JPH06181776A - Dna encoding serine hydroxylmethyltransferase - Google Patents

Dna encoding serine hydroxylmethyltransferase

Info

Publication number
JPH06181776A
JPH06181776A JP5846393A JP5846393A JPH06181776A JP H06181776 A JPH06181776 A JP H06181776A JP 5846393 A JP5846393 A JP 5846393A JP 5846393 A JP5846393 A JP 5846393A JP H06181776 A JPH06181776 A JP H06181776A
Authority
JP
Japan
Prior art keywords
dna
ala
gly
shmt
ggc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5846393A
Other languages
Japanese (ja)
Inventor
Yoshikazu Izumi
好計 和泉
Tadashi Tanabe
忠 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP5846393A priority Critical patent/JPH06181776A/en
Publication of JPH06181776A publication Critical patent/JPH06181776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain a new DNA encoding serine hydroxylmethyltransferase suitable for producing L-serine useful as medicine, food, etc. CONSTITUTION:A DNA encoding serine hydroxylmethyltransferase containing 154-1,458 base sequence among a base sequence of the formula. A bacterium such as Hyphomicrobium methylovorum (FERM BP-4,039), etc., capable of producing SHMT, is cultured, cells are collected and a chromosome DNA is prepared to give a mixture of a DNA fragment containing a DNA encoding SHMT. The mixture of the fragment is linked to a vector DNA and transduced into EcoL; JM109, etc., to give a gene bank of DNA encoding SHMT. A strain containing a recombinant vector containing DNA encoding SHMT is searched from the gene bank by hybridization method, a base sequence of DNA encoding SHMT is determined and purified to give the objective DNA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セリンヒドロキシメチ
ルトランスフェラーゼ(以下、SHMTと略記する)を
コードするDNA、該DNAが組み込まれた組換え体ベ
クターおよび該ベクターを含有する微生物に関する。S
HMTは、医療、食品などに有用なL−セリンを効率的
に生産するために利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DNA encoding serine hydroxymethyltransferase (hereinafter abbreviated as SHMT), a recombinant vector incorporating the DNA and a microorganism containing the vector. S
HMT can be used to efficiently produce L-serine useful for medical treatment, foods and the like.

【0002】[0002]

【従来の技術】SHMTはウサギ肝臓のほか、種々の微
生物で見いだされており、それらのSHMTをコードす
るDNAの塩基配列も報告されている〔Plamann ら, Nu
cleicAcids Research,11 ,2065 (1983)、特開平2-586
1、Chanら, Gene,101, 51(1990)、Rossbachら, Molecul
ar Microbiology,5,39 (1991)、Martinら,Journal of B
ilogical Chemistry,262 , 5499 (1987) 、Steiert ら,
DNA Sequence 1, 107 (1990)〕。L−セリンの効率的
生産法に利用されているハイホミクロビウム(Hyphomicr
obium)属に属する微生物が生産するSHMTとしては、
ハイホミクロビウム・メチロボラム(Hyphomicrobium m
ethyloborum)GM2が生産するSHMTが知られている
〔Eur.J.Biochem.,162, 533 (1987)〕。しかしながら、
ハイホミクロビウム属に属する微生物が生産するSHM
TをコードするDNAの塩基配列は報告されていない。
SHMT has been found in various microorganisms in addition to rabbit liver, and the nucleotide sequences of DNAs encoding these SHMTs have also been reported [Plamann et al., Nu.
cleicAcids Research , 11 , 2065 (1983), JP-A-2-586
1, Chan et al., Gene , 101 , 51 (1990), Rossbach et al., Molecul
ar Microbiology , 5 , 39 (1991), Martin et al., Journal of B.
ilogical Chemistry, 262 , 5499 (1987), Steiert et al.,
DNA Sequence 1 , 107 (1990)]. Hyphomicrium (Hyphomicrium) used for efficient production of L-serine
As an SHMT produced by a microorganism belonging to the genus obium,
Hyphomicrobium m
SHMT produced by ethyloborum) GM2 is known [Eur. J. Biochem. , 162 , 533 (1987)]. However,
SHM produced by a microorganism belonging to the genus Hyphomicrobium
The nucleotide sequence of DNA encoding T has not been reported.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、医
療、食品、などに有用なL−セリンの効率的生産に利用
することができるSHMTをコードするDNAを提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a DNA encoding SHMT which can be used for efficient production of L-serine, which is useful in medicine, foods and the like.

【0004】[0004]

【課題を解決するための手段】本発明は、SHMTをコ
ードするDNA、該DNAが組み込まれた組換え体ベク
ターおよび該ベクターを含有する微生物に関する。SH
MTは、スレオニン、グリシンの代謝分解過程におい
て、セリン、ピルビン酸を経てアセチル−CoAに至る
経路の中間に位置する酵素であり、グリシンからL−セ
リンを生産する反応などを触媒する。
The present invention relates to a DNA encoding SHMT, a recombinant vector incorporating the DNA and a microorganism containing the vector. SH
MT is an enzyme located in the middle of the pathway from glycine to acetyl-CoA through serine and pyruvate in the metabolic degradation process of threonine and glycine, and catalyzes the reaction of producing L-serine from glycine.

【0005】本発明のDNAでコードされるSHMT
は、配列番号2に記載したアミノ酸配列のうち、1〜4
35番目のアミノ酸配列を含む。以下に、本発明のDN
Aの製造法を示す。 (a)SHMTをコードするDNAを有するDNA断片
および組換えベクターの調製 SHMTをコードするDNAを有するDNA断片は、本
発明のDNAでコードされるSHMTを生産する微生物
であればいずれの微生物からも調製することができる。
例えば、ハイホミクロビウム属に属する微生物、とくに
ハイホミクロビウム・メチロボラムGM2が好適に用い
られる。ハイホミクロビウム・メチロボラムGM2は平
成4年10月20日付けで工業技術院微生物工業技術研究所
にFERM BP-4039として寄託されている。
SHMT encoded by the DNA of the present invention
Is 1 to 4 of the amino acid sequence shown in SEQ ID NO: 2.
Contains the 35th amino acid sequence. Below, the DN of the present invention
The manufacturing method of A is shown. (A) Preparation of DNA Fragment Having DNA Encoding SHMT and Recombinant Vector The DNA fragment having DNA encoding SHMT can be obtained from any microorganism that produces SHMT encoded by the DNA of the present invention. It can be prepared.
For example, microorganisms belonging to the genus Hyphomicrobium, particularly Hyphomicrobium methyloboram GM2, are preferably used. Hyphomicrobium methyloboram GM2 has been deposited as FERM BP-4039 at the Institute of Microbial Technology, Institute of Industrial Science, as of October 20, 1992.

【0006】該微生物を培養し、遠心分離などにより菌
体を集め、この菌体より染色体DNAを調製する。この
染色体DNAにBamHI 、HindIII などの制限酵素を用い
て、部分分解、あるいは完全分解し、さらにエタノール
沈澱などの濃縮手段でSHMTをコードするDNAを含
むDNA断片の混合物を得る。一方、本発明に用いるベ
クターDNAとしては、本発明のDNAを組み込むこと
ができ、宿主細胞で発現できるものであれば、プラスミ
ドベクター、ファージベクターいずれでもよく、例えば
pBR322,pUC19(宝酒造社製)、pBlueskrip
tSK(+)(Stratagene社製)、pKK322−3(Pharma
cia 社製)、λZAP (Stratagene社製)などがあげられ
る。
The microorganism is cultivated, the cells are collected by centrifugation, etc., and chromosomal DNA is prepared from the cells. This chromosomal DNA is partially or completely decomposed using restriction enzymes such as BamHI and HindIII, and a mixture of DNA fragments containing the DNA encoding SHMT is obtained by concentrating means such as ethanol precipitation. On the other hand, the vector DNA used in the present invention may be either a plasmid vector or a phage vector, so long as it can incorporate the DNA of the present invention and can be expressed in a host cell. For example, pBR322, pUC19 (Takara Shuzo), pBlueskrip
tSK (+) (Stratagene), pKK322-3 (Pharma
cia) and λZAP (Stratagene).

【0007】次に、上記ベクターDNAにSHMTをコ
ードするDNAを含むDNA断片の混合物を連結する。
連結は、例えば大腸菌DNAリガーゼ、T4DNAリガ
ーゼ(宝酒造社製)を用いる。この組換えプラスミドを
E.coliJM109 、ME5427、DH5α、XL1-blue、HB101 株な
どに形質転換あるいは形質導入して組換えプラスミドの
含有株を得、これをSHMTをコードするDNAのジー
ンバンクとする。形質転換および形質導入は、例えばモ
レキュラー・クローニング(Molecular cloning 第2
版;Maniatisら,Cold Spring Harbor Laboratory,1982)
記載の方法で行うことができる。
Next, a mixture of DNA fragments containing DNA encoding SHMT is ligated to the above vector DNA.
For the ligation, for example, Escherichia coli DNA ligase and T4 DNA ligase (manufactured by Takara Shuzo) are used. This recombinant plasmid
E. coli JM109, ME5427, DH5α, XL1-blue and HB101 strains are transformed or transduced to obtain a recombinant plasmid-containing strain, which is used as a gene bank of DNA encoding SHMT. Transformation and transduction can be performed, for example, by molecular cloning second
Edition; Maniatis et al., Cold Spring Harbor Laboratory, 1982)
It can be performed by the described method.

【0008】(b)SHMTをコードするDNAを含む
組換えベクター含有株の選択 上記ジーンバンクより、SHMTをコードするDNAを
含む組換えベクターを含有する菌株を検索する方法は、
公知のハイブリダイゼーションによる方法(分子遺伝学
実験法,85頁, 1983年, 共立出版)や、SHMT遺伝子
の変異によりSHMT活性を欠損しており、グリシン
(以下、Glyと略記する)の要求性を示す変異株に対
し、SHMTをコードするDNAを含む組換えベクター
を導入することによりSHMT活性が発現し、Glyの
要求性が消失することを指標にする相補試験などの方法
で行うことができる。ハイブリダイゼーション法で用い
るプローブDNA断片は、公知のSHMTをコードする
DNAの塩基配列を比較し、いずれの菌株にも高い頻度
で共通に見いだされる保存された塩基配列を選択し、そ
の配列を有するDNA断片をもとに、微生物由来のSH
MTをコードするDNAを用いてPCR法(Polymerase
chain reaction 法)より増幅し、分離する。
(B) Selection of Recombinant Vector-Containing Strain Containing SHMT-Encoding DNA A method for searching a strain containing a recombinant vector containing SHMT-encoding DNA from the above gene bank is as follows:
Known hybridization method (Molecular Genetics Experimental Method, p. 85, 1983, Kyoritsu Shuppan) and SHMT activity are deficient due to mutation of SHMT gene, and the requirement for glycine (hereinafter abbreviated as Gly) is required. It can be carried out by a method such as a complementation test using the fact that SHMT activity is expressed by introducing a recombinant vector containing a DNA encoding SHMT into the mutant strain shown, and the requirement for Gly disappears. As the probe DNA fragment used in the hybridization method, a DNA having the sequence is selected by comparing the nucleotide sequences of known SHMT-encoding DNAs and selecting a conserved nucleotide sequence commonly found in high frequency in all strains. SH derived from microorganisms based on fragments
PCR method (Polymerase) using DNA encoding MT
Amplify and separate by chain reaction method).

【0009】本発明のSHMTをコードするDNAを含
有するプラスミドとしては、pAB2などがあげられ
る。pAB2を含む大腸菌であるEscherichia coli ME5
427/pAB2は平成4年10月20日付けで工業技術院微生物工
業技術研究所にFERM BP-4040として寄託されている。
Examples of the plasmid containing the DNA encoding SHMT of the present invention include pAB2. Escherichia coli ME5, which is an E. coli containing pAB2
427 / pAB2 has been deposited as FERM BP-4040 at the Institute of Microbial Science and Technology of the Agency of Industrial Science as of October 20, 1992.

【0010】(c)SHMTをコードするDNAの塩基
配列の決定 上記組換えプラスミドよりSHMTをコードするDNA
の塩基配列を決定するには、公知の方法、例えばSanger
らによるdideoxy 法[Pro.Natl.Acad.Sci.U.S.A. ,74 ,
5463 (1977)] で行うことができる。
(C) Determination of nucleotide sequence of DNA encoding SHMT DNA encoding SHMT from the above recombinant plasmid
A known method for determining the nucleotide sequence of, for example, Sanger
Dideoxy method [Pro.Natl.Acad.Sci.USA , 74 ,
5463 (1977)].

【0011】このようにして得られた本発明のSHMT
をコードするDNAとしては、例えば、配列番号1に記
載した塩基配列のうち、154〜1458番目の塩基配
列を含むDNAがあげられる。
The SHMT of the present invention thus obtained
Examples of the DNA encoding the DNA include a DNA containing the 154-1458th base sequence in the base sequence shown in SEQ ID NO: 1.

【0012】(d)SHMTの精製 本発明のDNAでコードされるSHMTの精製は、公知
のSHMTの精製法〔Miyazakiら、Eur.J.Biochem., 16
2 ,533 (1987) 〕を用いることができる。例えば、無細
胞抽出液より硫酸プロタミンによる除核酸、硫安分画、
DEAE−セファロース、フェニルセファロースカラム
などのクロマトグラフィー、Matrex-gel-red A (Amicon
社製) などのアフィニティークロマトグラフィー、ゲル
濾過などを用いて精製することができる。
(D) Purification of SHMT Purification of SHMT encoded by the DNA of the present invention is carried out by a known purification method of SHMT [Miyazaki et al., Eur. J. Biochem., 16
2 , 533 (1987)] can be used. For example, nucleic acid removed from cell-free extract by protamine sulfate, ammonium sulfate fraction,
Chromatography such as DEAE-Sepharose, Phenyl Sepharose column, Matrex-gel-red A (Amicon
(Manufactured by K.K.) and affinity chromatography, gel filtration and the like.

【0013】(e)SHMT活性の測定 SHMTの酵素活性は、グリシンを基質として生成する
L−セリンを測定する方法や反応液中に残存するホルム
アルデヒドを測定する方法〔Miyazakiら、Eur.J.Bioche
m.,162, 533 (1987)〕で測定することができる。
(E) Measurement of SHMT activity The enzyme activity of SHMT is measured by a method of measuring L-serine produced using glycine as a substrate or a method of measuring formaldehyde remaining in the reaction solution [Miyazaki et al., Eur. J. Bioche.
m. , 162 , 533 (1987)].

【0014】なお、プラスミドの調製、抽出、精製、切
断、連結などの一般的な遺伝子工学的手法は、モレキュ
ラー・クローニング(Molecular cloning 第2版,Mani
atisら,Cold Spring Harbor Laboratory ,1989年刊)
に記載の方法を用いた。以下に本発明の実施例を示す。
General genetic engineering techniques such as plasmid preparation, extraction, purification, cleavage and ligation are carried out by molecular cloning (Molecular cloning 2nd edition, Mani).
atis et al., Cold Spring Harbor Laboratory, 1989)
The method described in 1. was used. Examples of the present invention will be shown below.

【0015】[0015]

【実施例】【Example】

実施例1 (1)ハイホミクロビウム・メチロボラムの染色体DN
Aの調製 ハイホミクロビウム・メチロボラムGM2(FERM BP-403
9)をMII培地(リン酸水素アンモニウム 3g,リン酸二カ
リウム 2g,塩化ナトリウム 1g,硫酸マグネシウム7水塩
0.2g,硫酸第一鉄7水塩 10mg;硫酸マンガン5水塩 5 m
g,チアミン塩酸塩 10 μg,リボフラビン 20 μg,パント
テン酸カルシウム 20 μg,ピリドキシン塩酸 20 μg,ビ
オチン 1μg,パラアミノ安息香酸 10 μg,ニコチン酸 1
0 μg を1リットルの水に溶解し、121℃、20分間
の加熱滅菌後、室温まで冷却し、メタノールを1%容添
加した培地)5mlを入れた試験管(直径16mm,長
さ165mm)に、MII寒天培地〔2%のアガー(DIFCO
社製) を加えたMII培地〕で28℃、2日間培養した
菌体を約1白金耳接種し、さらに2日間、28℃で振盪
培養した。つづいて、MII培地を500ml入れた2リ
ットル容の三角フラスコに、上記培養液5mlを接種
し、再び2日間、28℃で振盪培養した。
Example 1 (1) Chromosome DN of Hyphomicrobium methyloboram
Preparation of A Hyphomicrobium methyloboram GM2 (FERM BP-403
9) MII medium (ammonium hydrogen phosphate 3 g, dipotassium phosphate 2 g, sodium chloride 1 g, magnesium sulfate heptahydrate)
0.2 g, ferrous sulfate heptahydrate 10 mg; manganese sulphate pentahydrate 5 m
g, thiamine hydrochloride 10 μg, riboflavin 20 μg, calcium pantothenate 20 μg, pyridoxine hydrochloride 20 μg, biotin 1 μg, paraaminobenzoic acid 10 μg, nicotinic acid 1
Dissolve 0 μg in 1 liter of water, heat sterilize at 121 ° C for 20 minutes, cool to room temperature, and put in a test tube (diameter 16 mm, length 165 mm) containing 5 ml of 1% methanol-containing medium). , MII agar medium [2% agar (DIFCO
(MII medium containing the product) was cultured at 28 ° C. for 2 days to inoculate about 1 platinum loop of the cells, followed by shaking culture at 28 ° C. for 2 days. Subsequently, 5 ml of the above culture solution was inoculated into a 2 liter Erlenmeyer flask containing 500 ml of MII medium, and cultured again at 28 ° C. for 2 days with shaking.

【0016】この培養液を冷却下、遠心分離して菌体を
集め、0. 15M塩化ナトリウム水溶液に懸濁し、遠心
分離することにより菌体を洗浄した。この菌体を、2m
Mエチレンジアミン四酢酸(EDTA)を含む20mM
トリス緩衝液(pH7. 5)60mlに懸濁した。この
懸濁液にリゾチーム溶液〔リゾチームを20mg/ml
の割合で、2mM EDTAを含むトリス緩衝液(pH
7. 5)に溶解したもの〕7. 5mlを加え、30℃で
1時間静置した。これに、20%ラウリル硫酸ナトリウ
ム溶液7. 5mlを加え、ゆっくりと攪拌した。次にこ
の溶液に1mM EDTAを含む10mMトリス緩衝液
(pH7. 5)を飽和させたフェノール75mlを加
え、十分に攪拌した。この溶液を遠心分離し、水層70
mlを分取した。このフェノール抽出操作を3回繰り返
し、得られた水層75mlに2. 5M酢酸ナトリウム溶
液7. 5mlを加えた後、さらにエタノール150ml
をゆっくり攪拌しながら加え、析出した染色体DNAを
ガラス棒で巻取った。この染色体DNAを乾燥後、1m
M EDTAを含む10mMトリス緩衝液(pH7.
5)10mlに溶解し、これにリボヌクレアーゼA(シ
グマ社製)を50μg/mlとなるように加え、37
℃、30分間静置した。前記と同様のフェノール抽出を
行った後、2. 5M酢酸カリウム1mlおよびエタノー
ル20mlを加えた後、20℃で16時間静置した。さ
らに、遠心分離によって得られたペレットを70%エタ
ノールで洗浄し、乾燥させて染色体DNAを得た。これ
を1mM EDTAを含む10mMトリス緩衝液(pH
7. 5)に溶解し、染色体DNA溶液とした。保存は−
20℃で行った。
The culture was centrifuged under cooling to collect the cells, and the cells were suspended in a 0.15 M aqueous sodium chloride solution and centrifuged to wash the cells. 2m of this fungus body
20 mM containing M ethylenediaminetetraacetic acid (EDTA)
It was suspended in 60 ml of Tris buffer (pH 7.5). A lysozyme solution [20 mg / ml of lysozyme was added to this suspension.
Buffer containing 2 mM EDTA (pH)
Dissolved in 7.5)] 7.5 ml was added, and the mixture was allowed to stand at 30 ° C. for 1 hour. To this, 7.5 ml of 20% sodium lauryl sulfate solution was added, and the mixture was slowly stirred. Next, 75 ml of phenol saturated with 10 mM Tris buffer (pH 7.5) containing 1 mM EDTA was added to this solution, and the mixture was sufficiently stirred. The solution is centrifuged and the aqueous layer 70
ml was collected. This phenol extraction operation was repeated 3 times, and to the resulting aqueous layer (75 ml) was added 2.5 M sodium acetate solution (7.5 ml), followed by ethanol (150 ml).
Was slowly added with stirring, and the precipitated chromosomal DNA was wound with a glass rod. 1m after drying this chromosomal DNA
10 mM Tris buffer containing M EDTA (pH 7.
5) Dissolve in 10 ml, add Ribonuclease A (manufactured by Sigma) to 50 μg / ml, and add 37
It was left still at 30 ° C. for 30 minutes. After the same phenol extraction as above, 1 ml of 2.5 M potassium acetate and 20 ml of ethanol were added, and the mixture was allowed to stand at 20 ° C. for 16 hours. Further, the pellet obtained by centrifugation was washed with 70% ethanol and dried to obtain a chromosomal DNA. This is a 10 mM Tris buffer containing 1 mM EDTA (pH
It was dissolved in 7.5) to obtain a chromosomal DNA solution. Save-
It was carried out at 20 ° C.

【0017】(2)ハイブリダイゼーション用のプロー
ブの作成 (2−1)プローブ用DNA断片の増幅 公知のエシェリキア・コリ(Escherichia coli)[Plamann
ら、Nuc.Acid.Res.,11,2065 (1983)], サルモネラ・テ
ィフィムリウム(Salmonella typhimurium)[Steiertら,
DNA Sequence 1, 107 (1990)],バチルス・ステアロサー
モフィラス(Bacillus stearothermophilus)[Miyamoto
ら、特開平2-5861],ブラディリゾビウム・ジャポニカム
(Bradyrhizobium japonicum)[Rossbach ら、Molecular
Microbiology,5,39(1991)]に属する微生物のSHMTを
コードするDNAの塩基配列を比較し、いずれの微生物
由来のSHMTをコードするDNAでも高頻度に共通に
見いだされる配列を検索した。その中から約500塩基
対ほど離れている組合せを選択し、その塩基配列に相補
するDNA断片をPCR法によるDNA増幅に使うプラ
イマーとして用いた。即ち、プライマーとして、配列番
号3および4に記載した塩基配列を有する2種類の一本
鎖DNA断片を合成した。合成は、リン酸アミダイド法
による固相法〔Beaucageら、Tetrahedron Letter、22,1
859 (1981)〕に従い、DNA自動合成機380A(アプ
ライドバイオシステム社製)を用いた。
(2) Preparation of Probe for Hybridization (2-1) Amplification of DNA Fragment for Probe Known Escherichia coli [Plamann
Nuc. Acid. Res., 11 , 2065 (1983)], Salmonella typhimurium [Steiert et al.
DNA Sequence 1 , 107 (1990)], Bacillus stearothermophilus [Miyamoto
Et al., JP-A-2-5861], Bradyrhizobium japonicum
(Bradyrhizobium japonicum) [Rossbach et al., Molecular
Microbiology , 5 , 39 (1991)], the nucleotide sequences of the SHMT-encoding DNAs of microorganisms belonging to Microbiology , 5 , 39 (1991)] were compared, and a sequence commonly found in DNAs encoding SHMTs derived from any of the microorganisms was searched. A combination having a distance of about 500 base pairs from them was selected, and a DNA fragment complementary to the base sequence was used as a primer used for DNA amplification by the PCR method. That is, as the primers, two kinds of single-stranded DNA fragments having the base sequences shown in SEQ ID NOS: 3 and 4 were synthesized. The synthesis is carried out by the solid phase method by the phosphoramidite method [Beaucage et al., Tetrahedron Letter, 22 , 1
859 (1981)], an automatic DNA synthesizer 380A (manufactured by Applied Biosystems) was used.

【0018】この配列番号3および4記載の塩基配列を
有するDNAをそれぞれ5’側、3’側プライマーとし
て、PCR法により、(1)で調製したハイホミクロビ
ウム・メチロボラムの染色体DNAより、SHMTをコ
ードするDNAの部分断片を以下のようにして増幅、分
離した。ジーンAmpDNAアンプリフィケーションリ
エージェントキット(宝酒造社製)を使い、(1)で調
製したハイホミクロビウム・メチロボラムの染色体DN
Aの1ng/100μlを鋳型として、上記の配列番号
3および4記載の塩基配列を有する合成DNAの各1.
0μMをプライマーとして、dATP,dCTP,dG
TP、dTTPを各200μM、TaqDNAポリメラ
ーゼを2. 5U/100μlとし、94℃で1. 5分
間、40℃で2分間、72℃で2分間の反応をプログラ
ムテンプコントロールシステムPC700(ASTEC
社製)用いて、30回繰り返し、約500塩基対のDN
A断片を取得した。
The DNAs having the nucleotide sequences of SEQ ID NOs: 3 and 4 were used as 5′-side and 3′-side primers, respectively, by the PCR method, from the chromosomal DNA of Hyphomicrobium metylovoram prepared in (1) to produce SHMT. A partial fragment of the DNA coding for was amplified and separated as follows. Chromosome DN of Hyphomicrobium methyloboram prepared in (1) using Gene AmpDNA Amplification Reagent Kit (Takara Shuzo)
Using 1 ng / 100 μl of A as a template, 1. each of synthetic DNAs having the nucleotide sequences of SEQ ID NOS: 3 and 4 above.
DATP, dCTP, dG using 0 μM as a primer
TP and dTTP were each set to 200 μM, Taq DNA polymerase was set to 2.5 U / 100 μl, and the reaction was performed at 94 ° C. for 1.5 minutes, 40 ° C. for 2 minutes, and 72 ° C. for 2 minutes.
(Manufactured by K.K.), repeated 30 times, DN of about 500 base pairs
A fragment was obtained.

【0019】(2−2)プローブDNA断片のクローニ
ング 上記のようにして得られた、PCR反応物であるDNA
断片1μgを含む溶液20μlに EcoRI、およびPstIを
加えて消化切断を行った。別にベクタープラスミドpU
C19(宝酒造社製)1μgを含む溶液20μlも同様
に消化切断を行った。切断された上記DNA断片および
プラスミドDNAを、フェノール抽出およびエタノール
沈澱によって精製した。この精製したDNA断片100
ngおよび精製したプラスミドDNA20ngを、66
mMトリス緩衝液(pH7. 6)、66mM塩化マグネ
シウム、10mMジチオスレイトール(DTT)および
0. 1mM ATPを含む溶液に懸濁した。これにT4
DNAリガーゼ(宝酒造社製)を10単位添加後、14
℃で16時間反応させ、双方のDNAを連結すること
で、組換えプラスミドを作成した。次に、E.coliDH5 α
株(宝酒造社製)をLB液体培地(Bact-peptone 1%,
Bact-yeast extract 0.5%,塩化ナトリウム 1%,pH
7.0 )50mlを入れた200ml容三角フラスコに植
菌し、37℃で4時間振盪培養した。次に、遠心分離で
菌体を集め、氷上で冷却した50mM塩化カルシウム溶
液20mlに懸濁した。さらに氷上で20分間静置した
後、冷却下、遠心分離して集菌し、冷却した50mMの
塩化カルシウム溶液40mlに懸濁し、プラスミドによ
る形質転換に用いるコンピテントセル懸濁液を調製し
た。
(2-2) Cloning of probe DNA fragment DNA which is a PCR reaction product obtained as described above
EcoRI and PstI were added to 20 μl of a solution containing 1 μg of the fragment for digestion and cleavage. Separately vector plasmid pU
20 μl of a solution containing 1 μg of C19 (manufactured by Takara Shuzo) was similarly digested and cleaved. The cleaved DNA fragment and plasmid DNA were purified by phenol extraction and ethanol precipitation. This purified DNA fragment 100
ng and 20 ng of purified plasmid DNA
The cells were suspended in a solution containing mM Tris buffer (pH 7.6), 66 mM magnesium chloride, 10 mM dithiothreitol (DTT) and 0.1 mM ATP. T4 to this
14 units after adding 10 units of DNA ligase (Takara Shuzo)
A recombinant plasmid was prepared by reacting at 16 ° C. for 16 hours and ligating both DNAs. Next, E. coli DH5 α
Strain (Takara Shuzo Co., Ltd.) with LB liquid medium (Bact-peptone 1%,
Bact-yeast extract 0.5%, sodium chloride 1%, pH
7.0) Inoculated into a 200 ml Erlenmeyer flask containing 50 ml, and cultured by shaking at 37 ° C. for 4 hours. Next, the bacterial cells were collected by centrifugation and suspended in 20 ml of a 50 mM calcium chloride solution cooled on ice. After still standing on ice for 20 minutes, the cells were collected by centrifugation under cooling and suspended in 40 ml of a cooled 50 mM calcium chloride solution to prepare a competent cell suspension used for transformation with a plasmid.

【0020】このコンピテントセル懸濁液100μlに
上記の組換えプラスミド溶液10μlを加えた後、0℃
で10分間静置した。次いで、42℃で90秒間熱処理
した後、この細胞懸濁液を、100μg/mlのアンピ
シリンと20μg/mlの5−ブロモ−4−クロロイン
ドリル−β−ガラクトサイド(X−gal)を含むLB
寒天培地に塗布した。この平板培地を37℃で24時間
培養した。
After adding 10 μl of the above recombinant plasmid solution to 100 μl of this competent cell suspension,
And allowed to stand for 10 minutes. Then, after heat treatment at 42 ° C. for 90 seconds, the cell suspension was treated with LB containing 100 μg / ml ampicillin and 20 μg / ml 5-bromo-4-chloroindolyl-β-galactoside (X-gal).
It was applied to an agar medium. This plate medium was cultured at 37 ° C. for 24 hours.

【0021】出現したコロニーの中、白色のコロニーを
それぞれアンピシリン100μg/ml含むLB液体培
地で一晩培養後、集菌し、常法によりプラスミドDNA
を抽出した。このプラスミドが、PCR法で調製したD
NA断片のEcoRI およびPstI消化物と同じ分子量の断片
を含有していることをアガロースゲル電気泳動で確認
し、プローブ用DNA断片とした。
White colonies among the appearing colonies were cultured overnight in an LB liquid medium containing 100 μg / ml of ampicillin, and the cells were collected and plasmid DNA was prepared by a conventional method.
Was extracted. This plasmid is D prepared by PCR
It was confirmed by agarose gel electrophoresis that it contained a fragment having the same molecular weight as that of the EcoRI and PstI digestion product of the NA fragment, and it was used as a probe DNA fragment.

【0022】(3)SHMTをコードするDNAのクロ
ーニング (3−1)ジーンバンクの作成 (1)で調製したハイホミクロビウム・メチロボラムの
染色体DNAの10μgをHindIII で消化後、アガロー
スゲル電気泳動で2kb以下の長さの断片を除いた。次
にベクタープラスミドとして pBluescript SK(+)(Stra
tagene社製)を用いHindIII 消化し、フェノール処理お
よびエタノール沈澱で精製した。
(3) Cloning of DNA encoding SHMT (3-1) Preparation of gene bank 10 μg of the chromosomal DNA of Hyphomicrobium methylobolum prepared in (1) was digested with HindIII and then subjected to agarose gel electrophoresis. Fragments less than 2 kb in length were removed. Next, pBluescript SK (+) (Stra
It was digested with HindIII using Tagene) and purified by phenol treatment and ethanol precipitation.

【0023】HindIII で消化した染色体DNA約100
ngおよび、ベクタープラスミド20ngを用い、(2
−2)と同様に連結し、組換えプラスミドを作成した。
About 100 chromosomal DNAs digested with HindIII
ng and 20 ng of the vector plasmid, (2
-2) was ligated in the same manner as in 2) to prepare a recombinant plasmid.

【0024】(3−2)コロニーハイブリダイゼーショ
ン (2−2)で調製したプローブ用DNA断片1μgをノ
ンラジオシステムDNA標識および検出キット(DIG
−ELISA法、カタログNo. 1093657、ベー
リンガーマンハイム社製)に従って標識し、これをSH
MTをコードするDNA検出用プローブとした。
(3-2) Colony hybridization 1 μg of the DNA fragment for probe prepared in (2-2) was used as a non-radio system DNA labeling and detection kit (DIG).
-ELISA method, catalog No. 1093657, manufactured by Boehringer Mannheim) and labeled with SH
It was used as a probe for detecting DNA encoding MT.

【0025】次に、(3−1)で調製したジーンバンク
用組換えプラスミドを、(2−2)と同様にしてE.coli
DH5αに形質転換し、100μg/mlのアンピシリン
を含むLB寒天培地上に塗布した。コロニーが形成され
た後、平板寒天上にナイトラン膜などのメンブレンフィ
ルターNY13N(Schleicher&Scheull 社製)をの
せ、平板寒天上のコロニーと接触させた後、すぐに剥離
した。これを裏返して100μg/mlのアンピシリン
を含む別の新しいLB寒天培地にのせ、37℃で約12
時間培養した。上面にコロニーが形成したこのメンブラ
ンフィルターを寒天培地より剥し、0. 5規定水酸化ナ
トリウムを含む濾紙上に10分間、0. 5Mトリス緩衝
液(pH7. 3)を含む濾紙上に5分間、0. 5M塩化
ナトリウムを含有する0. 5Mトリス緩衝液(pH7.
3)を含む濾紙上に5分間、2×SSC(0. 3M塩化
ナトリウム、0. 03Mクエン酸ナトリウム、pH7.
0)を含む濾紙上に5分間、順次静置した後、80℃で
約3時間加熱した。このメンブレンフィルターをノンラ
ジオシステムDNA標識および検出キット(ベーリンガ
ーマンハイム社製)の手法に従い、上記で調製したSH
MTをコードするDNA検出用プローブを使い、プロー
ブとハイブリダイズしたクローンとして、目的DNAを
もつコロニーを選択した。約18000コロニーから5
株の陽性クローンを得た。
Next, the recombinant plasmid for gene bank prepared in (3-1) was treated with E. coli in the same manner as in (2-2).
It was transformed into DH5α and spread on LB agar medium containing 100 μg / ml of ampicillin. After the colonies were formed, a membrane filter NY13N (manufactured by Schleicher & Scheull) such as a nitrone membrane was placed on the plate agar, and the plate was brought into contact with the colonies on the plate agar, and then immediately peeled off. Turn it over and place it on another fresh LB agar medium containing 100 μg / ml ampicillin and leave at 37 ° C. for about 12 hours.
Incubated for hours. The membrane filter with colonies formed on the upper surface was peeled off from the agar medium and placed on a filter paper containing 0.5N sodium hydroxide for 10 minutes, and on a filter paper containing 0.5M Tris buffer (pH 7.3) for 5 minutes. 0.5M Tris buffer containing 5M sodium chloride (pH 7.
5) on filter paper containing 3) for 2 minutes 2 × SSC (0.3M sodium chloride, 0.03M sodium citrate, pH 7.
The mixture was allowed to stand for 5 minutes on a filter paper containing 0), and then heated at 80 ° C. for about 3 hours. This membrane filter was prepared as described above according to the method of non-radio system DNA labeling and detection kit (Boehringer Mannheim).
A colony having the target DNA was selected as a clone hybridized with the probe using a DNA detection probe encoding MT. 5 from about 18,000 colonies
A positive clone of the strain was obtained.

【0026】(4)SHMTをコードするDNAの塩基
配列の決定 (3−2)で得られた陽性クローンの中より1株を選ん
で、常法によりプラスミドを調製した。このプラスミド
をpSA1と名付け、その構造を制限酵素消化により確
認した。pSA1のSHMTをコードするDNAを含む
DNA断片の制限酵素地図を図1に示した。
(4) Determination of nucleotide sequence of DNA encoding SHMT One strain was selected from the positive clones obtained in (3-2) and a plasmid was prepared by a conventional method. This plasmid was named pSA1 and its structure was confirmed by restriction enzyme digestion. A restriction enzyme map of a DNA fragment containing a DNA encoding SHMT of pSA1 is shown in FIG.

【0027】次に、pSA1のHindIII 断片(約11kb)
中、SHMTをコードすると思われる部分を、(3−
2)で使用したプローブ断片を用いたハイブリダイゼー
ションで特定し、SHMTをコードするDNAの塩基配
列の決定を行った。すなわち、Taq dye primer cycle s
equencing kit (Applied biosystem 社製)あるいは、
Sequenase (United States Biochemical 社製)のキッ
トを使い、pBlueskriptの二本鎖DNAを鋳型としたdid
eoxy chain termination 法で自動DNAシークエンサ
ーmodel 373A(Applied Biosystem 社製)でDNA塩基
配列を決定した。そのDNA配列を配列番号1に示し
た。このDNA塩基配列がコードするアミノ酸配列を配
列番号2に示した。その分子量は45993 と計算され、公
知のハイホミクロビウム・メチロボラムGM2が生産す
るSHMTの推定分子量48000 〔 Eur.J.Biochem. ,16
2, 533 (1987)〕とほぼ一致した。
Next, a HindIII fragment of pSA1 (about 11 kb)
In the part that seems to code SHMT, (3-
It was identified by hybridization using the probe fragment used in 2), and the base sequence of the DNA encoding SHMT was determined. That is, Taq dye primer cycle s
equencing kit (Applied biosystem) or
Using the kit of Sequenase (United States Biochemical), did using the double-stranded DNA of pBlueskript as a template
The DNA base sequence was determined by an automatic DNA sequencer model 373A (manufactured by Applied Biosystem) by the eoxy chain termination method. The DNA sequence is shown in SEQ ID NO: 1. The amino acid sequence encoded by this DNA base sequence is shown in SEQ ID NO: 2. The molecular weight was calculated to be 45993, and the estimated molecular weight of SHMT produced by the known Hyphomicrobium methyloboram GM2 was 48,000 [Eur.J.Biochem. , 16
2 , 533 (1987)].

【0028】(5)SHMTをコードするDNA断片に
よる変異の相補試験 SHMT遺伝子の変異によりSHMT活性が欠損してお
り、Glyの要求性を示す変異株E.coli ME5427 に、ク
ローニングしたSHMTをコードするDNAを含むプラ
スミドを導入し、変異したSHMT遺伝子が相補される
か検討した。
(5) Complementation test for mutation by DNA fragment encoding SHMT The cloned SHMT is encoded in the mutant strain E. coli ME5427, which has defective SHMT activity due to mutation of SHMT gene and shows Gly requirement. A plasmid containing DNA was introduced to examine whether the mutated SHMT gene was complementary.

【0029】最初に、11kbのHindIII 断片として得
られたSHMTをコードするDNAのサブクローニング
として、SHMTのコード領域のみの増幅をPCR法で
行った。まず、コード領域のDNA配列全てをカバーで
きるようにプライマーを設計し、配列番号5および6記
載の塩基配列を有する2種類のDNA断片を(2−1)
と同様の方法で合成した。
First, as a subcloning of the SHMT-encoding DNA obtained as a 11 kb HindIII fragment, amplification of only the SHMT coding region was performed by the PCR method. First, a primer was designed so as to cover the entire DNA sequence of the coding region, and two types of DNA fragments having the nucleotide sequences of SEQ ID NOs: 5 and 6 were prepared (2-1).
Was synthesized in the same manner as.

【0030】クローニングしたSHMTプラスミド(p
SA1)10ngを鋳型とし、配列番号5および6記載
の塩基配列を有する合成プライマー各100pmole
を用い、(2−1)と同様のPCR法でSHMTをコー
ドしている領域を増幅し、さらにアガロースゲル電気泳
動でDNA断片を精製した。別に、Taqプロモーター
を持つベクタープラスミドpKK223−3(ファルマ
シア社製)をEcoRI で切断し、DNABlunting Kit(宝
酒造社製)で切断末端を平滑化したベクタープラスミド
を調製した。これに、前記の精製したPCR産物をT4
リガーゼ反応で連結し、組換えプラスミドを作成し、こ
のプラスミドをpAB2と名付けた。
The cloned SHMT plasmid (p
SA1) 10 ng as a template, 100 pmole each of synthetic primers having the nucleotide sequences of SEQ ID NOs: 5 and 6
The region encoding SHMT was amplified by using the same PCR method as in (2-1), and the DNA fragment was purified by agarose gel electrophoresis. Separately, a vector plasmid pKK223-3 (manufactured by Pharmacia) having a Taq promoter was cleaved with EcoRI, and a vector plasmid having a blunted cleaved end was prepared with a DNA Blunting Kit (manufactured by Takara Shuzo). The purified PCR product was added to T4
Ligation was performed by ligase reaction to prepare a recombinant plasmid, and this plasmid was named pAB2.

【0031】変異株E.coli ME5427 を(2−2)と同様
の方法で培養し、形質転換用にコンピテントセルを作成
した。このE.coli ME5427 に上記の組換えプラスミドを
(2−2)と同様に形質転換したところ、得られた形質
転換クローンはGlyの要求性が消失しており、pAB
2上のSHMTをコードするDNAが、E.coli中の変異
を相補していることが確かめられた。
The mutant strain E. coli ME5427 was cultured in the same manner as in (2-2) to prepare competent cells for transformation. When this E. coli ME5427 was transformed with the above recombinant plasmid in the same manner as in (2-2), the resulting transformed clone lost the requirement for Gly, and pAB
It was confirmed that the DNA encoding SHMT on 2 was complementary to the mutation in E. coli.

【0032】(6)SHMT活性の測定 (5)で得られたプラスミドpAB2を含有する形質転
換クローンE.coli ME5427/pAB2とベクタープラスミドの
みで形質転換したE.coli ME5427 /pKK223-3 をアンピシ
リン100mg/lを含むLB液体培地500mlで一
晩培養し、遠心分離して集菌後、0. 15M塩化ナトリ
ウム水溶液を用いて洗浄した。この菌体を50mMリン
酸カリウム緩衝液(pH7. 5)20mlに懸濁し、懸
濁液を超音波破砕機(Kaijo Denki 社製)で10℃以
下、19kHzで15分間処理し、遠心分離で菌体残査
を除去し、無細胞抽出液を調製した。
(6) Measurement of SHMT activity Transformed clone E. coli ME5427 / pAB2 containing plasmid pAB2 obtained in (5) and E. coli ME5427 / pKK223-3 transformed with vector plasmid alone were treated with 100 mg of ampicillin. After culturing overnight in 500 ml of LB liquid medium containing 1 / l, the cells were collected by centrifugation and washed with a 0.15 M sodium chloride aqueous solution. The cells were suspended in 20 ml of 50 mM potassium phosphate buffer (pH 7.5), the suspension was treated with an ultrasonic disintegrator (Kaijo Denki) at 10 ° C or lower at 19 kHz for 15 minutes, and the cells were centrifuged. The body residue was removed and a cell-free extract was prepared.

【0033】この無細胞抽出液のSHMT活性をMiyaza
kiらの方法〔Eur.J.Biochem.,162,533 (1987) 〕に従
い、以下のようにして測定した。0. 5Mリン酸カリウ
ム緩衝液(pH7. 5)、0. 4mM dl−テトラヒ
ドロ葉酸、0. 3mMピリドキサールリン酸、25mM
ホルムアルデヒド、1.0M Glyおよび無細胞抽出
で全量を1. 0mlとした反応液を、37℃で15分間
反応させ、15%のトリクロロ酢酸0. 3mlを加え反
応を停止した。対照としては、反応液からGlyを除い
た反応液を用いた。
SHMT activity of this cell-free extract was measured by Miyaza
According to the method of ki et al. [Eur. J. Biochem. , 162 , 533 (1987)], it was measured as follows. 0.5 M potassium phosphate buffer (pH 7.5), 0.4 mM dl-tetrahydrofolic acid, 0.3 mM pyridoxal phosphate, 25 mM
A reaction solution containing formaldehyde, 1.0 M Gly and cell-free extraction so that the total amount was 1.0 ml was reacted at 37 ° C. for 15 minutes, and the reaction was stopped by adding 0.3 ml of 15% trichloroacetic acid. As a control, a reaction solution obtained by removing Gly from the reaction solution was used.

【0034】反応終了後、遠心分離し、上清中のL−セ
リン量を高速液体クロマトグラフィーを用いたアミノ酸
分析機(日本分光社製、アミノ酸分析システム)で測定
し、反応生成物を定量した。L−セリンを1時間に1μ
mole生成する活性を1unit(U)とした。その
結果を第1表に示す。
After completion of the reaction, the mixture was centrifuged, and the amount of L-serine in the supernatant was measured by an amino acid analyzer (Amino Acid Analysis System manufactured by JASCO Corporation) using high performance liquid chromatography to quantify the reaction product. . L-serine 1μ per hour
The activity of mole generation was defined as 1 unit (U). The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】第1表に示したように、pAB2を含有す
るE.coli ME5427 株はSHMTを生産したが、ベクター
のみを含有するE.coli ME5427 株はSHMTを全く生産
しなかった。
As shown in Table 1, the E. coli ME5427 strain containing pAB2 produced SHMT, but the E. coli ME5427 strain containing only the vector did not produce SHMT at all.

【0037】[0037]

【発明の効果】本発明は、Lーセリンの効率的生産に用
いられるハイホミクロビウム・メチロボラムが生産する
SHMTをコードするDNA、該DNAが組み込まれた
ベクターおよび該ベクターを含有する微生物を提供す
る。
INDUSTRIAL APPLICABILITY The present invention provides a DNA encoding SHMT produced by Hyphomicrobium methyloboram used for efficient production of L-serine, a vector incorporating the DNA, and a microorganism containing the vector. .

【0038】[0038]

【配列表】[Sequence list]

配列番号:1 配列の長さ:1489 配列の型:核酸 配列の種類:Genomic DNA 配列の特徴 起源 生物名:ハイホミクロビウム メチロボラム(Hyphomicr
obium methyloborum) 株名:GM2 配列: CGCAACGGCC GTTCCCGCGC CCTTGTTACA CGGGGCTCGG GGTCGGTTGA GTGCTGGTGT 60 CCAGCCTCGT ACTATGGTTC AAAGCTCGTT GGCCGGACTT GACTCCGTGT CCTGAGCGCG 120 CAGTTAAATC ACTTTCATTT TGAAGGAAAA CAC ATG TCG TCC GCA CCG GCT GCA 174 Met Ser Ser Ala Pro Ala Ala 1 5 GGT ACT GCT TCT ACG TCC CGT TTT TTC AAG TCG CAC GTG TCG GAG ACG 222 Gly Thr Ala Ser Thr Ser Arg Phe Phe Lys Ser His Val Ser Glu Thr 10 15 20 GAT CCC GAT ATT TTC AGC GCC ATC CAA AAG GAA TTT GGC CGC CAG CAG 270 Asp Pro Asp Ile Phe Ser Ala Ile Gln Lys Glu Phe Gly Arg Gln Gln 25 30 35 CAC GAG ATC GAG CTG ATC GCG TCT GAG AAC ATC GTT TCG CAG GCC GTT 318 His Glu Ile Glu Leu Ile Ala Ser Glu Asn Ile Val Ser Gln Ala Val 40 45 50 55 CTC GAT GCA GCT GGT TCG GTG CTG ACC AAC AAG TAT GCC GAG GGC TAT 366 Leu Asp Ala Ala Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu Gly Tyr 60 65 70 CCG GGC AAG CGC TAC TAC GGC GGC TGC CAG TAC GTC GAC ATC GTT GAA 414 Pro Gly Lys Arg Tyr Tyr Gly Gly Cys Gln Tyr Val Asp Ile Val Glu 75 80 85 GAC ATC GCG ATC GAC CGC GCA AAG AAG CTC TTC AAC TGC GAA TTC GCG 462 Asp Ile Ala Ile Asp Arg Ala Lys Lys Leu Phe Asn Cys Glu Phe Ala 90 95 100 AAC GTG CAG CCG AAC TCC GGC AGC CAG GCG AAC CAG GGC GTG TTC AAT 510 Asn Val Gln Pro Asn Ser Gly Ser Gln Ala Asn Gln Gly Val Phe Asn 105 110 115 GCG CTC GCG CAG CCG GGC GAC ACC ATC CTC GGT CTC TCG CTC GCT GCC 558 Ala Leu Ala Gln Pro Gly Asp Thr Ile Leu Gly Leu Ser Leu Ala Ala 120 125 130 135 GGT GGT CAC TTG ACC CAC GGC GCG CCG GTG AAC CAG TCC GGC AAG TGG 606 Gly Gly His Leu Thr His Gly Ala Pro Val Asn Gln Ser Gly Lys Trp 140 145 150 TTC AAG GCC GTG CAC TAC ATG GTC AAG CCC GAC TCG CAC CTC ATC GAC 654 Phe Lys Ala Val His Tyr Met Val Lys Pro Asp Ser His Leu Ile Asp 155 160 165 ATG GAC GAA GTG CGC AAG CTG GCC CAG GAG CAC AAG CCG CGC ATC ATC 702 Met Asp Glu Val Arg Lys Leu Ala Gln Glu His Lys Pro Arg Ile Ile 170 175 180 ATC GCT GGT GGT TCG GCC TAT CCG CGC AAG ATC GAT TTC GCT GCA TTT 750 Ile Ala Gly Gly Ser Ala Tyr Pro Arg Lys Ile Asp Phe Ala Ala Phe 185 190 195 CGC GCG ATT GCG GAT GAG GTT GGC GCG ATC TTC CTC GTC GAT ATG GCG 798 Arg Ala Ile Ala Asp Glu Val Gly Ala Ile Phe Leu Val Asp Met Ala 200 205 210 215 CAC TTC GCC GGT CTT GTT GCG GCC GGT CTC ATT CCG AGC CCG TTC CCG 846 His Phe Ala Gly Leu Val Ala Ala Gly Leu Ile Pro Ser Pro Phe Pro 220 225 230 CAT GCC CAC GTC GTA ACG ACG ACG ACG CAC AAG ACG CTG CGC GGA CCC 894 His Ala His Val Val Thr Thr Thr Thr His Lys Thr Leu Arg Gly Pro 235 240 245 CGT GGC GGC ATG ATT TTA ACG AAC GAC GCG GAC ATC GCG AAG AAG ATC 942 Arg Gly Gly Met Ile Leu Thr Asn Asp Ala Asp Ile Ala Lys Lys Ile 250 255 260 AAC TCG GCG ATC TTC CCT GGC ATT CAG GGC GGC CCG CTC ATG CAC GTT 990 Asn Ser Ala Ile Phe Pro Gly Ile Gln Gly Gly Pro Leu Met His Val 265 270 275 ATC GCC GGT AAG GCC GTC GCA TTC GGC GAG GCT CTG CGT CCG GAC TTC 1038 Ile Ala Gly Lys Ala Val Ala Phe Gly Glu Ala Leu Arg Pro Asp Phe 280 285 290 295 AAG GTC TAC ATC AAG CAG GTG ATG GAC AAC GCC CGC GCG CTC GGT GAA 1086 Lys Val Tyr Ile Lys Gln Val Met Asp Asn Ala Arg Ala Leu Gly Glu 300 305 310 GTG CTT GTG CAG AAC GGC TTC GCG CTC GTT TCT GGC GGC ACC GAC ACG 1134 Val Leu Val Gln Asn Gly Phe Ala Leu Val Ser Gly Gly Thr Asp Thr 315 320 325 CAC CTC GTT CTC GTC GAT CTG CGG CCG AAG AAG CTG ACC GGT ACG AAG 1182 His Leu Val Leu Val Asp Leu Arg Pro Lys Lys Leu Thr Gly Thr Lys 330 335 340 GCT GAG AAG GCG CTT GGC CGT GCC AAC ATC ACC TGC AAC AAG AAC GGC 1230 Ala Glu Lys Ala Leu Gly Arg Ala Asn Ile Thr Cys Asn Lys Asn Gly 345 350 355 ATT CCG TTC GAC CCC GAG AAG CCG ATG GTG ACG TCG GGC ATT CGT TTG 1278 Ile Pro Phe Asp Pro Glu Lys Pro Met Val Thr Ser Gly Ile Arg Leu 360 365 370 375 GGT TCG CCT GCA GGC ACG ACG CGC GGC TTC GGC GTT GCC GAA TTC CAG 1326 Gly Ser Pro Ala Gly Thr Thr Arg Gly Phe Gly Val Ala Glu Phe Gln 380 385 390 GAA ATC GGC CGC CTG ATC TCG GAA GTT CTG GAT GGC GTT GCG AAG AAC 1374 Glu Ile Gly Arg Leu Ile Ser Glu Val Leu Asp Gly Val Ala Lys Asn 395 400 405 GGC GAA GAT GGC AAC GGC GCC GTC GAA GCG GCC GTC AAG GCA AAG GCT 1422 Gly Glu Asp Gly Asn Gly Ala Val Glu Ala Ala Val Lys Ala Lys Ala 410 415 420 ATC GCT CTT TGC GAT CGC TTC CCG ATT TAC GCA TAACGCTGTT 1465 Ile Ala Leu Cys Asp Arg Phe Pro Ile Tyr Ala 425 430 434 TACGCACATT TGAAGATATG CTTG 1489
SEQ ID NO: 1 Sequence length: 1489 Sequence type: Nucleic acid Sequence type: Genomic DNA Sequence characteristics Origin Biological name: Hyphomicobium methyloboram (Hyphomicr
obium methyloborum) Strain name: GM2 Sequence: CGCAACGGCC GTTCCCGCGC CCTTGTTACA CGGGGCTCGG GGTCGGTTGA GTGCTGGTGT 60 CCAGCCTCGT ACTATGGTTC AAAGCTCGTT GGCCGGACTT GACTCCGT GCTTC ATCla GCTCA GCTCA TCT ACACTCT CACTA CCA TCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACACCA TCACCA TCACCA TCACACCA TCACCA TCACCA TCACACACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACCA TCACACCA TCACCA TCACCA TCACCA ACA CGT TTT TTC AAG TCG CAC GTG TCG GAG ACG 222 Gly Thr Ala Ser Thr Ser Arg Phe Phe Lys Ser His Val Ser Glu Thr 10 15 20 GAT CCC GAT ATT TTC AGC GCC ATC CAA AAG GAA TTT GGC CGC CAG CAG 270 Asp Pro Asp Ile Phe Ser Ala Ile Gln Lys Glu Phe Gly Arg Gln Gln 25 30 35 CAC GAG ATC GAG CTG ATC GCG TCT GAG AAC ATC GTT TCG CAG GCC GTT 318 His Glu Ile Glu Leu Ile Ala Ser Glu Asn Ile Val Ser Gln Ala Val 40 45 50 55 CTC GAT GCA GCT GGT TCG GTG CTG ACC AAC AAG TAT GCC GAG GGC TAT 366 Leu Asp Ala Ala Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu Gly Tyr 60 65 70 CCG GGC AAG CGC TAC TAC GGC GGC TGC CAG TAC GTC GAC ATC GTT GAA 414 Pro Gly Lys Arg Tyr Tyr Gly Gly Cys Gln Tyr Val Asp Ile Val Glu 75 80 85 GAC ATC GCG ATC GAC CGC GCA AAG AAG CTC TTC AAC TGC GAA TTC GCG 462 Asp Ile Ala Ile Asp Arg Ala Lys Lys Leu Phe Asn Cys Glu Phe Ala 90 95 100 AAC GTG CAG CCG AAC TCC GGC AGC CAG GCG AAC CAG GGC GTG TTC AAT 510 Asn Val Gln Pro Asn Ser Gly Ser Gln Ala Asn Gln Gly Val Phe Asn 105 110 115 GCG CTC GCG CAG CCG GGC GAC ACC ATC CTC GGT CTC TCG CTC GCT GCC 558 Ala Leu Ala Gln Pro Gly Asp Thr Ile Leu Gly Leu Ser Leu Ala Ala 120 125 130 135 GGT GGT CAC TTG ACC CAC GGC GCG CCG GTG AAC CAG TCC GGC AAG TGG 606 Gly Gly His Leu Thr His Gly Ala Pro Val Asn Gln Ser Gly Lys Trp 140 145 150 TTC AAG GCC GTG CAC TAC ATG GTC AAG CCC GAC TCG CAC CTC ATC GAC 654 Phe Lys Ala Val His Tyr Met Val Lys Pro Asp Ser His Leu Ile Asp 155 160 165 ATG GAC GAA GTG CGC AAG CTG GCC CAG GAG CAC AAG CCG CGC ATC ATC 702 Met Asp Glu Val Arg Lys Leu Ala Gln Glu His Lys Pro Arg Ile Ile 170 175 180 ATC GCT GGT GGT TCG GCC TAT CCG CGC AAG ATC GAT TTC GCT GCA TTT 750 Ile Ala Gly Gly Ser Ala Tyr Pro Arg Lys Ile Asp Phe Ala Ala Phe 185 1 90 195 CGC GCG ATT GCG GAT GAG GTT GGC GCG ATC TTC CTC GTC GAT ATG GCG 798 Arg Ala Ile Ala Asp Glu Val Gly Ala Ile Phe Leu Val Asp Met Ala 200 205 210 215 CAC TTC GCC GGT CTT GTT GCG GCC GGT CTC ATT CCG AGC CCG TTC CCG 846 His Phe Ala Gly Leu Val Ala Ala Gly Leu Ile Pro Ser Pro Phe Pro 220 225 230 CAT GCC CAC GTC GTA ACG ACG ACG ACG CAC AAG ACG CTG CGC GGA CCC 894 His Ala His Val Val Thr Thr Thr Thr Thr His Lys Thr Leu Arg Gly Pro 235 240 245 CGT GGC GGC ATG ATT TTA ACG AAC GAC GCG GAC ATC GCG AAG AAG ATC 942 Arg Gly Gly Met Ile Leu Thr Asn Asp Ala Asp Ile Ala Lys Lys Ile 250 255 260 AAC TCG GCG ATC TTC CCT GGC ATT CAG GGC GGC CCG CTC ATG CAC GTT 990 Asn Ser Ala Ile Phe Pro Gly Ile Gln Gly Gly Pro Leu Met His Val 265 270 275 ATC GCC GGT AAG GCC GTC GCA TTC GGC GAG GCT CTG CGT CCG GAC TTC 1038 Ile Ala Gly Lys Ala Val Ala Phe Gly Glu Ala Leu Arg Pro Asp Phe 280 285 290 295 AAG GTC TAC ATC AAG CAG GTG ATG GAC AAC GCC CGC GCG CTC GGT GAA 1086 Lys Val Tyr Ile Lys Gln Val Met Asp Asn Ala Arg Ala Leu Gly Glu 300 305 310 GTG CTT GTG CAG AAC GGC TTC GCG CTC GTT TCT GGC GGC ACC GAC ACG 1134 Val Leu Val Gln Asn Gly Phe Ala Leu Val Ser Gly Gly Thr Asp Thr 315 320 325 CAC CTC GTT CTC GTC GAT CTG CGG CCG AAG AAG CTG ACC GGT ACG AAG 1182 His Leu Val Leu Val Asp Leu Arg Pro Lys Lys Leu Thr Gly Thr Lys 330 335 340 GCT GAG AAG GCG CTT GGC CGT GCC AAC ATC ACC TGC AAC AAG AAC GGC 1230 Ala Glu Lys Ala Leu Gly Arg Ala Asn Ile Thr Cys Asn Lys Asn Gly 345 350 355 ATT CCG TTC GAC CCC GAG AAG CCG ATG GTG ACG TCG GGC ATT CGT TTG 1278 Ile Pro Phe Asp Pro Glu Lys Pro Met Val Thr Ser Gly Ile Arg Leu 360 365 370 375 GGT TCG CCT GCA GGC ACG ACG CGC GGC TTC GGC GTT GCC GAA TTC CAG 1326 Gly Ser Pro Ala Gly Thr Thr Arg Gly Phe Gly Val Ala Glu Phe Gln 380 385 390 GAA ATC GGC CGC CTG ATC TCG GAA GTT CTG GAT GGC GTT GCG AAG AAC 1374 Glu Ile Gly Arg Leu Ile Ser Glu Val Leu Asp Gly Val Ala Lys Asn 395 400 405 GGC GAA GAT GGC AAC GGC GCC GTC GAA GCG GCC GTC AAG GCA AAG GCT 1422 Gly Glu Asp Gly Asn Gly Ala Val Glu Ala Ala Val Lys Ala Lys Ala 410 415 420 ATC GCT CTT TGC GAT CGC TTC CCG ATT TAC GCA TAACGCTGTT 1465 Ile Ala Leu Cys Asp Arg Phe Pro Ile Tyr Ala 425 430 434 TACGCACATT TGAAGATATG CTTG 1489

【0039】配列番号:2 配列の長さ:434 配列の型:アミノ酸 配列の種類:タンパク質 起源 生物名:ハイホミクロビウム メチロボラム(Hyphomicr
obium methyloborum) 株名:GM2 配列: ATG TCG TCC GCA CCG GCT GCA GGT ACT GCT TCT ACG TCC CGT TTT TTC 48 Met Ser Ser Ala Pro Ala Ala Gly Thr Ala Ser Thr Ser Arg Phe Phe 1 5 10 15 AAG TCG CAC GTG TCG GAG ACG GAT CCC GAT ATT TTC AGC GCC ATC CAA 96 Lys Ser His Val Ser Glu Thr Asp Pro Asp Ile Phe Ser Ala Ile Gln 20 25 30 AAG GAA TTT GGC CGC CAG CAG CAC GAG ATC GAG CTG ATC GCG TCT GAG 144 Lys Glu Phe Gly Arg Gln Gln His Glu Ile Glu Leu Ile Ala Ser Glu 35 40 45 AAC ATC GTT TCG CAG GCC GTT CTC GAT GCA GCT GGT TCG GTG CTG ACC 192 Asn Ile Val Ser Gln Ala Val Leu Asp Ala Ala Gly Ser Val Leu Thr 50 55 60 AAC AAG TAT GCC GAG GGC TAT CCG GGC AAG CGC TAC TAC GGC GGC TGC 240 Asn Lys Tyr Ala Glu Gly Tyr Pro Gly Lys Arg Tyr Tyr Gly Gly Cys 65 70 75 80 CAG TAC GTC GAC ATC GTT GAA GAC ATC GCG ATC GAC CGC GCA AAG AAG 288 Gln Tyr Val Asp Ile Val Glu Asp Ile Ala Ile Asp Arg Ala Lys Lys 85 90 95 CTC TTC AAC TGC GAA TTC GCG AAC GTG CAG CCG AAC TCC GGC AGC CAG 336 Leu Phe Asn Cys Glu Phe Ala Asn Val Gln Pro Asn Ser Gly Ser Gln 100 105 110 GCG AAC CAG GGC GTG TTC AAT GCG CTC GCG CAG CCG GGC GAC ACC ATC 384 Ala Asn Gln Gly Val Phe Asn Ala Leu Ala Gln Pro Gly Asp Thr Ile 115 120 125 CTC GGT CTC TCG CTC GCT GCC GGT GGT CAC TTG ACC CAC GGC GCG CCG 432 Leu Gly Leu Ser Leu Ala Ala Gly Gly His Leu Thr His Gly Ala Pro 130 135 140 GTG AAC CAG TCC GGC AAG TGG TTC AAG GCC GTG CAC TAC ATG GTC AAG 480 Val Asn Gln Ser Gly Lys Trp Phe Lys Ala Val His Tyr Met Val Lys 145 150 155 160 CCC GAC TCG CAC CTC ATC GAC ATG GAC GAA GTG CGC AAG CTG GCC CAG 528 Pro Asp Ser His Leu Ile Asp Met Asp Glu Val Arg Lys Leu Ala Gln 165 170 175 GAG CAC AAG CCG CGC ATC ATC ATC GCT GGT GGT TCG GCC TAT CCG CGC 576 Glu His Lys Pro Arg Ile Ile Ile Ala Gly Gly Ser Ala Tyr Pro Arg 180 185 190 AAG ATC GAT TTC GCT GCA TTT CGC GCG ATT GCG GAT GAG GTT GGC GCG 624 Lys Ile Asp Phe Ala Ala Phe Arg Ala Ile Ala Asp Glu Val Gly Ala 195 200 205 ATC TTC CTC GTC GAT ATG GCG CAC TTC GCC GGT CTT GTT GCG GCC GGT 672 Ile Phe Leu Val Asp Met Ala His Phe Ala Gly Leu Val Ala Ala Gly 210 215 220 CTC ATT CCG AGC CCG TTC CCG CAT GCC CAC GTC GTA ACG ACG ACG ACG 720 Leu Ile Pro Ser Pro Phe Pro His Ala His Val Val Thr Thr Thr Thr 225 230 235 240 CAC AAG ACG CTG CGC GGA CCC CGT GGC GGC ATG ATT TTA ACG AAC GAC 768 His Lys Thr Leu Arg Gly Pro Arg Gly Gly Met Ile Leu Thr Asn Asp 245 250 255 GCG GAC ATC GCG AAG AAG ATC AAC TCG GCG ATC TTC CCT GGC ATT CAG 816 Ala Asp Ile Ala Lys Lys Ile Asn Ser Ala Ile Phe Pro Gly Ile Gln 260 265 270 GGC GGC CCG CTC ATG CAC GTT ATC GCC GGT AAG GCC GTC GCA TTC GGC 864 Gly Gly Pro Leu Met His Val Ile Ala Gly Lys Ala Val Ala Phe Gly 275 280 285 GAG GCT CTG CGT CCG GAC TTC AAG GTC TAC ATC AAG CAG GTG ATG GAC 912 Glu Ala Leu Arg Pro Asp Phe Lys Val Tyr Ile Lys Gln Val Met Asp 290 295 300 AAC GCC CGC GCG CTC GGT GAA GTG CTT GTG CAG AAC GGC TTC GCG CTC 960 Asn Ala Arg Ala Leu Gly Glu Val Leu Val Gln Asn Gly Phe Ala Leu 305 310 315 320 GTT TCT GGC GGC ACC GAC ACG CAC CTC GTT CTC GTC GAT CTG CGG CCG 1008 Val Ser Gly Gly Thr Asp Thr His Leu Val Leu Val Asp Leu Arg Pro 325 330 335 AAG AAG CTG ACC GGT ACG AAG GCT GAG AAG GCG CTT GGC CGT GCC AAC 1056 Lys Lys Leu Thr Gly Thr Lys Ala Glu Lys Ala Leu Gly Arg Ala Asn 340 345 350 ATC ACC TGC AAC AAG AAC GGC ATT CCG TTC GAC CCC GAG AAG CCG ATG 1104 Ile Thr Cys Asn Lys Asn Gly Ile Pro Phe Asp Pro Glu Lys Pro Met 355 360 365 GTG ACG TCG GGC ATT CGT TTG GGT TCG CCT GCA GGC ACG ACG CGC GGC 1152 Val Thr Ser Gly Ile Arg Leu Gly Ser Pro Ala Gly Thr Thr Arg Gly 370 375 380 TTC GGC GTT GCC GAA TTC CAG GAA ATC GGC CGC CTG ATC TCG GAA GTT 1200 Phe Gly Val Ala Glu Phe Gln Glu Ile Gly Arg Leu Ile Ser Glu Val 385 390 395 400 CTG GAT GGC GTT GCG AAG AAC GGC GAA GAT GGC AAC GGC GCC GTC GAA 1248 Leu Asp Gly Val Ala Lys Asn Gly Glu Asp Gly Asn Gly Ala Val Glu 405 410 415 GCG GCC GTC AAG GCA AAG GCT ATC GCT CTT TGC GAT CGC TTC CCG ATT 1296 Ala Ala Val Lys Ala Lys Ala Ile Ala Leu Cys Asp Arg Phe Pro Ile 420 425 430 TAC GCA 1302 Tyr Ala 434
SEQ ID NO: 2 Sequence length: 434 Sequence type: Amino acid Sequence type: Protein Origin organism name: Hyphomicrium methyloboram
obium methyloborum) Strain name: GM2 Sequence: ATG TCG TCC GCA CCG GCT GCA GGT ACT GCT TCT ACG TCC CGT TTT TTC 48 Met Ser Ser Ala Pro Ala Ala Gly Thr Ala Ser Thr Ser Arg Phe Phe 1 5 10 15 AAG TCG CAC GTG TCG GAG ACG GAT CCC GAT ATT TTC AGC GCC ATC CAA 96 Lys Ser His Val Ser Glu Thr Asp Pro Asp Ile Phe Ser Ala Ile Gln 20 25 30 AAG GAA TTT GGC CGC CAG CAG CAC GAG ATC GAG CTG ATC GCG TCT GAG 144 Lys Glu Phe Gly Arg Gln Gln His Glu Ile Glu Leu Ile Ala Ser Glu 35 40 45 AAC ATC GTT TCG CAG GCC GTT CTC GAT GCA GCT GGT TCG GTG CTG ACC 192 Asn Ile Val Ser Gln Ala Val Leu Asp Ala Ala Gly Ser Val Leu Thr 50 55 60 AAC AAG TAT GCC GAG GGC TAT CCG GGC AAG CGC TAC TAC GGC GGC TGC 240 Asn Lys Tyr Ala Glu Gly Tyr Pro Gly Lys Arg Tyr Tyr Gly Gly Cys 65 70 75 80 CAG TAC GTC GAC ATC GTT GAA GAC ATC GCG ATC GAC CGC GCA AAG AAG 288 Gln Tyr Val Asp Ile Val Glu Asp Ile Ala Ile Asp Arg Ala Lys Lys 85 90 95 CTC TTC AAC TGC GAA TTC GCG AAC GTG CAG CCG AAC TCC GGC AGC CAG 336 Leu Phe Asn Cys Glu Phe Ala Asn Val Gln Pro Asn Ser Gly Ser Gln 100 105 110 GCG AAC CAG GGC GTG TTC AAT GCG CTC GCG CAG CCG GGC GAC ACC ATC 384 Ala Asn Gln Gly Val Phe Asn Ala Leu Ala Gln Pro Gly Asp Thr Ile 115 120 125 CTC GGT CTC TCG CTC GCT GCC GGT GGT CAC TTG ACC CAC GGC GCG CCG 432 Leu Gly Leu Ser Leu Ala Ala Gly Gly His Leu Thr His Gly Ala Pro 130 135 140 GTG AAC CAG TCC GGC AAG TGG TTC AAG GCC GTG CAC TAC ATG GTC AAG 480 Val Asn Gln Ser Gly Lys Trp Phe Lys Ala Val His Tyr Met Val Lys 145 150 155 160 CCC GAC TCG CAC CTC ATC GAC ATG GAC GAA GTG CGC AAG CTG GCC CAG 528 Pro Asp Ser His Leu Ile Asp Met Asp Glu Val Arg Lys Leu Ala Gln 165 170 175 GAG CAC AAG CCG CGC ATC ATC ATC GCT GGT GGT TCG GCC TAT CCG CGC 576 Glu His Lys Pro Arg Ile Ile Ile Ala Gly Gly Ser Ala Tyr Pro Arg 180 185 190 AAG ATC GAT TTC GCT GCA TTT CGC GCG ATT GCG GAT GAG GTT GGC GCG 624 Lys Ile Asp Phe Ala Ala Phe Arg Ala Ile Ala Asp Glu Val Gly Ala 195 200 205 ATC TTC CTC GTC GAT ATG GCG CAC TTC GCC GGT CTT GTT GCG GCC GGT 672 Ile Phe Leu Val Asp Met Ala His Phe Ala Gly Leu Val Ala Ala Gly 210 215 220 CTC ATT CCG AGC CCG TTC CCG CAT GCC CAC GTC GTA ACG ACG ACG ACG 720 Leu Ile Pro Ser Pro Phe Pro His Ala His Val Val Thr Thr Thr Thr 225 230 235 240 240 CAC AAG ACG CTG CGC GGA CCC CGT GGC GGC ATG ATT TTA ACG AAC GAC 768 His Lys Thr Leu Arg Gly Pro Arg Gly Gly Met Ile Leu Thr Asn Asp 245 250 255 GCG GAC ATC GCG AAG AAG ATC AAC TCG GCG ATC TTC CCT GGC ATT CAG 816 Ala Asp Ile Ala Lys Lys Ile Asn Ser Ala Ile Phe Pro Gly Ile Gln 260 265 270 GGC GGC CCG CTC ATG CAC GTT ATC GCC GGT AAG GCC GTC GCA TTC GGC 864 Gly Gly Pro Leu Met His Val Ile Ala Gly Lys Ala Val Ala Phe Gly 275 280 285 GAG GCT CTG CGT CCG GAC TTC AAG GTC TAC ATC AAG CAG GTG ATG GAC 912 Glu Ala Leu Arg Pro Asp Phe Lys Val Tyr Ile Lys Gln Val Met Asp 290 295 300 AAC GCC CGC GCG CTC GGT GAA GTG CTT GTG CAG AAC GGC TTC GCG CTC 960 Asn Ala Arg Ala Leu Gly Glu Val Leu Val Gln Asn Gly Phe Ala Leu 305 310 315 320 GTT TCT GGC GGC ACC GAC ACG CAC CTC GTT CTC GTC GAT CTG CGG CCG 1008 Val Se r Gly Gly Thr Asp Thr His Leu Val Leu Val Asp Leu Arg Pro 325 330 335 AAG AAG CTG ACC GGT ACG AAG GCT GAG AAG GCG CTT GGC CGT GCC AAC 1056 Lys Lys Leu Thr Gly Thr Lys Ala Glu Lys Ala Leu Gly Arg Ala Asn 340 345 350 ATC ACC TGC AAC AAG AAC GGC ATT CCG TTC GAC CCC GAG AAG CCG ATG 1104 Ile Thr Cys Asn Lys Asn Gly Ile Pro Phe Asp Pro Glu Lys Pro Met 355 360 365 GTG ACG TCG GGC ATT CGT TTG GGT TCG CCT GCA GGC ACG ACG CGC GGC 1152 Val Thr Ser Gly Ile Arg Leu Gly Ser Pro Ala Gly Thr Thr Arg Gly 370 375 380 TTC GGC GTT GCC GAA TTC CAG GAA ATC GGC CGC CTG ATC TCG GAA GTT 1200 Phe Gly Val Ala Glu Phe Gln Glu Ile Gly Arg Leu Ile Ser Glu Val 385 390 395 400 CTG GAT GGC GTT GCG AAG AAC GGC GAA GAT GGC AAC GGC GCC GTC GAA 1248 Leu Asp Gly Val Ala Lys Asn Gly Glu Asp Gly Asn Gly Ala Val Glu 405 410 415 GCG GCC GTC AAG GCA AAG GCT ATC GCT CTT TGC GAT CGC TTC CCG ATT 1296 Ala Ala Val Lys Ala Lys Ala Ile Ala Leu Cys Asp Arg Phe Pro Ile 420 425 430 TAC GCA 1302 Tyr Ala 434

【0040】配列番号:3 配列の長さ:24 配列の型:核酸 配列の種類:他の核酸 合成DNA 配列: GCTGACCAAC AAATATGCTG AAGG 24SEQ ID NO: 3 Sequence length: 24 Sequence type: Nucleic acid Sequence type: Other nucleic acid Synthetic DNA Sequence: GCTGACCAAC AAATATGCTG AAGG 24

【0041】配列番号:4 配列の長さ:29 配列の型:核酸 配列の種類:他の核酸 合成DNA 配列: ACCGGGTTCG GGTAGACGCC AGCAGCAAC 29SEQ ID NO: 4 Sequence length: 29 Sequence type: Nucleic acid Sequence type: Other nucleic acid Synthetic DNA Sequence: ACCGGGTTCG GGTAGACGCC AGCAGCAAC 29

【0042】配列番号:5 配列の長さ:18 配列の型:核酸 配列の種類:他の核酸 合成DNA 配列: ACATGTCGTC CGCACCGG 18SEQ ID NO: 5 Sequence length: 18 Sequence type: Nucleic acid Sequence type: Other nucleic acid Synthetic DNA Sequence: ACATGTCGTC CGCACCGG 18

【0043】配列番号:6 配列の長さ:20 配列の型:核酸 配列の種類:他の核酸 合成DNA 配列: GCGTAAACAG CGTTATGCGT 20SEQ ID NO: 6 Sequence length: 20 Sequence type: Nucleic acid Sequence type: Other nucleic acid Synthetic DNA Sequence: GCGTAAACAG CGTTATGCGT 20

【図面の簡単な説明】[Brief description of drawings]

【図1】は、組換えプラスミドpSA1のHindIII 断片
の制限酵素地図を示す。
FIG. 1 shows a restriction map of the HindIII fragment of recombinant plasmid pSA1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C12R 1:19)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1記載の塩基配列のうち、15
4〜1458番目の塩基配列を含むセリンヒドロキシメ
チルトランスフェラーゼをコードするDNA。
1. 15 of the nucleotide sequences of SEQ ID NO: 1
A DNA encoding a serine hydroxymethyl transferase containing the nucleotide sequence of the 4th to 1458th positions.
【請求項2】 ハイホミクロビウム・メチロボラムGM
2(FERM BP-4039)が生産する請求項1記載のDNA。
2. Hyphomicrobium methyloboram GM
2. The DNA according to claim 1, which is produced by 2 (FERM BP-4039).
【請求項3】 請求項1記載のDNAが組み込まれた組
換え体ベクター。
3. A recombinant vector incorporating the DNA according to claim 1.
【請求項4】 請求項3記載の組換え体ベクターを含有
する微生物。
4. A microorganism containing the recombinant vector according to claim 3.
【請求項5】 請求項3記載の組換え体ベクターを含有
するエシェリキア・コリに属する微生物。
5. A microorganism belonging to Escherichia coli containing the recombinant vector according to claim 3.
【請求項6】 請求項3記載の組換え体ベクターを含有
するエシェリキア・コリME5427/pAB2(FERM BP-4040) 。
6. Escherichia coli ME5427 / pAB2 (FERM BP-4040) containing the recombinant vector according to claim 3.
JP5846393A 1992-10-23 1993-03-18 Dna encoding serine hydroxylmethyltransferase Pending JPH06181776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5846393A JPH06181776A (en) 1992-10-23 1993-03-18 Dna encoding serine hydroxylmethyltransferase

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28573892 1992-10-23
JP4-285738 1992-10-23
JP5846393A JPH06181776A (en) 1992-10-23 1993-03-18 Dna encoding serine hydroxylmethyltransferase

Publications (1)

Publication Number Publication Date
JPH06181776A true JPH06181776A (en) 1994-07-05

Family

ID=26399519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5846393A Pending JPH06181776A (en) 1992-10-23 1993-03-18 Dna encoding serine hydroxylmethyltransferase

Country Status (1)

Country Link
JP (1) JPH06181776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064899A3 (en) * 2000-03-01 2002-08-15 Forschungszentrum Juelich Gmbh Nucleotide sequences encoding proteins that take part in the biosynthesis of l-serine, improved method for microbially producing l-serine, and genetically modified microorganism suitable for use in said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064899A3 (en) * 2000-03-01 2002-08-15 Forschungszentrum Juelich Gmbh Nucleotide sequences encoding proteins that take part in the biosynthesis of l-serine, improved method for microbially producing l-serine, and genetically modified microorganism suitable for use in said method

Similar Documents

Publication Publication Date Title
Pucci et al. Staphylococcus haemolyticus contains two D-glutamic acid biosynthetic activities, a glutamate racemase and a D-amino acid transaminase
JP4074365B2 (en) Lactate dehydrogenase gene and gene-disrupted strain
Carlson et al. Characterization of the gene encoding glutamine synthetase I (glnA) from Bradyrhizobium japonicum
US5510473A (en) Cloning of the recA gene from thermus aquaticus YT-1
US6531308B2 (en) Ketoreductase gene and protein from yeast
JPH10309192A (en) Thermostable diaphorase gene
US5250415A (en) Process for the preparation of glucose dehydrogenase from Bacillus megaterium
US5770415A (en) Peptidoglycan biosynthetic gene mur a from Strepococcus pneumoniae
JPH06181776A (en) Dna encoding serine hydroxylmethyltransferase
JP3850557B2 (en) Novel gene and transformed cell carrying the gene
JP3325128B2 (en) Novel creatine amidinohydrolase gene, novel recombinant DNA and method for producing creatine amidinohydrolase
JP3498808B2 (en) DNA polymerase gene
JP4022784B2 (en) Novel hexokinase
JP2001054387A (en) Improved rna polymerase
JP3489604B2 (en) 5-aminolevulinic acid synthase gene
JPH10248574A (en) New lactic acid-oxidizing enzyme
JP2001275669A (en) New catalase gene and method for producing new catalase using the gene
JP2001037480A (en) Mutated glucose-6-phosphate dehydrogenase and its production
JP3058504B2 (en) Aldehyde dehydrogenase
JP3829950B2 (en) Novel creatinine amide hydrolase
JPH10262674A (en) Gene coding for alkaline phosphatase
JPH099973A (en) Nitrile hydratase gene and amidase gene derived from rhodococcus bacterium
JPH08238087A (en) Sarcosine oxidase and its production
US5821335A (en) Biosynthetic gene murg from streptococcus pneumoniae
JPH119279A (en) Gene for encoding glycerol kinase

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030401