JPH0618168B2 - Exposure method for exposing an original image pattern on the upper surface of a semiconductor wafer - Google Patents

Exposure method for exposing an original image pattern on the upper surface of a semiconductor wafer

Info

Publication number
JPH0618168B2
JPH0618168B2 JP60038562A JP3856285A JPH0618168B2 JP H0618168 B2 JPH0618168 B2 JP H0618168B2 JP 60038562 A JP60038562 A JP 60038562A JP 3856285 A JP3856285 A JP 3856285A JP H0618168 B2 JPH0618168 B2 JP H0618168B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
reduction lens
exposure method
original image
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60038562A
Other languages
Japanese (ja)
Other versions
JPS60221759A (en
Inventor
喜雄 河村
明紘 高梨
利栄 黒崎
伸治 国▲吉▼
純男 保坂
恒男 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60038562A priority Critical patent/JPH0618168B2/en
Publication of JPS60221759A publication Critical patent/JPS60221759A/en
Publication of JPH0618168B2 publication Critical patent/JPH0618168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Holders For Sensitive Materials And Originals (AREA)

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は、原画パターンを、半導体ウエハ上面にステッ
プ・アンド・リピートしながら、縮小レンズによって縮
小投影露光する露光方法の分野に属する。
DETAILED DESCRIPTION OF THE INVENTION "Object of the Invention" (Field of Industrial Application) The present invention relates to an exposure method in which an original image pattern is subjected to reduction projection exposure with a reduction lens while step-and-repeat on the upper surface of a semiconductor wafer. Belong to.

(従来の技術) 従来、上記分野の露光方法としては、特開昭52−55
472号公報に記載されたものが知られている。
(Prior Art) Conventionally, as an exposure method in the above field, Japanese Patent Laid-Open No. 52-55
The one described in Japanese Patent No. 472 is known.

この従来の技術は、 (1)レンズの光軸に垂直な平面上で、レンズの周辺に
正方形に配置された4つの空気センサの開口と、これら
開口の直下における半導体ウエハ上面との距離に応じた
4つの信号を検出し、 (2)空気センサからの4つの信号の和による1つの出
力値と、 (3)それぞれ対角線上位置の2つの開口からの信号の
差による2つの出力値とを使い、 (4)半導体上面の焦点合わせと傾き調整とを同時に行
っていた。
This conventional technique is (1) according to the distance between the openings of four air sensors arranged in a square around the lens on a plane perpendicular to the optical axis of the lens and the upper surface of the semiconductor wafer immediately below these openings. 4 signals are detected, and (2) one output value resulting from the sum of the four signals from the air sensor, and (3) two output values resulting from the difference between the signals from the two diagonally located openings are detected. (4) Focusing and tilt adjustment of the upper surface of the semiconductor were performed at the same time.

この空気センサは、第1図に示すように、縮小レンズの
周辺の光学アセンブリ中の4カ所の開口101、10
2、103、104と、これら開口の直下における半導
体ウエハ上面との距離を同時に検出するものである。そ
して、空気センサから同時に測定される4カ所の開口か
らの検出信号を用い、いわゆる零点法により、試料ホル
ダーの傾きを調整する駆動機構にフィードバックして、
半導体ウエハ上面の傾きを矯正し、焦点合わせを行って
いた。
This air sensor has four openings 101, 10 in the optical assembly around the reduction lens, as shown in FIG.
The distances 2, 103 and 104 and the upper surface of the semiconductor wafer immediately below these openings are simultaneously detected. Then, by using the detection signals from the four openings simultaneously measured from the air sensor, the so-called zero point method is used to feed back to the drive mechanism for adjusting the inclination of the sample holder,
The inclination of the upper surface of the semiconductor wafer was corrected and focusing was performed.

要するに、従来の技術の半導体ウエハ上面の露光方法で
は、光学アセンブリ中の4カ所の開口部を使って、同時
に測定される4カ所の測定点までの距離が所定値になる
ように半導体ウエハ上面の傾きを露光のたびごとに矯正
して露光を行うものとなっていた。
In short, in the conventional exposure method for the upper surface of the semiconductor wafer, the four openings in the optical assembly are used so that the distances to the four measurement points measured at the same time become a predetermined value. The exposure is performed by correcting the inclination for each exposure.

(発明が解決しようとする課題) (従来の技術の問題点) この従来の技術では、第1図に示すように、空気センサ
の開口101、102、103、104が縮小レンズ1
00より外側にある。縮小レンズの結像面の直径は、結
像光学系であるので縮小レンズの直径より小さい。した
がって、4つの開口が対向した半導体ウエハ上面上の4
カ所は、縮小レンズの結像面と同一の大きさの半導体ウ
エハ上面の被露光領域を取り囲む外周上の4カ所とな
る。
(Problems to be Solved by the Invention) (Problems of Conventional Technique) In this conventional technique, as shown in FIG. 1, the apertures 101, 102, 103, 104 of the air sensor have the reduction lens 1
It is outside of 00. The diameter of the image forming surface of the reduction lens is smaller than that of the reduction lens because it is an image forming optical system. Therefore, the four holes on the upper surface of the semiconductor wafer are opposed to each other.
There are four locations on the outer periphery that surround the exposed area on the upper surface of the semiconductor wafer having the same size as the image plane of the reduction lens.

そのため、第2図(a)のように、半導体ウエハ上面の
平坦度が良好な場合には、被露光領域と縮小レンズの結
像面とを一致させることができるが、第2図(b)のよ
うに、半導体ウエハ上面に凹凸部分があり平坦度が悪い
場合に、被露光領域外の4カ所で距離を測って半導体ウ
エハ上面の傾きを矯正するため、この4カ所の内側にあ
る被露光領域の位置を検出することはできない。したが
って、この検出される4カ所からの信号によって半導体
ウエハ上面と縮小レンズの結像面とをほぼ平行にできて
も、被露光領域に凹凸部分のある場合には、この半導体
ウエハ上面と縮小レンズの結像面とを一致させることが
できなくなる場合があり、必要とされる解像力が得られ
ないという場合がしばしば生じるという問題があること
を発見した。
Therefore, as shown in FIG. 2A, when the flatness of the upper surface of the semiconductor wafer is good, the exposed region and the image plane of the reduction lens can be made to coincide with each other, but FIG. When the top surface of the semiconductor wafer has unevenness and the flatness is poor, the distances are measured at four locations outside the exposure area to correct the inclination of the top surface of the semiconductor wafer. It is not possible to detect the position of the area. Therefore, even if the upper surface of the semiconductor wafer and the image plane of the reduction lens can be made substantially parallel to each other by the signals from the four detected positions, if the exposed area has an uneven portion, the upper surface of the semiconductor wafer and the reduction lens are reduced. It has been found that there are cases in which it becomes impossible to match the image plane of the image, and the required resolution cannot often be obtained, which is a problem.

(技術的課題) 本発明が解決しようとする課題は、上記分野において、
縮小レンズの結像面直下で、半導体ウエハ上面までの距
離を検出することである。
(Technical Problems) The problems to be solved by the present invention are
It is to detect the distance to the upper surface of the semiconductor wafer just below the image plane of the reduction lens.

「発明の構成」 (技術課題を解決するための手段) 上記課題を解決するため、本発明は、上記分野におい
て、半導体ウエハ上面の少なくとも異なる3カ所で、該
縮小レンズの結像面直下の結像面から半導体ウエハ上面
の被露光領域までの偏差を検出する検出手段を用いて、
該偏差を検出し、その偏差がそれぞれゼロになるよう
に、該縮小レンズの光軸方向に該半導体ウエハを載置す
る台を上記少なくとも3カ所に対応する駆動手段を用い
て、それぞれ移動し半導体ウエハ上面の傾きを矯正する
工程と、 その後、該検出手段を用いて、半導体ウエハ上面を光軸
方向に移動させ、該縮小レンズの結像面に半導体ウエハ
上面の被露光領域を保持しながら、逐次該原画パターン
を露光する工程とを備えしめる、という技術的手段を講
じた。
[Structure of the Invention] (Means for Solving the Technical Problem) In order to solve the above-mentioned problems, the present invention relates to the above-mentioned field, in which at least three different points on the upper surface of a semiconductor wafer are connected directly below the image plane of the reduction lens. Using the detection means for detecting the deviation from the image plane to the exposed area on the upper surface of the semiconductor wafer,
Detecting the deviation, and moving each of the mounts for mounting the semiconductor wafer in the optical axis direction of the reduction lens by using driving means corresponding to at least the three positions so that the deviation becomes zero. A step of correcting the inclination of the upper surface of the wafer, and thereafter, using the detecting means, moving the upper surface of the semiconductor wafer in the optical axis direction, while holding the exposed region of the upper surface of the semiconductor wafer on the image forming surface of the reduction lens, And the step of exposing the original image pattern one after another.

(作用) 上記技術的手段においては、縮小レンズの結像面から半
導体ウエハ上面の被露光領域までの偏差を該縮小レンズ
の結像面の直下で検出する検出手段を用いているので、
縮小レンズの結像面直下での半導体ウエハ上面までの距
離検出が実現される。
(Operation) In the above technical means, since the detecting means for detecting the deviation from the image plane of the reduction lens to the exposed region on the upper surface of the semiconductor wafer is provided just below the image plane of the reduction lens,
It is possible to detect the distance to the upper surface of the semiconductor wafer just below the image plane of the reduction lens.

(実施例) 以下に、この発明の好適一実施例を図面を参照しながら
説明する。
(Embodiment) A preferred embodiment of the present invention will be described below with reference to the drawings.

第3図はこの実施例に係る装置の概略図で、縮小レンズ
に設けた一つの検出器を用いて、半導体ウエハ上面の傾
きを検出して矯正し、焦点合わせをし、半導体ウエハ上
面に露光する方法を行うことのできる縮小投影露光装置
の概略図である。縮小レンズ18は光軸18aが台板1
1の表面、すなわちステージ10の移動する案内面11
aに垂直になるように設けられ、かつ縮小レンズ18の
下端には縮小レンズの結像面に半導体ウエハ上面を合わ
せ、すなわち焦点合わせを行なうようにするため、半導
体ウエハ上面までの距離を検出する検出器19が取付け
てある。半導体ウエハ3は半導体ウエハ台6上に載置さ
れる。半導体ウエハ台6は第1の支持機構7によって半
導体ウエハ上面の傾きを微細に調整し得るように移動台
8上に設けられ、また移動台8は第2の支持機構9によ
り上下方向に微細に移動し得るようにステージ10上に
設けられ、さらにステージ10は移動機構(図示せず)
により台板11上を前後左右に移動し得るように構成さ
れている。
FIG. 3 is a schematic view of an apparatus according to this embodiment, in which one detector provided on the reduction lens is used to detect and correct the tilt of the upper surface of the semiconductor wafer, focus the light, and expose the upper surface of the semiconductor wafer. FIG. 3 is a schematic view of a reduction projection exposure apparatus capable of performing the method. The optical axis 18a of the reduction lens 18 is the base plate 1
1, the moving guide surface 11 of the stage 10.
The distance to the upper surface of the semiconductor wafer is detected in order to align the upper surface of the semiconductor wafer with the image forming surface of the reducing lens at the lower end of the reducing lens 18, that is, to perform focusing. A detector 19 is attached. The semiconductor wafer 3 is placed on the semiconductor wafer table 6. The semiconductor wafer table 6 is provided on the moving table 8 so that the inclination of the upper surface of the semiconductor wafer can be finely adjusted by the first supporting mechanism 7, and the moving table 8 is finely moved vertically by the second supporting mechanism 9. It is provided on the stage 10 so that it can move, and the stage 10 has a moving mechanism (not shown).
Thus, it is configured to be able to move back and forth, left and right on the base plate 11.

第1の支持機構7は第4図の移動台8に示すように、移
動台8上のほぼ点対称の3点A、B、Cの位置にそれぞ
れ取付けた支点12、14、13を有する。このうち支
点12は固定支点であり、他の支点13と14はそれぞ
れ駆動機構13aと14aにより先端を微細に上下する
ことができる。半導体ウエハ台6は、これらの支点1
2、13、14の高さを変えることにより、その表面の
傾きを微細に調整可能である。第2の支持機構9は、移
動台8の裏面に取付けたくさび板15と、ステージ10
上に左右方向に移動可能なように設けたくさび板16と
から構成される。移動台8はガイド(図示せず)により
上下方向にのみ適宜移動可能な構造である。駆動機構1
7によりくさび板16を左右方向に移動することによ
り、移動台8を微細に上下移動できる。
As shown in the movable table 8 in FIG. 4, the first support mechanism 7 has fulcrums 12, 14, and 13 attached to the movable table 8 at three points A, B, and C that are substantially point-symmetrical. Of these, the fulcrum 12 is a fixed fulcrum, and the other fulcrums 13 and 14 can be finely moved up and down by the drive mechanisms 13a and 14a. The semiconductor wafer stage 6 has these fulcrums 1
By changing the height of 2, 13, and 14, the inclination of the surface can be finely adjusted. The second support mechanism 9 includes a wedge plate 15 attached to the back surface of the movable table 8 and a stage 10
The wedge plate 16 is provided on the upper side so as to be movable in the left-right direction. The moving table 8 has a structure that can be appropriately moved only in the vertical direction by a guide (not shown). Drive mechanism 1
By moving the wedge plate 16 in the left-right direction by 7, the moving table 8 can be finely moved up and down.

縮小レンズの結像面から半導体ウエハ上面までの偏差に
応じた検出信号は、検出器19から判別回路20に加え
られ、所定値(縮小レンズ18の焦点距離、すなわち基
準面となる縮小レンズの結像面の位置に対応した値)か
ら変化すると、その偏差に対応した信号が判別回路20
から増幅器21に加えられる。さらに信号は増幅されて
切換回路22に加わり、切換えにより駆動機構13a、
14a、または17に分配されて、それぞれに内蔵され
た駆動用のモータ(いずれも図示せず)が駆動する。
The detection signal corresponding to the deviation from the image plane of the reduction lens to the upper surface of the semiconductor wafer is applied from the detector 19 to the discrimination circuit 20 and a predetermined value (focal length of the reduction lens 18, that is, the connection of the reduction lens serving as the reference surface). (A value corresponding to the position of the image plane), a signal corresponding to the deviation is output to the discrimination circuit 20.
To the amplifier 21. Further, the signal is amplified and added to the switching circuit 22, and by switching, the drive mechanism 13a,
It is distributed to 14a or 17 and a driving motor (not shown) incorporated therein is driven.

次に、縮小レンズの結像面を基準面として、この縮小レ
ンズの結像面から半導体ウエハ上面までの偏差を被露光
領域で検出する検出器を用いて、該縮小レンズの結像面
と該被露光領域との偏差を検出し、半導体ウエハ上面の
少なくとも異なる3カ所で該偏差が所定値になるように
該半導体ウエハ上面の傾きを矯正すれば、半導体ウエハ
上面の少なくとも異なる3カ所で、半導体ウエハ上面が
縮小レンズの結像面とほぼ平行となる矯正方法の手順を
述べる。
Next, using the image forming surface of the reduction lens as a reference plane, a detector for detecting a deviation from the image forming surface of the reduction lens to the upper surface of the semiconductor wafer in the exposed area is used to detect the image formation surface of the reduction lens and the image forming surface. If the deviation from the exposed area is detected and the inclination of the upper surface of the semiconductor wafer is corrected so that the deviation becomes a predetermined value at at least three different points on the upper surface of the semiconductor wafer, the semiconductor is removed at at least three different points on the upper surface of the semiconductor wafer. The procedure of the correction method in which the upper surface of the wafer is substantially parallel to the image plane of the reduction lens will be described.

搬送機構(図示せず)により半導体ウエハ台6上に半導
体ウエハ3を置き、ステージ10を台板11上で移動さ
せ、移動台上の支点12の位置Aを検出器19の直下に
位置決めする。ここで、切換回路22を駆動機構17の
モータに切換え、増幅器21の出力、すなわち支点12
上方の検出器から求められる半導体ウエハ上面との距
離、すなわち、縮小レンズの結像面からの偏差に対応し
た出力が駆動機構17に加わり、くさび板16が左右に
移動して半導体ウエハ台を微細に上下動して、半導体ウ
エハ上面のA点部分は縮小レンズの焦点位置に来る。
The semiconductor wafer 3 is placed on the semiconductor wafer base 6 by a transfer mechanism (not shown), the stage 10 is moved on the base plate 11, and the position A of the fulcrum 12 on the moving base is positioned directly below the detector 19. Here, the switching circuit 22 is switched to the motor of the drive mechanism 17, and the output of the amplifier 21, that is, the fulcrum 12
The output corresponding to the distance from the upper surface of the semiconductor wafer, which is obtained from the upper detector, that is, the output corresponding to the deviation from the image plane of the reduction lens is applied to the driving mechanism 17, and the wedge plate 16 moves left and right to finely move the semiconductor wafer table. Then, the point A on the upper surface of the semiconductor wafer comes to the focal position of the reduction lens.

次に、切換回路22を駆動機構13aのモータに切換
え、ステージ10を移動させて支点13の位置Cを縮小
レンズの光軸18a上の検出器の直下に位置決めする。
この状態で駆動機構13aを動作させて、半導体ウエハ
上面のC点部分を焦点位置に合わせる。
Next, the switching circuit 22 is switched to the motor of the drive mechanism 13a, and the stage 10 is moved to position the position C of the fulcrum 13 directly below the detector on the optical axis 18a of the reduction lens.
In this state, the drive mechanism 13a is operated to adjust the point C on the upper surface of the semiconductor wafer to the focal position.

さらに切換回路22を駆動機構14aのモータに切換
え、ステージ10を移動し、移動台上のB点を縮小レン
ズの光軸18aの検出器の直下に位置させて焦点合わせ
を行い、半導体ウエハ上面のB点部分を焦点位置に合わ
せる。
Further, the switching circuit 22 is switched to the motor of the drive mechanism 14a, the stage 10 is moved, and the point B on the moving table is positioned immediately below the detector of the optical axis 18a of the reduction lens to perform focusing, and the upper surface of the semiconductor wafer is focused. Align the point B with the focus position.

その結果、この半導体ウエハ上面の3カ所の被露光領域
が、基準面である縮小レンズの結像面に合致するので、
この半導体ウエハ上面の3カ所の被露光領域が縮小レン
ズの光軸18aに直交するように、半導体ウエハ上面の
傾きが矯正される。
As a result, the three exposed regions on the upper surface of the semiconductor wafer coincide with the image plane of the reduction lens, which is the reference plane.
The inclination of the upper surface of the semiconductor wafer is corrected so that the three exposed regions on the upper surface of the semiconductor wafer are orthogonal to the optical axis 18a of the reduction lens.

次に、回路22を駆動機構17のモータに切換え、検出
器19から送出した距離検出信号を判別回路20に加
え、所定値の偏差に対応した信号を増幅して切換回路2
2に加えて駆動機構17のモータを駆動して半導体ウエ
ハ上面を縮小レンズの光軸方向に移動させることによっ
て自動的に半導体ウエハ上面と縮小レンズの結像面とを
ほぼ平行に維持したまま、半導体ウエハ上面の被露光領
域を焦点位置に保持しながら露光することができる。
Next, the circuit 22 is switched to the motor of the drive mechanism 17, the distance detection signal sent from the detector 19 is added to the discrimination circuit 20, and the signal corresponding to the deviation of the predetermined value is amplified to switch the switching circuit 2
In addition to 2, by driving the motor of the drive mechanism 17 to move the upper surface of the semiconductor wafer in the optical axis direction of the reduction lens, the upper surface of the semiconductor wafer and the image plane of the reduction lens are automatically maintained substantially parallel to each other, It is possible to perform exposure while holding the exposed region on the upper surface of the semiconductor wafer at the focal position.

すなわち、縮小レンズの結像面と半導体ウエハ上面の被
露光領域とを常に合わせるように、ステージ10を台板
11上でステップ・アンド・リピート移動させながら、
半導体ウエハ上面に回路パターンをそのステップ・アン
ド・リピートの停止時に露光することができる。なお駆
動機構13a、14aおよび17は、それぞれモータが
増幅器21に接続されていない時はモータ回路を短絡す
る等の通常の保持手段を用いて固定することができる。
That is, while moving the stage 10 step-and-repeat on the base plate 11 so that the image forming surface of the reduction lens and the exposed region on the upper surface of the semiconductor wafer are always aligned,
The circuit pattern can be exposed on the upper surface of the semiconductor wafer when the step and repeat is stopped. The drive mechanisms 13a, 14a, and 17 can be fixed by using ordinary holding means such as short-circuiting the motor circuit when the motor is not connected to the amplifier 21.

「発明の効果」 本発明と同一の技術的課題を解決するには、半導体ウエ
ハ上面の少なくとも異なる3カ所で、該縮小レンズの結
像面直下の結像面から半導体ウエハ上面の被露光領域ま
での偏差を検出する検出手段を用いて、該偏差を検出
し、その偏差がそれぞれゼロになるように、該縮小レン
ズの光軸方向に該半導体ウエハを載置する台を上記少な
くとも3カ所に対応する駆動手段を用いて、それぞれ移
動し半導体ウエハ上面の傾きを矯正する工程のみを備え
しめるという技術的手段を講じても、先の作用の項で述
べたとおりにして、本発明の技術的課題は解決される訳
である。しかしながら、本発明では、この工程のみなら
ず、 その後、該検出手段を用いて、半導体ウエハ上面を光軸
方向に移動させ、該縮小レンズの結像面に半導体ウエハ
上面の被露光領域を保持しながら、逐次該原画パターン
を露光する工程をも備えしめるという技術的手段を講じ
たため、 上記のような、第一の工程のみを備えしめるという技術
的手段を講じた場合に比較して、 半導体ウエハ上面の光軸方向に移動させることによる縮
小レンズの結像面への半導体ウエハ上面の被露光領域の
一致度のさらなる向上という、 第二の工程を付加することによる工程増というマイナス
面を補って余りある利点を生じる。
[Advantages of the Invention] In order to solve the same technical problem as the present invention, from at least three different positions on the upper surface of a semiconductor wafer, from the image plane immediately below the image plane of the reduction lens to the exposed region on the upper surface of the semiconductor wafer. Detecting means for detecting the deviation of the semiconductor wafer by using the detecting means for detecting the deviation, and mounting the semiconductor wafer on the at least three places in the optical axis direction of the reduction lens so that the deviation becomes zero. Even if the technical means of providing only the step of correcting the inclination of the upper surface of the semiconductor wafer by using the driving means for moving, the technical problem of the present invention is as described in the above-mentioned action section. Is resolved. However, in the present invention, not only this step but also the detection means is used to move the upper surface of the semiconductor wafer in the optical axis direction to hold the exposed region of the upper surface of the semiconductor wafer on the image forming surface of the reduction lens. However, since the technical means of providing the step of sequentially exposing the original image pattern is taken, as compared with the case of taking the technical means of providing only the first step as described above, the semiconductor wafer Compensating for the negative side of increasing the number of steps by adding the second step, further improving the degree of coincidence of the exposed area on the upper surface of the semiconductor wafer with the image plane of the reduction lens by moving in the optical axis direction of the upper surface. It has a number of advantages.

【図面の簡単な説明】[Brief description of drawings]

第1図は半導体ウエハ上面の傾きを調整する従来の技術
における露光方法に使用されるレベリング装置の空気セ
ンサを示す説明図、第2図は従来の技術における問題を
説明する断面図、第3図は本発明の実施例を説明するた
めの構成図、第4図は移動台上の3点を示す説明図。 「符号の説明」 3……半導体ウエハ、6……半導体ウエハ台、7……第
1の支持機構、8……移動台、9……第2の支持機構、
10……ステージ、11……台板、12、13、14…
…支点、13a、14a……駆動機構、15、16……
くさび板、17……駆動機構、18……縮小レンズ、1
8a……光軸、19……検出器。
FIG. 1 is an explanatory view showing an air sensor of a leveling device used in a conventional exposure method for adjusting the inclination of the upper surface of a semiconductor wafer, and FIG. 2 is a sectional view explaining a problem in the conventional technique, and FIG. Is a configuration diagram for explaining an embodiment of the present invention, and FIG. 4 is an explanatory diagram showing three points on a movable table. "Explanation of reference numerals" 3 ... Semiconductor wafer, 6 ... Semiconductor wafer base, 7 ... First support mechanism, 8 ... Moving base, 9 ... Second support mechanism,
10 ... Stage, 11 ... Base plate, 12, 13, 14 ...
… Support points, 13a, 14a… Drive mechanism, 15, 16 ……
Wedge plate, 17 ... Drive mechanism, 18 ... Reduction lens, 1
8a ... optical axis, 19 ... detector.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7352−4M H01L 21/30 311 M (72)発明者 黒崎 利栄 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 国▲吉▼ 伸治 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 保坂 純男 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 寺澤 恒男 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭52−55472(JP,A) 特開 昭52−119927(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location 7352-4M H01L 21/30 311 M (72) Inventor Riei Kurosaki 1-280 Higashikoigakubo, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Kuniyoshi Shinji, 1-280, Higashi Koigakubo, Kokubunji, Tokyo (72) Hitachi, Ltd. Central Research Laboratory (72) Inventor, Sumio Hosaka 1-280, Higashi Koigakubo, Kokubunji, Tokyo Stock Hitachi, Ltd. Central Research Laboratory (72) Inventor Tsuneo Terasawa 1-280, Higashi Koigakubo, Kokubunji, Tokyo (56) References, Hitachi Central Research Laboratory (56) Reference JP-A-52-55472 (JP, A) JP-A-52- 119927 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原画パターンを、半導体ウエハ上面にステ
ップ・アンド・リピートしながら、縮小レンズによって
縮小投影露光する露光方法において、 半導体ウエハ上面の少なくとも異なる3カ所で、該縮小
レンズの結像面直下の結像面から半導体ウエハ上面の被
露光領域までの偏差を検出する検出手段を用いて、該偏
差を検出し、その偏差がそれぞれゼロになるように、該
縮小レンズの光軸方向に該半導体ウエハを載置する台を
上記少なくとも3カ所に対応する駆動手段を用いて、そ
れぞれ移動し半導体ウエハ上面の傾きを矯正する工程
と、 その後、該検出手段を用いて、半導体ウエハ上面を光軸
方向に移動させ、該縮小レンズの結像面に半導体ウエハ
上面の被露光領域を保持しながら、逐次該原画パターン
を露光する工程とからなる、原画パターンを半導体ウエ
ハ上面に縮小投影露光する露光方法。
1. An exposure method in which an original image pattern is reduced and projected and exposed by a reduction lens while step-and-repeat the upper surface of the semiconductor wafer, in which at least three different locations on the upper surface of the semiconductor wafer are directly under the image plane of the reduction lens. Detecting means for detecting the deviation from the image forming surface of the semiconductor wafer to the exposed area on the upper surface of the semiconductor wafer, and the semiconductor is arranged in the optical axis direction of the reduction lens so that the deviation becomes zero. And a step of moving the table on which the wafer is mounted using the driving means corresponding to at least three positions to correct the inclination of the upper surface of the semiconductor wafer, and then using the detecting means to move the upper surface of the semiconductor wafer in the optical axis direction. And sequentially exposing the original image pattern while holding the exposed region of the upper surface of the semiconductor wafer on the image forming surface of the reduction lens. Exposure method for reduction projection exposes the pattern on the semiconductor wafer top surface.
JP60038562A 1985-02-27 1985-02-27 Exposure method for exposing an original image pattern on the upper surface of a semiconductor wafer Expired - Lifetime JPH0618168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038562A JPH0618168B2 (en) 1985-02-27 1985-02-27 Exposure method for exposing an original image pattern on the upper surface of a semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038562A JPH0618168B2 (en) 1985-02-27 1985-02-27 Exposure method for exposing an original image pattern on the upper surface of a semiconductor wafer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6321993A Division JP2605644B2 (en) 1994-12-26 1994-12-26 Exposure apparatus and exposure method

Publications (2)

Publication Number Publication Date
JPS60221759A JPS60221759A (en) 1985-11-06
JPH0618168B2 true JPH0618168B2 (en) 1994-03-09

Family

ID=12528737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038562A Expired - Lifetime JPH0618168B2 (en) 1985-02-27 1985-02-27 Exposure method for exposing an original image pattern on the upper surface of a semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH0618168B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671338B2 (en) * 1987-12-25 1997-10-29 株式会社ニコン Exposure method and substrate attitude control method
JPH0237709A (en) * 1988-07-27 1990-02-07 Nikon Corp Aligner
JP2811314B2 (en) * 1989-01-25 1998-10-15 東京エレクトロン株式会社 Rotation processing device and resist processing device
JP2845994B2 (en) * 1989-10-25 1999-01-13 株式会社日立製作所 Method for correcting irradiation position deviation of charged particle beam and charged particle beam device
KR102563272B1 (en) * 2016-08-26 2023-08-03 한화정밀기계 주식회사 Tilting stage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2330030A1 (en) * 1975-10-31 1977-05-27 Thomson Csf NEW HIGH-PRECISION MASK PHOTOREPEATER
JPS587055B2 (en) * 1979-07-14 1983-02-08 株式会社ニコン Gap setting device in proximity aligner

Also Published As

Publication number Publication date
JPS60221759A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
US5153916A (en) Method and apparatus for detecting focal plane
US5914774A (en) Projection exposure apparatus with function to measure imaging characteristics of projection optical system
JPH0727857B2 (en) Projection optics
EP0017044A2 (en) A system for positioning a utilization device
JPH0618168B2 (en) Exposure method for exposing an original image pattern on the upper surface of a semiconductor wafer
JPH07142331A (en) Projection aligner
KR19990045161A (en) Positioning and Projection Exposure Equipment
JPH08124842A (en) Aligner
JP2605644B2 (en) Exposure apparatus and exposure method
JP3218466B2 (en) Exposure method and apparatus
US6545284B1 (en) Face position detection method and apparatus, and exposure method and exposure apparatus, a production method for an exposure apparatus and a production method for a semiconductor device
JP2000509854A (en) Systems and methods for optically aligning films and substrates used in printed circuit boards
JPH09283423A (en) Aligner and exposing method
JP3197629B2 (en) Light projection exposure equipment
JP3340495B2 (en) Electron beam drawing equipment
KR900001655B1 (en) Light exposure apparatus
JP2877835B2 (en) Reduction projection exposure equipment
KR100589108B1 (en) Exposure apparatus for preventing patterning error on a wafer
JPH0722107B2 (en) Exposure equipment
JP3673625B2 (en) Method for forming fine pattern
JPH06151278A (en) Focal point detecting method and focal point aligning method
JPH10256148A (en) Projection aligner
JPH0582410A (en) Method for detecting image forming plane
JPH0311540B2 (en)
JPH01164031A (en) Alignment device