsto ・X {Xst/∫0 xst(1n [1/(1−X)])-3/4・d
x}1/3 (μm)3) 但し、Xst>0.99の場合は以下のように粒成長する。 dDst/dt=72・Dst -1・exp (-63800/RT) Dsto =2.0 ・(Sv・ε)-0.6sto :Xst=1におけるDst(μm) <静的再結晶粒内の転移密度(ρst)> ρst=1×108 (cm-21)
<Static recrystallized grain size (D st )> D st = 1.536 · D sto · X {X st / ∫ 0 xst (1n [1 / (1-X)]) −3 / 4 · d
x} 1/3 (μm) 3) However, when X st > 0.99, the grain growth is as follows. dD st / dt = 72 · D st −1 · exp (-63800 / RT) D sto = 2.0 · (Sv · ε) -0.6 D sto : D st (μm) at X st = 1 <static recrystallized grains Dislocation density (ρ st )> ρ st = 1 × 10 8 (cm -2 ) 1)

【0026】<未再結晶部の転移密度(ρu )> ρu =c・b-1・[1−exp (−bε)](cm-21) 但し、上記式は加工直後を示し、加工後1×108 cm-2
では以下のように減少し、それ以降は減少しない。 dρ/dt=−4.0 ρ2 ・exp (-8000 /RT) 尚上記1)〜3)の出典は下記の通りである。また式中の係
数は必要に応じて修正した。 1)瀬沼ら:「鉄と鋼」 70(1984),p2112 2)梅本ら:「Proc.int.Conf.on Structure and Propert
ies of HSLA Steels」Wollongong,Australia,1984,p96 3)梅本ら:「Acta metal」 Vol 34,No.7,p1377〜1385 また手順6で計算を行う相変態予測式としては以下の式
を用いた。
[0026] <unrecrystallized portion of dislocation density (ρ u)> ρ u = c · b -1 · [1-exp (-bε)] (cm -2) 1) However, the above formula represents an immediately processed , After processing, it decreases as follows up to 1 × 10 8 cm -2, and does not decrease thereafter. dρ / dt = −4.0ρ 2 · exp (−8000 / RT) The sources of 1) to 3) above are as follows. Also, the coefficients in the formula were modified as necessary. 1) Senuma et al. "Iron and Steel" 70 (1984), p2112 2) Umemoto et al. "Proc.int.Conf.on Structure and Propert
ies of HSLA Steels ”Wollongong, Australia, 1984, p96 3) Umemoto et al .:“ Acta metal ”Vol 34, No.7, p1377 to 1385 Also, the following formula was used as the phase transformation prediction formula calculated in step 6. .

【0027】<ポリゴナルフェライト> 核発生場所:オーステナイト粒界 形 態 :軸比3:1の回転楕円体 開始条件 :温度≦Ae3 核発生速度:Is=k1・Dc(1-Cav)/√T・ exp{−k2 /(△GN 2RT)} 成長速度 :G =0.5 αt-0.5 Dc :γ中炭素の拡散係数 Cav:未変態γ中の平均C量(at%) k1 ,k2 :実験により求まる係数 k1 =1.4 ×10
-10 ,k2 =23000 △GN :フェライト核発生の駆動力 α :パラボリックレイトコンスタント t :時間(s) R :ガス定数(8.34 J/mol/K) T :絶対温度(K)
<Polygonal ferrite> Nucleation place: Austenite grain boundary Form: Spheroid with axial ratio 3: 1 Starting condition: Temperature ≤ Ae3 Nucleation rate: Is = k1 · Dc (1-C av ) / √ T · exp {−k2 / (ΔG N 2 RT)} Growth rate: G = 0.5 αt −0.5 Dc: Diffusion coefficient of carbon in γ C av : Average amount of C in untransformed γ (at%) k1, k2 : Coefficient obtained by experiment k1 = 1.4 × 10
-10, k2 = 23000 △ G N : driving force of ferrite nucleation alpha: Parabolic Late constant t: time (s) R: gas constant (8.34 J / mol / K) T: absolute temperature (K)

【0028】<ウイッドマンステッテンフェライト> (核発生場所およびCの濃化以外はベイナイトと同じ) 核発生場所:γ/α界面 形 態 :パラボリックシリンダー 開始条件 : (a) 核発生条件:|△GN |≧4204−5.96(T−273 ) (b) 成長条件 :|Gf |≧300 J/mol Gf:フェライト変態の駆動力 核発生速度:Is = k1・Dc(1-Cav)/√T・ exp{−k2 /(△GN 2RT)} (フェライトのものを流用) 成長速度 :v =(27/256/π) ・Dc /ρc Ω3 ρc ={Cγ/(Cγ−Cα)}・{σVα/(Cα−C
0 )RT} Ω =Ω0 /{1−(2Ω0 /π)−(Ω0 2/2π)} Ω0 =(Cγ−C0 )/(Cγ−Cα) Dc :γ中炭素の拡散係数 Cγ:γ中の平衡C量(at%) Cα:α中の平衡C量(at%) C0 :C量(at%)
<Widmansttetten ferrite> (Same as bainite except for nucleation site and concentration of C) Nucleation site: γ / α interface form: Parabolic cylinder Starting condition: (a) Nucleation condition: | △ G N | ≧ 4204-5.96 (T-273) (b) Growth condition: | G f | ≧ 300 J / mol Gf: Ferrite transformation driving force Nucleation rate: Is = k1 · Dc (1-C av ) / √T · exp {-k2 / (△ G N 2 RT)} ( diverted ones ferrite) growth rate: v = (27/256 / π) · Dc / ρ c Ω 3 ρ c = {Cγ / (Cγ −Cα)} · {σVα / (Cα−C
0 ) RT} Ω = Ω 0 / {1- (2Ω 0 / π)-(Ω 0 2 / 2π)} Ω 0 = (Cγ-C 0 ) / (Cγ-Cα) Dc: γ Medium carbon diffusion coefficient Cγ: Equilibrium C amount in γ (at%) Cα: Equilibrium C amount in α (at%) C 0 : C amount (at%)

【0029】<パーライト> 核発生場所:γ/α界面、高炭素材はγ粒界 形 態 :半球 開始条件 :γ中平均炭素濃度≧Acm 核発生速度:Is = k3・Dc /√T・ exp {−k2 /(△GN 2RT)} 成長速度 :v =4 σV/△Gp ラメラ間隔:S0 =Dc /(4・σ・V・R・T・Xe
/(△Gp 2) Dc :γ中炭素の拡散係数 △Gc :セメンタイト核発生の駆動力 △Gp :パーライト変態の駆動力 t :時間(s) k3 :実験により求まる係数 R :ガス定数(8.34 J/mol/K) T :絶対温度(K) Xe :炭素濃度(モル分率) σ :セメンタイトとフェライトの界面エネルギ(700er
g/cm2) V :モル体積(7 cm3/mol)
<Pearlite> Nucleation site: γ / α interface, high carbon material is γ grain boundary Form: Hemisphere Starting condition: Average carbon concentration in γ ≧ A cm Nucleation rate: Is = k3 · Dc / √T · exp {-K 2 / (ΔG N 2 RT)} Growth rate: v = 4 σV / ΔG p Lamella spacing: S 0 = Dc / (4 ・ σ ・ V ・ R ・ T ・ X e )
/ (△ G p 2 ) Dc: Diffusion coefficient of carbon in γ △ G c : Driving force for cementite nucleation △ G p : Driving force for pearlite transformation t: Time (s) k3: Experimentally determined coefficient R: Gas constant (8.34 J / mol / K) T: Absolute temperature (K) X e : Carbon concentration (molar fraction) σ: Interface energy between cementite and ferrite (700er
g / cm 2 ) V: molar volume (7 cm 3 / mol)

【0030】<ベイナイト> 核発生場所:γ/α界面 形 態 :パラボリックシリンダー 開始条件 : (a) 核発生条件:|△GN |≧4204−5.96(T−273 ) (b) 成長条件 :|Gm |≧600 J/mol Gm :マルテンサイト変態の駆動力 核発生速度:Is =k1・Dc /√T・ exp {−k2 /(△GN 2RT)} 成長速度 :v =(27/256/π)・Dc /ρc Ω3 ρc ={Cγ/(Cγ−Cα)}・{σVα/(Cα−C
0 )RT} Ω =Ω0 /{1−(2Ω0 /π)−(Ω0 2/2π)} Ω0 =(Cγ−C0 )/(Cγ−Cα) Dc :γ中炭素の拡散係数
<Bainite> Nucleation site: γ / α interface Form: Parabolic cylinder Starting condition: (a) Nucleation condition: | △ G N | ≧ 4204-5.96 (T-273) (b) Growth condition: | G m | ≧ 600 J / mol G m : Driving force for martensitic transformation Nucleation rate: Is = k1 · Dc / √T · exp {−k2 // (ΔG N 2 RT)} Growth rate: v = (27 / 256 / π) ・ Dc / ρ c Ω 3 ρ c = {Cγ / (Cγ-Cα)} ・ {σVα / (Cα-C
0 ) RT} Ω = Ω 0 / {1- (2Ω 0 / π)-(Ω 0 2 / 2π)} Ω 0 = (Cγ-C 0 ) / (Cγ-Cα) Dc: γ Medium carbon diffusion coefficient

【0031】<マルテンサイト> 核発生場所:未変態γ部(場所の特定はしない) 形 態 :考慮せず 開始条件 :|Gm |≧1170−5880×c +0.42・(800−
T) (J/mol) 変態進行 :Koisteinの式 XM =1−exp(−1.1・10-2( MS −T)) XM :マルテンサイト分率 MS :マルテンサイト変態開始点
<Martensite> Nucleation site: Untransformed γ part (location is not specified) Form: Not considered Starting condition: | G m | ≧ 1170-5880 × c + 0.42 ・ (800-
T) (J / mol) transformation proceeds: wherein X M = 1-exp of Koistein (-1.1 · 10 -2 (M S -T)) X M: martensite fraction M S: martensitic transformation start point

【0032】[0032]

【発明の効果】本発明によれば、各圧延毎に3次元圧延
解析計算を行い、且つ各パス間および最終冷却過程での
断面内の温度分布の温度解析計算を行い、断面内での
歪、歪速度、温度分布を考慮して最終組織を予測する様
にしているので、断面内での組織の不均一が生じる条鋼
や棒鋼の最終製品の組織予測が可能となり、要求される
品質の保証および条件によっては断面内の一部に見られ
る異常粒成長などの組織異常を事前に予測可能となり、
歩留りの向上を図ることが可能となった。
According to the present invention, the three-dimensional rolling analysis calculation is performed for each rolling, and the temperature distribution calculation of the temperature distribution in the cross section between each pass and in the final cooling process is performed to obtain the strain in the cross section. Since the final structure is predicted by taking into consideration the strain rate and temperature distribution, it becomes possible to predict the structure of the final product of bar steel or bar steel that causes unevenness of the structure in the cross section, and guarantee the required quality. And depending on the conditions, it becomes possible to predict in advance tissue abnormalities such as abnormal grain growth seen in a part of the cross section.
It has become possible to improve the yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による組織分布予測方法の手順を示すフ
ローチャートである。
FIG. 1 is a flowchart showing the procedure of a tissue distribution prediction method according to the present invention.

【図2】本発明の手順6にあたる冷却終了後の最終組織
の分布の計算フローチャートである。
FIG. 2 is a flow chart for calculating the distribution of the final structure after cooling, which is the procedure 6 of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 条鋼または棒鋼の熱間多パス圧延および
冷却後における断面組織の分布を予測する方法におい
て、下記手順1〜6による計算を順次行ない、この計算
結果に基づき条鋼または棒鋼の断面の組織分布を予測す
ることを特徴とする条鋼または棒鋼の断面の組織分布予
測方法。 (手順1) 被加工鋼材の第1段目の圧延時の歪、歪速
度、温度の断面内での分布について、3次元圧延解析手
法により連成計算を行う。 (手順2) 前記手順1で求めた圧延直後の断面内の温
度分布について、次段圧延開始直前までのパス間での温
度変化を温度解析手法により計算を行う。 (手順3) 前記手順1で得た断面内の歪、歪速度、お
よび第2手順で得たパス間の温度分布の変化によって、
次段圧延直前の断面内のオーステナイト再結晶・未再結
晶組織および残留歪の分布の計算を行う。 (手順4) 前記手順1〜3を、次段圧延から最終圧延
まで、前段の温度、残留歪み分布に関する計算結果を引
き継ぎながら順次繰り返し計算を行い、最終圧延直後の
断面内のオーステナイト再結晶・未再結晶組織および残
留歪の分布の計算を行う。 (手順5) 前記手順4で求めた最終圧延直後の断面内
の温度分布の冷却終了までの温度変化について、温度解
析手法により計算を行う。 (手順6) 前記手順4で得た最終圧延直後の断面内の
オーステナイト再結晶・未再結晶組織および残留歪の分
布、および前記手順5で得た冷却終了までの温度変化に
よって、断面内の最終組織の分布を計算する。
1. A method for predicting the distribution of a sectional structure after hot multi-pass rolling and cooling of a bar steel or a bar steel, the calculation according to the following steps 1 to 6 is sequentially performed, and the cross section of the bar steel or the bar steel is calculated based on the calculation result. A method for predicting the microstructural distribution of a cross section of a steel bar or a steel bar, characterized by predicting the microstructural distribution. (Procedure 1) Coupling calculation is performed by a three-dimensional rolling analysis method for the distribution of strain, strain rate, and temperature in the cross section during the first stage rolling of the steel material to be processed. (Procedure 2) With respect to the temperature distribution in the cross section immediately after rolling obtained in Procedure 1, the temperature change between the passes immediately before the start of the next rolling is calculated by the temperature analysis method. (Procedure 3) By the change in the strain in the cross section obtained in the above procedure 1, the strain rate, and the temperature distribution between the paths obtained in the second procedure,
The distribution of austenite recrystallized / non-recrystallized structure and residual strain in the cross section just before the next stage rolling is calculated. (Procedure 4) The above procedures 1 to 3 are sequentially repeated from the next rolling to the final rolling while inheriting the calculation results regarding the temperature and residual strain distribution of the former stage, and the austenite recrystallization / non-recrystallization in the cross section immediately after the final rolling is performed. The recrystallization structure and residual strain distribution are calculated. (Procedure 5) The temperature change in the temperature distribution in the cross section immediately after the final rolling obtained in the procedure 4 until the end of cooling is calculated by a temperature analysis method. (Procedure 6) By the distribution of the austenite recrystallized / unrecrystallized structure and residual strain in the cross section immediately after the final rolling obtained in the above procedure 4 and the temperature change until the end of cooling obtained in the above procedure 5, the final cross section Calculate tissue distribution.
JP4336391A 1992-12-16 1992-12-16 Method for predicting structural distribution of section of bar steel or steel bar Withdrawn JPH06182412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4336391A JPH06182412A (en) 1992-12-16 1992-12-16 Method for predicting structural distribution of section of bar steel or steel bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336391A JPH06182412A (en) 1992-12-16 1992-12-16 Method for predicting structural distribution of section of bar steel or steel bar

Publications (1)

Publication Number Publication Date
JPH06182412A true JPH06182412A (en) 1994-07-05

Family

ID=18298654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336391A Withdrawn JPH06182412A (en) 1992-12-16 1992-12-16 Method for predicting structural distribution of section of bar steel or steel bar

Country Status (1)

Country Link
JP (1) JPH06182412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112403A (en) * 2019-01-10 2020-07-27 国立大学法人 東京大学 Martensite transformation rate prediction method and processing condition setting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112403A (en) * 2019-01-10 2020-07-27 国立大学法人 東京大学 Martensite transformation rate prediction method and processing condition setting method

Similar Documents

Publication Publication Date Title
EP3912740B1 (en) Production specification determination method, production method, and production specification determination apparatus for metal material
KR20230061513A (en) Material property value prediction system and manufacturing method of metal plate
JP2597986B2 (en) Manufacturing method of hot rolled steel
JP6409832B2 (en) Water quenching apparatus, continuous annealing equipment, and steel plate manufacturing method
JP2003013144A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in stretch flange formability
JPH06182412A (en) Method for predicting structural distribution of section of bar steel or steel bar
JP2006527790A5 (en)
JP7197037B2 (en) Manufacturing specification determination method, manufacturing method, and manufacturing specification determination device for metal material
JP4529517B2 (en) High carbon steel plate manufacturing method and manufacturing equipment
JPH05142126A (en) Method for predicting quality of steel plate
JP2002069534A (en) Thin steel sheet and method for producing the same
TW202120711A (en) Method for increasing spheroidization rate of chrome molybdenum steel material
JP2000233266A (en) Production of steel plate having good surface characteristic
JPH05279737A (en) Device for predicting material quality of steel plate
KR100349157B1 (en) How to manufacture high tensile steels with high productivity
KR100920626B1 (en) Method for Predicting Mechanical Properties of Hot-rolled and Cooled Steel
WO2024070279A1 (en) Continuous annealing facility, continuous annealing method, method for producing cold-rolled steel sheet, and method for producing plated steel sheet
JP2509479B2 (en) Steel plate material prediction device
Efron et al. Features of implementing thermomechanical rolling in various types of mills
JP2509484B2 (en) Steel plate material prediction method
JP2597980B2 (en) Manufacturing method of hot rolled steel
Chashchin et al. Controlled Coil Chilling As Backbone Link in Hot-Rolled Sheet and Plate Steel Production
JP2917236B2 (en) Manufacturing method of 9% Ni steel with excellent low temperature toughness
JP2000087138A (en) Manufacture of steel with low yield ratio
JP2003027136A (en) High-strength steel plate manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307