JPH06180399A - Multilayer film mirror for x-ray, reflective x-ray mask and fabrication thereof - Google Patents

Multilayer film mirror for x-ray, reflective x-ray mask and fabrication thereof

Info

Publication number
JPH06180399A
JPH06180399A JP43A JP33473592A JPH06180399A JP H06180399 A JPH06180399 A JP H06180399A JP 43 A JP43 A JP 43A JP 33473592 A JP33473592 A JP 33473592A JP H06180399 A JPH06180399 A JP H06180399A
Authority
JP
Japan
Prior art keywords
multilayer film
mirror
layer
ray
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP43A
Other languages
Japanese (ja)
Other versions
JP3230105B2 (en
Inventor
Tetsuya Oshino
哲也 押野
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP33473592A priority Critical patent/JP3230105B2/en
Publication of JPH06180399A publication Critical patent/JPH06180399A/en
Application granted granted Critical
Publication of JP3230105B2 publication Critical patent/JP3230105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase freedom in relative positional relationship between a reflective mask and an optical focusing system. CONSTITUTION:A substance for which difference of refractive index of light having wavelength in X-ray region and refractive index in the vacuum is low and a substance having high difference of refractive index are laminated alternately on a substrate 2 to form a multilayer film mirror for X-ray. In such a multilayer film mirror, surface 3 of the multilayer film 1 is formed while inclining by a predetermined angle phi against the interfaces of respective layers constituting the multilayer film 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線投影露光やX線顕
微鏡等のX線の波長領域での反射光学系に用いられるX
線用多層膜ミラー、このX線用多層膜ミラーを用いたX
線投影露光における反射型マスクおよびX線用多層膜ミ
ラーの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray used for a reflection optical system in the X-ray wavelength region such as an X-ray projection exposure and an X-ray microscope.
X-ray multilayer mirror, X using this X-ray multilayer mirror
The present invention relates to a method of manufacturing a reflection type mask and a multilayer film mirror for X-ray in line projection exposure.

【0002】[0002]

【従来の技術】この種のX線用多層膜ミラーは、屈折率
の大きく異なる二種類の物質を基板上に数Å〜数十Åの
厚さで交互に積層させたものである。X線用多層膜ミラ
ーは、多数の界面で反射した光の干渉効果を利用したも
のであり、多層膜の1周期の長さ(周期長)をd、X線
の入射角をθ、X線の波長をλとすると、ブラッグの条
件(2d sinθ=nλ)を満たすとき高い反射率を示
す。
2. Description of the Related Art A multilayer film mirror for X-rays of this type is one in which two kinds of substances having greatly different refractive indexes are alternately laminated on a substrate in a thickness of several Å to several tens of Å. The multilayer mirror for X-rays utilizes the interference effect of light reflected at a large number of interfaces. The length of one cycle (cycle length) of the multilayer film is d, the incident angle of X-rays is θ, and the X-rays are X-rays. Where λ is the wavelength of, a high reflectance is exhibited when the Bragg condition (2d sin θ = nλ) is satisfied.

【0003】図11は従来のX線用多層膜ミラーを示す
概略断面図である。この図において、X線多層膜ミラー
は基板2の表面5上に形成された多層膜1を備え、この
多層膜1は、屈折率(すなわち真空中の屈折率に対する
X線領域の波長を有する光の屈折率の比)の大きく異な
る二種類の物質からなる層19、20が交互に形成され
てなる。従来のX線用多層膜ミラーは、多層膜1の界面
4(つまり層19、20の界面)がミラーの表面3に平
行であるため、ミラーの表面3の法線Nに対して対称的
な方向にのみX線を反射する。すなわち、入射X線6と
反射X線7は法線Nを挾んで対称な位置にある。従っ
て、多層膜ミラーは、可視光に対して一般に用いられる
鏡と同様に、表面の形状が平面の場合は光の進む向きを
変えたり、曲面の場合は光の広がりを変えたりすること
に利用される。さらに、曲面の多層膜ミラーを組み合わ
せることにより、X線用の顕微鏡や投影露光の結像光学
系にも応用される。
FIG. 11 is a schematic sectional view showing a conventional X-ray multilayer film mirror. In this figure, an X-ray multilayer mirror comprises a multilayer film 1 formed on a surface 5 of a substrate 2, which multilayer film 1 has a refractive index (that is, light having a wavelength in the X-ray region with respect to a refractive index in vacuum). Layers 19 and 20 composed of two kinds of substances having greatly different refractive index ratios are alternately formed. In the conventional multilayer mirror for X-rays, since the interface 4 of the multilayer film 1 (that is, the interface between the layers 19 and 20) is parallel to the surface 3 of the mirror, it is symmetrical with respect to the normal line N of the surface 3 of the mirror. Reflects X-rays only in the direction. That is, the incident X-ray 6 and the reflected X-ray 7 are located symmetrically with respect to the normal line N. Therefore, the multilayer mirror is used to change the traveling direction of light when the surface shape is flat and to change the spread of light when the surface shape is flat, similar to the mirror that is generally used for visible light. To be done. Furthermore, by combining a curved multilayer mirror, it can be applied to an X-ray microscope or a projection exposure imaging optical system.

【0004】図11に示すX線用多層膜ミラーは、X線
投影露光におけるマスクとして使用することもできる。
従来、X線投影露光ではX線が透過し易い物質からなる
厚さ2μm程度の自立膜(メンブレン)の上に、X線を
透過しにくい物質からなる薄膜部材で所望のパターンを
形成した透過型のマスクが用いられてきた。しかし、こ
のマスクはメンブレンの強度が非常に弱いため、大面積
のマスクの作製が困難であること、および、X線を照射
したときに発生する熱による変形が生じ易い等の問題点
があった。
The multilayer mirror for X-ray shown in FIG. 11 can also be used as a mask in X-ray projection exposure.
Conventionally, a transmission type in which a desired pattern is formed by a thin film member made of a substance that does not easily transmit X-rays on a free-standing film (membrane) having a thickness of about 2 μm that is made of a substance that easily transmits X-rays in X-ray projection exposure. Masks have been used. However, since the strength of the membrane of this mask is extremely weak, it is difficult to manufacture a mask having a large area, and there is a problem in that it is easily deformed by heat generated when X-rays are irradiated. .

【0005】そこで、このような問題点を解決するため
に図12(a)、(b)、(c)に示すような反射型のマスク
が提案されている。図12(a)は多層膜1の一部をエッ
チングなどにより除去してパターンを形成したもの、同
図(b)は多層膜1の表面の一部にX線を吸収する薄膜8
を積層してパターンを形成したもの、同図(c)は多層膜
1の一部の周期構造をイオン注入などにより破壊し、周
期構造が破壊された多層膜26によりパターンを形成し
たものである。図12(a)、(b)、(c)に示すマスク
は、いずれも薄いメンブレンの代わりに厚い基板2を用
いることができるため、上記の問題点は生じない。
Therefore, in order to solve such a problem, a reflection type mask as shown in FIGS. 12 (a), 12 (b) and 12 (c) has been proposed. 12A shows a pattern formed by removing a part of the multilayer film 1 by etching or the like, and FIG. 12B shows a part of the surface of the multilayer film 1 that absorbs X-rays.
(C) shows that a part of the periodic structure of the multilayer film 1 is destroyed by ion implantation or the like, and the pattern is formed by the multilayer film 26 in which the periodic structure is destroyed. . The masks shown in FIGS. 12A, 12B, and 12C do not have the above problems because the thick substrate 2 can be used instead of the thin membrane.

【0006】[0006]

【発明が解決しようとする課題】透過型マスクおよび反
射型マスクを用いたX線投影露光の光学系の概略図を図
4に示す。図4において、9は透過型マスク、10は結
像光学系、11は結像面、12はX線、13は図12で
例示したような反射型マスクである。透過型マスク9で
はX線12の透過光を利用するため、図4(a)に示すよ
うにパターンの配列する平面(すなわちマスク9の表
面)がX線12の光軸に対して垂直になるように配置す
ることができる。一方、従来の反射型マスク13では、
マスク13の表面(パターンの配列する平面)をX線1
2の光軸に対して垂直にすると入射光と反射光が重なっ
てしまう(図11参照)ため、図4(b)に示すようにマ
スク13の表面の法線方向が光軸に対し傾いた状態でマ
スク13を配置しなければならない。
FIG. 4 shows a schematic diagram of an optical system for X-ray projection exposure using a transmission type mask and a reflection type mask. In FIG. 4, 9 is a transmissive mask, 10 is an image forming optical system, 11 is an image forming surface, 12 is an X-ray, and 13 is a reflective mask as illustrated in FIG. Since the transmissive mask 9 uses the transmitted light of the X-rays 12, the plane on which the patterns are arranged (that is, the surface of the mask 9) is perpendicular to the optical axis of the X-rays 12 as shown in FIG. Can be arranged as. On the other hand, in the conventional reflective mask 13,
X-ray 1 on the surface of the mask 13 (the plane on which the patterns are arranged)
Since the incident light and the reflected light are overlapped with each other if they are perpendicular to the optical axis of 2 (see FIG. 11), the normal direction of the surface of the mask 13 is inclined with respect to the optical axis as shown in FIG. 4B. The mask 13 must be arranged in this state.

【0007】したがって、透過型マスク9の場合、マス
ク9の表面の各点と結像光学系10との距離は一定であ
るが、反射型マスク13の場合はX線12の光軸に対し
て傾いている分だけ一定ではなくなる。従って、反射型
マスク13を用いた場合、結像光学系10がマスク13
あるいは照明されているマスク13の部分の全面に対し
焦点が合うような大きな焦点深度を有していなければな
らない。反射型マスク13を用いた場合に結像光学系1
0に要求される焦点深度Dは、マスク13を一辺lの正
方形とすると
Therefore, in the case of the transmissive mask 9, the distance between each point on the surface of the mask 9 and the imaging optical system 10 is constant, but in the case of the reflective mask 13, the distance with respect to the optical axis of the X-ray 12 is set. It is not constant as much as it leans. Therefore, when the reflective mask 13 is used, the imaging optical system 10 is
Alternatively, it must have a large depth of focus such that the entire surface of the illuminated mask 13 is in focus. Imaging optical system 1 when the reflective mask 13 is used
The depth of focus D required for 0 is a square with one side of the mask 13

【数1】 D=l sin(90−θ) ……(1) θ:X線12とマスク13の表面とがなす斜入射角 となる。(1)式から理解できるように、マスク13が大
きくなるほど焦点深度Dを大きくする必要がある。ま
た、θが90°に近いほど焦点深度Dは小さくなるが、実
際は照明系の配置による制限から、θを約87°より大き
くすることは経験上困難である。例えば、倍率1/5、解
像度0.1μmの光学系で、一辺10mmの正方形の反射型
マスク13に形成されたパターンをθ=87°の配置でX
線縮小露光するとき、結像光学系10の焦点深度Dは、
(1)式よりマスク側で500μm以上、結像光学系10の
倍率が1/5であるからウェハー側で20μm(=500×(1
/5)2)以上必要になる。一方、このような結像光学系
10において実現可能な焦点深度Dは像側で1μm以下
である。従って、上記のような高分解能と大きな焦点深
度を兼ね備えた光学系を作製することは非常に困難であ
る。
## EQU1 ## D = l sin (90-.theta.) (1) .theta .: The oblique incident angle between the X-ray 12 and the surface of the mask 13. As can be understood from the equation (1), it is necessary to increase the depth of focus D as the mask 13 becomes larger. Although the depth of focus D becomes smaller as θ approaches 90 °, it is actually difficult to make θ larger than about 87 ° due to the limitation of the arrangement of the illumination system. For example, with an optical system having a magnification of 1/5 and a resolution of 0.1 μm, a pattern formed on a square reflective mask 13 having a side of 10 mm is X = 87 ° in X pattern.
When the line reduction exposure is performed, the focal depth D of the imaging optical system 10 is
From equation (1), the mask side is 500 μm or more, and the magnification of the imaging optical system 10 is 1/5, so the wafer side is 20 μm (= 500 × (1
/ 5) 2 ) or more is required. On the other hand, the depth of focus D that can be realized in such an imaging optical system 10 is 1 μm or less on the image side. Therefore, it is very difficult to manufacture an optical system having both the high resolution and the large depth of focus as described above.

【0008】X線縮小投影露光の露光の方法としては、
上記のような大面積を一括露光する方法の他に、マスク
の一部を輪帯状に照明してウエハを露光しながらマスク
とウエハをスキャンすることにより、大面積の露光を行
う方法がある(たとえばSolid State Technology 日本
版,p.19-25,1991 September参照)。この方法は、マ
スクの一部を輪帯状に照明する結像光学系の作製が容易
であるという利点を持つ。マスクを輪帯状に照明する場
合は、輪帯の幅が上記の(1)式のlに相当する。しか
し、例えば、倍率1/5、解像度0.1μmの光学系を用い
て、輪帯の幅が0.5mm、θ=87°の配置でX線縮小露
光するとき、光学系の焦点深度はウェハー側で1μm
(500×(1/5))以上必要になる。従って、焦点深度
1μm程度の光学系で露光装置を作製する場合には特定
の一点でのみ焦点が合わなければならず、ほとんど実現
困難な高精度のアライメント精度が要求される。輪帯の
幅をさらに小さくすれば焦点深度Dを小さくして光学系
への負担を軽くすることができるが、輪帯の幅が小さく
なることにより照明光学系の作製が困難になり、また、
スループットの点から輪帯全体のX線強度を低下させる
ことは困難であるため、輪帯の幅が小さくなればその分
マスクの単位面積当たりの照射X線強度が増大し、これ
によりマスクの耐久性の問題も生じる。
As an exposure method of X-ray reduction projection exposure,
In addition to the method of collectively exposing a large area as described above, there is a method of exposing a large area by illuminating a part of the mask in a ring shape and scanning the mask and the wafer while exposing the wafer ( For example, see Solid State Technology Japan Edition, p.19-25, September 1991). This method has an advantage that an imaging optical system that illuminates a part of the mask in an annular shape can be easily manufactured. When the mask is illuminated like a ring, the width of the ring corresponds to 1 in the above formula (1). However, for example, when X-ray reduction exposure is performed with an optical system with a magnification of 1/5 and a resolution of 0.1 μm with an annular width of 0.5 mm and θ = 87 °, the depth of focus of the optical system is on the wafer side. 1 μm
(500 x (1/5)) or more is required. Therefore, when an exposure apparatus is manufactured with an optical system having a focal depth of about 1 μm, it is necessary to focus only on a specific point, and highly accurate alignment accuracy that is almost difficult to realize is required. If the width of the zone is further reduced, the depth of focus D can be reduced to reduce the burden on the optical system, but the reduction of the width of the zone makes it difficult to manufacture the illumination optical system.
Since it is difficult to reduce the X-ray intensity of the entire zone from the viewpoint of throughput, the smaller the width of the zone is, the more the irradiation X-ray intensity per unit area of the mask is increased. Sexual problems also arise.

【0009】以上のように、従来の反射型マスクによる
X線投影露光では、透過型マスクに比べて高いアライメ
ント精度を必要とし、また結像光学系にも大きな焦点深
度を要求するという問題点があった。
As described above, the conventional X-ray projection exposure using a reflective mask requires higher alignment accuracy than a transmissive mask, and also requires a large depth of focus in the imaging optical system. there were.

【0010】本発明の目的は、反射型マスクと結像光学
系との相対的配置関係の自由度を増加させることの可能
なX線用多層膜ミラー、反射型マスクおよびX線用多層
膜ミラーの製造方法を提供することにある。
An object of the present invention is to provide a multilayer film mirror for X-rays, a reflective mask and a multilayer film mirror for X-rays, which can increase the degree of freedom in the relative positional relationship between the reflective mask and the imaging optical system. It is to provide a manufacturing method of.

【0011】[0011]

【課題を解決するための手段】本発明は、基板上にX線
領域の波長を有する光の屈折率と真空中の屈折率との差
が小さい物質からなる第一層と前記差が大きい物質から
なる第二層とを交互に積層してなる多層膜を備えたX線
用多層膜ミラーに適用され、そして、上述の目的は、前
記多層膜を構成する各層の界面に対して前記多層膜の表
面を所定角度だけ傾斜して形成することにより達成され
る。また、前記多層膜の表面で反射されるX線がこの多
層膜表面の法線方向に沿って反射されるように前記多層
膜の周期およびこれを構成する各層の界面と前記多層膜
の表面とがなす前記所定角度を設定した。さらに、X線
用多層膜ミラーの前記多層膜の一部にX線を反射しない
X線非反射部を形成し、前記X線非反射部を所定のパタ
ーンに形成形成して反射型マスクとした。
According to the present invention, a first layer made of a substance having a small difference between a refractive index of light having a wavelength in the X-ray region and a refractive index in vacuum on a substrate and a substance having the large difference. The present invention is applied to a multilayer mirror for X-rays, which comprises a multilayer film formed by alternately laminating a second layer consisting of the above-mentioned multilayer film. It is achieved by inclining the surface of the device by a predetermined angle. In addition, the cycle of the multilayer film and the interface between the layers constituting the multilayer film and the surface of the multilayer film so that X-rays reflected on the surface of the multilayer film are reflected along the normal direction of the surface of the multilayer film. Was set to the predetermined angle. Further, an X-ray non-reflecting portion that does not reflect X-rays is formed on a part of the multi-layer film of the X-ray multilayer mirror, and the X-ray non-reflecting portion is formed in a predetermined pattern to form a reflective mask. .

【0012】また、上記多層膜ミラーは従来の多層膜ミ
ラーの製造方法では製造できないため、以下に述べるよ
うな方法が必要になる。上記方法の一つとして、多層膜
ミラーの薄膜形成時に基板上にスリットを配置し、それ
を基板表面に平行に移動させる方法を考案した。
Further, since the above-mentioned multilayer film mirror cannot be manufactured by the conventional manufacturing method for a multilayer film mirror, the following method is required. As one of the above methods, a method has been devised in which a slit is arranged on a substrate when a thin film of a multilayer mirror is formed and the slit is moved parallel to the substrate surface.

【0013】まず、図6(b)に示すような断面形状の基
板2を用意する。この基板2の表面の一部は、他の表面
(平坦面)17に対して所定の角度φで傾斜する傾斜面
16に形成されている。この角度φは、製造すべきX線
用多層膜ミラー14の表面3と多層膜1の界面4とがな
す角度φ(図1参照)に等しくされている。次に、この
基板2の上に図6(a)に示すようなスリット板15を配
置する。スリット板15には平面視長方形のスリット1
5aが形成されており、このスリット15aの幅aは、
多層膜1全体の厚さをtとすれば、次式
First, a substrate 2 having a sectional shape as shown in FIG. 6 (b) is prepared. A part of the surface of the substrate 2 is formed as an inclined surface 16 that is inclined at a predetermined angle φ with respect to the other surface (flat surface) 17. This angle φ is made equal to the angle φ (see FIG. 1) formed by the surface 3 of the X-ray multilayer mirror 14 to be manufactured and the interface 4 of the multilayer film 1. Next, the slit plate 15 as shown in FIG. 6A is arranged on the substrate 2. The slit plate 15 has a rectangular slit 1 in a plan view.
5a is formed, and the width a of this slit 15a is
If the total thickness of the multilayer film 1 is t, then

【数2】 a=t/tan φ ……(2) により定められる。逆に、aの大きさを定めることによ
り多層膜1の膜厚tを調整できる。基板2の傾斜面16
の幅bはaより大きければよい。
## EQU00002 ## a = t / tan .phi .... (2) On the contrary, the film thickness t of the multilayer film 1 can be adjusted by determining the size of a. Inclined surface 16 of substrate 2
The width b of is larger than a.

【0014】次に、多層膜1をスパッタ法等により以下
の手順で積層する。まず、図7(a)に示すように、スリ
ット15aが基板2の傾斜面16の上に位置するように
スリット板15を配置する。そして、スリット板15を
水平移動させつつそのスリット15aからスパッタ粒子
18を基板2の表面16に積層して多層膜1の第一層1
9を成膜し、図7(b)に示すように第一層19が所望の
膜厚d1になったとき第一層19の成膜作業を停止し
て、同時にスリット板15の水平移動を停止させる。こ
の間、スリット板15は等速で水平移動され、その速度
は、距離
Next, the multilayer film 1 is laminated by the following procedure by a sputtering method or the like. First, as shown in FIG. 7A, the slit plate 15 is arranged so that the slit 15 a is located on the inclined surface 16 of the substrate 2. Then, while the slit plate 15 is horizontally moved, the sputtered particles 18 are laminated on the surface 16 of the substrate 2 from the slits 15a to form the first layer 1 of the multilayer film 1.
9 is formed, and when the first layer 19 has a desired film thickness d 1 as shown in FIG. 7B, the film forming operation of the first layer 19 is stopped, and the slit plate 15 is moved horizontally at the same time. To stop. During this time, the slit plate 15 is horizontally moved at a constant speed, and the speed is

【数3】 P=d1/sin φ ……(3) を、第一層19を一層成膜する時間で割った速度とされ
る。同様に、スリット板15を水平移動させつつ第二層
20を成膜し、図7(c)に示すように第二層20が所望
の膜厚d2になったとき第二層20の成膜作業を停止し
て、同時にスリット板15の水平移動を停止する。以上
で、多層膜1の一周期が積層できる。以下、上述と同様
の操作を繰り返し、基板2の全面に多層膜1を積層する
ことによって、図1に示すようなX線用多層膜ミラー1
4が得られる。また、成膜後にミラー14の表面3を研
磨すると、表面粗さが小さくなりミラー14の反射率を
向上することができる。
Equation 3] P = d 1 / sin φ ...... (3) is the velocity divided by the time to further forming the first layer 19. Similarly, the second layer 20 is formed while horizontally moving the slit plate 15, and when the second layer 20 has a desired film thickness d 2 as shown in FIG. 7C, the formation of the second layer 20 is completed. The film work is stopped, and at the same time, the horizontal movement of the slit plate 15 is stopped. As described above, one cycle of the multilayer film 1 can be stacked. Hereinafter, the same operation as described above is repeated to stack the multilayer film 1 on the entire surface of the substrate 2 to thereby obtain the multilayer mirror 1 for X-ray as shown in FIG.
4 is obtained. Further, when the surface 3 of the mirror 14 is polished after the film formation, the surface roughness becomes small and the reflectance of the mirror 14 can be improved.

【0015】上述の方法で作製した多層膜1は、従来の
多層膜1と同様、ミラー面内の膜厚が一定である。従っ
て、膜厚の大きさに関わらず面内の反射率は一定であ
る。また、任意の膜厚が選択できるため、内部応力が大
きいことにより膜厚を大きくすると剥離しやすいような
多層膜も、その膜厚を小さくすることによって作製する
ことが可能である。図1に示すX線用多層膜ミラー14
を反射型マスク13として使う場合は、図12に示した
従来のマスク13と同様の手法によりパターン形成が可
能である。
Like the conventional multilayer film 1, the multilayer film 1 produced by the above method has a constant film thickness within the mirror surface. Therefore, the in-plane reflectance is constant regardless of the film thickness. Further, since an arbitrary film thickness can be selected, it is possible to manufacture a multi-layer film which is easily peeled off when the film thickness is increased due to a large internal stress, by reducing the film thickness. The X-ray multilayer mirror 14 shown in FIG.
When is used as the reflective mask 13, the pattern can be formed by the same method as the conventional mask 13 shown in FIG.

【0016】また、別の製造方法として、従来と同様に
製造された多層膜ミラーから多層膜の一部を成膜後に除
去する方法がある。本方法には以下のような方法が含ま
れる。一つは、成膜された多層膜ミラーを多層膜表面に
対し傾けて配置して多層膜の表面側を研磨する方法であ
る。本方法は、図8(a)に示すように、表面16が基板
2の底面2aに対して角度φだけ傾いた傾斜平面に形成
された断面形状の基板2上に、まずスパッタ法等で図8
(b)に示すように多層膜1を積層し、その表面を図8
(c)に示すように斜めに研磨して多層膜1の一部21を
斜めに除去するものである。
As another manufacturing method, there is a method of removing a part of the multilayer film from the multilayer mirror manufactured in the same manner as the conventional method after the film formation. The method includes the following methods. One is a method of arranging the formed multilayer mirror with an inclination with respect to the surface of the multilayer film and polishing the surface side of the multilayer film. In this method, as shown in FIG. 8A, a surface 16 is first formed by a sputtering method or the like on a substrate 2 having a cross-sectional shape formed in an inclined plane inclined by an angle φ with respect to the bottom surface 2a of the substrate 2. 8
The multilayer film 1 is laminated as shown in FIG.
As shown in (c), the part 21 of the multilayer film 1 is obliquely removed by obliquely polishing.

【0017】基板2の表面(傾斜面)16のなす角度φ
は、ミラー14の表面3と多層膜1の界面4とがなす角
度に等しいが、これは、研磨により多層膜1の一部21
を除去する作業において研磨面を基板2の底面2aに平
行にして行えるようにするためである。従って、基板2
の表面16を傾斜させることなく、平行平面基板に成膜
してそれを角度φだけ傾けて研磨してもよい。また、本
方法は角度φが大きくなると多層膜を多数層積層しなけ
ればならないものの、多層膜ミラーを非常に簡単に製造
できるという特徴を有する。従って、本方法は角度φの
小さいミラーや、面積の小さいミラーの製造に適してい
る。
The angle φ formed by the surface (inclined surface) 16 of the substrate 2
Is equal to the angle formed by the surface 3 of the mirror 14 and the interface 4 of the multilayer film 1.
This is to enable the polishing surface to be parallel to the bottom surface 2a of the substrate 2 in the work of removing. Therefore, the substrate 2
It is also possible to form a film on a plane-parallel substrate and incline it by an angle φ without polishing the surface 16 of the above. Further, this method has a feature that a multi-layer film mirror can be manufactured very easily, though a large number of multi-layer films must be stacked when the angle φ becomes large. Therefore, this method is suitable for manufacturing a mirror having a small angle φ and a mirror having a small area.

【0018】別の製造方法は、図9(a)に示すような断
面形状を有する基板2上に多層膜1を形成する方法であ
る。つまり、基板2の表面に、基板2の底面2aに平行
な面が残らないようにV字型の溝Gを一定周期で一次元
に配列し、各溝Gを構成する二つの表面22、23のう
ち一方の表面22が互いに平行に形成された基板2を用
意し、この基板2上に、図9(b)に示すように多層膜1
をスパッタ法等により積層する。積層した後、多層膜1
の表面に研磨等を施して表面の一部を除去すると、図9
(c)に示すような多層膜ミラー14が得られる。本方法
は、同一の多層膜1の膜厚tを得る場合、上記の方法
(請求項6に記載の方法)に比べ積層数が少なくてよい
という特徴を有する。従って、角度φの大きなミラーお
よび面積の大きなミラーを容易に製造することができ
る。また、スパッタ等で積層粒子18の入射方向を表面
23に平行にすると、粒子が基板面23に付着せず高反
射率のミラーが得やすい。また、層数が少ない場合は、
多層膜ミラー14の反射率が基板2の各頂点24の位置
で小さくなるが、層数を十分多くすれば反射率が飽和し
てミラー14の反射率は面内で一定になる。さらにこの
ときはミラー14の反射率が最大となるため、層数は反
射率が飽和する程度にするのが好ましい。
Another manufacturing method is a method of forming a multilayer film 1 on a substrate 2 having a cross-sectional shape as shown in FIG. 9 (a). That is, the V-shaped grooves G are one-dimensionally arrayed at a constant period so that no surface parallel to the bottom surface 2a of the substrate 2 remains on the surface of the substrate 2, and the two surfaces 22, 23 forming each groove G are arranged. A substrate 2 having two surfaces 22 formed parallel to each other is prepared, and the multilayer film 1 is formed on the substrate 2 as shown in FIG. 9B.
Are laminated by a sputtering method or the like. After stacking, multilayer film 1
When a part of the surface is removed by polishing the surface of the
The multilayer mirror 14 as shown in (c) is obtained. This method is characterized in that the number of laminated layers may be smaller than that in the above method (the method according to claim 6) when the same film thickness t of the multilayer film 1 is obtained. Therefore, a mirror having a large angle φ and a mirror having a large area can be easily manufactured. Further, when the incident direction of the laminated particles 18 is made parallel to the surface 23 by sputtering or the like, the particles do not adhere to the substrate surface 23 and it is easy to obtain a mirror having a high reflectance. If the number of layers is small,
The reflectance of the multilayer film mirror 14 becomes small at the positions of the respective apexes 24 of the substrate 2, but if the number of layers is sufficiently increased, the reflectance is saturated and the reflectance of the mirror 14 becomes constant within the plane. Further, at this time, since the reflectance of the mirror 14 becomes maximum, it is preferable to set the number of layers to such an extent that the reflectance is saturated.

【0019】また別の製造方法は、図11に示すような
従来の多層膜ミラーを図10(a)に示すように厚さ方向
に沿った切断面25で切断して微小幅を有する複数のミ
ラー14aとし、再びそれらを図10(b)に示すように
多層膜1の積層方向にずらして接合し、表面を研磨して
図10(c)に示すような多層膜ミラー14を製造する方
法である。ずらす量qは次式
In another manufacturing method, a conventional multilayer mirror as shown in FIG. 11 is cut at a cutting surface 25 along the thickness direction as shown in FIG. A method for manufacturing the multilayer film mirror 14 as shown in FIG. 10 (c), which is used as the mirror 14a, is again shifted in the stacking direction of the multilayer film 1 as shown in FIG. 10 (b) and bonded, and the surface is polished. Is. The shift amount q is

【数4】q=rtan φ ……(4) r:切断したミラーの幅、φ:多層膜1の界面4がなす
角 で与えられ、多層膜1の膜厚tはqより大きいことが好
ましい。これらの方法は、平面基板に限らず曲面基板に
も応用できる。
[Mathematical formula-see original document] q = rtan φ (4) where r is the width of the cut mirror, φ is the angle formed by the interface 4 of the multilayer film 1, and the film thickness t of the multilayer film 1 is preferably larger than q. . These methods can be applied to curved substrates as well as flat substrates.

【0020】[0020]

【作用】本発明では、図1に示すようにミラー表面、す
なわち多層膜表面3が多層膜1を構成する各層19、2
0の反射面(界面)4に対して角度φだけ傾いて形成さ
れている。従って、入射X線および反射X線のミラー表
面に対する角度θI、θRは、多層膜1の反射面4に対す
るX線6、7の角度θと異なり、 θI=θ−φ θR=θ+φ となる。これにより、本発明による多層膜ミラー14
は、X線6をミラー表面3に対し非対称に反射すること
ができる。図2および図3に示すような本発明による多
層膜ミラー14にパターンを形成した反射型マスク13
を用いた、X線投影露光装置の概略図を図4(c)に示
す。多層膜1の周期および多層膜1の傾きφを適宜設定
することにより、反射X線の角度θRを90゜にするこ
とができる。これにより、マスク13の表面が結像光学
系10の光軸に対して垂直になるようにマスク13を配
置することができる。
In the present invention, as shown in FIG. 1, the mirror surface, that is, the multilayer film surface 3 constitutes each of the layers 19 and 2 constituting the multilayer film 1.
The reflection surface (interface) 4 of 0 is inclined by an angle φ. Therefore, the angles θ I and θ R of the incident X-rays and the reflected X-rays with respect to the mirror surface are different from the angles θ of the X-rays 6 and 7 with respect to the reflecting surface 4 of the multilayer film 1, and θ I = θ−φ θ R = θ + φ Becomes Thereby, the multilayer mirror 14 according to the present invention
Can reflect X-rays 6 asymmetrically with respect to the mirror surface 3. A reflective mask 13 having a pattern formed on a multilayer mirror 14 according to the present invention as shown in FIGS. 2 and 3.
FIG. 4 (c) shows a schematic view of an X-ray projection exposure apparatus using the. By appropriately setting the cycle of the multilayer film 1 and the inclination φ of the multilayer film 1, the angle θ R of the reflected X-ray can be set to 90 °. Thereby, the mask 13 can be arranged so that the surface of the mask 13 is perpendicular to the optical axis of the imaging optical system 10.

【0021】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above-mentioned problems for explaining the constitution of the present invention, the drawings of the embodiments are used for the purpose of making the present invention easy to understand. It is not limited to.

【0022】[0022]

【実施例】【Example】

−第1実施例− 図2は本発明の第1実施例を示す概略断面図である。本
図は基板2上に多層膜1を所望のパターン状に形成した
反射型マスクを示している。多層膜の界面4は反射マス
クの表面(つまり多層膜表面3)あるいは基板の表面5
に対し3゜傾いている。以下にこの反射型マスクの製造
方法を説明する。
First Embodiment FIG. 2 is a schematic sectional view showing a first embodiment of the present invention. This figure shows a reflective mask in which a multilayer film 1 is formed in a desired pattern on a substrate 2. The interface 4 of the multilayer film is the surface of the reflection mask (that is, the multilayer film surface 3) or the surface 5 of the substrate.
It is inclined by 3 °. The method for manufacturing the reflective mask will be described below.

【0023】まず、図6(b)に示すような形状の基板2
を用意する。この基板2は表面のサイズが20×20cmで
あるが、その表面の一部(傾斜面)16が他の表面17
に対し3゜傾いている。次に、この基板2の上に、図6
(a)に示すような長方形のスリット15aが形成された
スリット板15を配置した。このスリット15aの幅a
は傾斜面16の幅b以下であればよいが、本実施例では
a、bとも6.2μmとした。次に、スリット板15を
水平移動させつつ、モリブデン層19と硅素層20とか
らなる多層膜(Mo/Si)1をスパッタ法により積層
した。モリブデンおよび珪素の膜厚d1、d2は、それぞ
れ25、42Åとした。以上で、図1に示すようなX線
用多層膜ミラー14が得られる。次に、この多層膜1の
一部をエッチングにより除去した。まず、ミラー14の
表面にレジストを塗布し、これに紫外線を用いた縮小投
影露光装置で最小線幅0.5μmのパターンを焼き付け
た。さらにイオンミリング装置により多層膜をエッチン
グした後、レジストを除去した。以上の結果、図2に示
すような反射型マスク13が得られた。なお、基板2の
傾いた表面部分16はミラー14および反射型マスク1
3として用いない。
First, the substrate 2 having a shape as shown in FIG.
To prepare. This substrate 2 has a surface size of 20 × 20 cm, but a part (inclined surface) 16 of the surface is the other surface 17.
It is inclined by 3 °. Next, on the substrate 2, as shown in FIG.
A slit plate 15 having a rectangular slit 15a as shown in (a) was arranged. Width a of this slit 15a
Is a width b of the inclined surface 16 or less, but in the present embodiment, both a and b are set to 6.2 μm. Next, while the slit plate 15 was moved horizontally, the multilayer film (Mo / Si) 1 including the molybdenum layer 19 and the silicon layer 20 was laminated by the sputtering method. The film thicknesses d 1 and d 2 of molybdenum and silicon were set to 25 and 42Å, respectively. Thus, the multilayer mirror 14 for X-ray as shown in FIG. 1 is obtained. Next, a part of this multilayer film 1 was removed by etching. First, a resist was applied on the surface of the mirror 14, and a pattern having a minimum line width of 0.5 μm was printed on the resist by a reduction projection exposure apparatus using ultraviolet rays. After etching the multilayer film with an ion milling device, the resist was removed. As a result, the reflective mask 13 as shown in FIG. 2 was obtained. The inclined surface portion 16 of the substrate 2 is formed by the mirror 14 and the reflective mask 1.
Not used as 3.

【0024】このマスクに、波長130Å、ビームサイ
ズ0.5×0.5mmの軟X線6を照射し、解像度0.1μm、
倍率1/5、焦点深度1μmの光学系10で、レジストを
塗布したシリコンウエハ上に縮小露光した。このとき、
マスク13の反射光7がマスク表面(ミラー表面3)に
対して垂直になるようにマスク13を配置した(図2参
照)。その結果、0.1×0.1mmの領域に0.1μmのパタ
ーンが形成された。さらに、ウエハを光軸に対し垂直に
±0.5μm動かしても同様の結果が得られた。
This mask is irradiated with a soft X-ray 6 having a wavelength of 130Å and a beam size of 0.5 × 0.5 mm to obtain a resolution of 0.1 μm.
An optical system 10 having a magnification of 1/5 and a focal depth of 1 μm was used to perform reduction exposure on a resist-coated silicon wafer. At this time,
The mask 13 was arranged so that the reflected light 7 of the mask 13 was perpendicular to the mask surface (mirror surface 3) (see FIG. 2). As a result, a 0.1 μm pattern was formed in the area of 0.1 × 0.1 mm. Further, similar results were obtained even when the wafer was moved ± 0.5 μm perpendicularly to the optical axis.

【0025】本実施例では、マスクのパターンとして図
12(a)に相当するものを作製したが、本発明によるマ
スクはこのようなパターン形状に限らず、例えば、図1
2(b)、(c)に相当するもの、あるいはこれらに類似し
た形態のマスクにも適応できる。また、本発明によるマ
スクは本実施例のような平面マスクに限らず、曲面形状
のマスクにも適応できる。
In this embodiment, a mask pattern corresponding to that shown in FIG. 12A was produced, but the mask according to the present invention is not limited to such a pattern shape, and for example, as shown in FIG.
2 (b), (c), or a mask having a form similar to these can be applied. Further, the mask according to the present invention is not limited to the flat mask as in the present embodiment, but can be applied to a curved mask.

【0026】−第2実施例− 図3は本発明の第2実施例を示す概略断面図である。本
図は、図示するような断面形状の基板2上に多層膜1が
積層されており、その表面3にX線吸収体8が所望のパ
ターンに形成されてなる反射型マスク13を示してい
る。多層膜1の界面4は反射型マスク13の表面3に対
し3゜傾いている。以下にこの反射型マスクの製造方法
を説明する。
-Second Embodiment- FIG. 3 is a schematic sectional view showing a second embodiment of the present invention. This figure shows a reflective mask 13 in which a multilayer film 1 is laminated on a substrate 2 having a sectional shape as shown, and an X-ray absorber 8 is formed in a desired pattern on a surface 3 thereof. . The interface 4 of the multilayer film 1 is inclined 3 ° with respect to the surface 3 of the reflective mask 13. The method for manufacturing the reflective mask will be described below.

【0027】まず、図9(a)に示すような断面形状を有
する基板2を用意する。本基板2のqおよびrの値はそ
れぞれ0.52μm、10μmとした。また、溝Gを形成する
表面22、23のなす角度は90゜とした。次に、モリブ
デン層19と珪素層20とからなる多層膜1をスパッタ
法により周期64Åで150ペア積層した。本実施例で使
用したスパッタ装置は、スパッタ粒子18がターゲット
の垂直方向に最も多く飛び出すため、本実施例では、こ
の垂直方向と基板の表面23とが平行になるように、つ
まり表面22がターゲットの垂直方向に直交するように
配置して成膜した。次に、多層膜1の表面3が平面とな
るように研磨してX線用多層膜ミラー14を製造した。
次にこのミラー14の表面3に吸収体8のパターンを形
成した。まず、ミラー14の表面3に吸収体8として金
を100nm蒸着した。そして、ミラー14の表面3にレ
ジストを塗布し、これに紫外線を用いた縮小投影露光装
置で最小線幅0.5μmのパターンを焼き付けた。さらに
イオンミリング装置により金蒸着膜をエッチングした
後、レジストを除去した。以上の結果、図3に示すよう
なマスクが得られた。
First, a substrate 2 having a cross sectional shape as shown in FIG. 9 (a) is prepared. The values of q and r of this substrate 2 were 0.52 μm and 10 μm, respectively. The angle formed by the surfaces 22 and 23 forming the groove G was 90 °. Next, the multilayer film 1 including the molybdenum layer 19 and the silicon layer 20 was laminated by a sputtering method with 150 pairs with a period of 64 Å. In the sputtering apparatus used in this embodiment, the sputtered particles 18 are most ejected in the vertical direction of the target. Therefore, in this embodiment, the vertical direction is parallel to the surface 23 of the substrate, that is, the surface 22 is the target. Was formed so as to be orthogonal to the vertical direction. Next, the surface 3 of the multilayer film 1 was polished so as to be a flat surface, and the multilayer mirror 14 for X-ray was manufactured.
Next, a pattern of the absorber 8 was formed on the surface 3 of the mirror 14. First, 100 nm of gold was vapor deposited as the absorber 8 on the surface 3 of the mirror 14. Then, a resist was applied on the surface 3 of the mirror 14, and a pattern having a minimum line width of 0.5 μm was printed on the resist by a reduction projection exposure apparatus using ultraviolet rays. Further, after the gold vapor deposition film was etched by an ion milling device, the resist was removed. As a result, a mask as shown in FIG. 3 was obtained.

【0028】このマスクについて、実施例1と同様の露
光実験を行ったところ、実施例1と同じ結果が得られ
た。また、本発明によるマスクは本実施例のような平面
マスクに限らず、曲面形状のマスクにも適応できる。な
お、本実施例では、隣合う溝Gの表面22a、22b、
22c上に形成された多層膜1の界面4どうしが一致し
ない場合がある。この場合、各表面22a、22b、2
2c上の多層膜1の境界部(図9に点線Bで示す)付近
では多層膜1の反射条件が十分に満たされないこともあ
りうる。しかし、反射条件が満たされない領域は、多層
膜1の周期や多層膜界面4がなす角度φを適宜設定する
ことにより十分小さくすることが可能であり、マスク1
3として使用した場合にその像に影響を与えるおそれは
ない。
When this mask was subjected to the same exposure experiment as in Example 1, the same result as in Example 1 was obtained. Further, the mask according to the present invention is not limited to the flat mask as in the present embodiment, but can be applied to a curved mask. In this embodiment, the surfaces 22a, 22b of the adjacent grooves G,
The interfaces 4 of the multilayer film 1 formed on the layer 22c may not coincide with each other. In this case, each surface 22a, 22b, 2
The reflection condition of the multilayer film 1 may not be sufficiently satisfied in the vicinity of the boundary portion (indicated by a dotted line B in FIG. 9) of the multilayer film 1 on 2c. However, the region where the reflection condition is not satisfied can be made sufficiently small by appropriately setting the period of the multilayer film 1 and the angle φ formed by the multilayer film interface 4.
When used as No. 3, there is no risk of affecting the image.

【0029】−第3実施例− 図8(c)は本発明の第3実施例を示す概略断面図であ
る。多層膜1は基板2上に積層されており、このとき多
層膜1の界面4はミラー14の表面3に対し5°傾いて
いる。以下に、この多層膜ミラー14の製造方法を説明
する。
-Third Embodiment- FIG. 8C is a schematic sectional view showing a third embodiment of the present invention. The multilayer film 1 is laminated on the substrate 2, and at this time, the interface 4 of the multilayer film 1 is inclined 5 ° with respect to the surface 3 of the mirror 14. The method of manufacturing the multilayer mirror 14 will be described below.

【0030】まず、図8(a)に示すように、表面16が
底面2aに対し5゜傾いて形成され、表面16の面積が
5×5mmの基板2上に、モリブデン層19と珪素層2
0とからなる多層膜(Mo/Si)1をスパッタ法によ
り周期96Åで45800ペア積層した。次に、多層膜1の表
面3が基板2の底面2aと平行になるように、この多層
膜1の一部21を研磨によって除去した。
First, as shown in FIG. 8 (a), the surface 16 is formed with an inclination of 5 ° with respect to the bottom surface 2a, and the surface 16 has an area of 5 × 5 mm.
A multilayer film (Mo / Si) 1 consisting of 0 and 0 was laminated by a sputtering method at 45800 pairs with a period of 96Å. Next, part 21 of the multilayer film 1 was removed by polishing so that the surface 3 of the multilayer film 1 was parallel to the bottom surface 2a of the substrate 2.

【0031】この多層膜ミラー14に、コリメートされ
た波長130Å、ビームサイズ3×3mmの軟X線6を入
射角θI=40゜で照射したところ、図5に示すように反
射角θR=50゜の方向にX線7が反射した。さらに、反
射X線7のビームサイズは3.6×3mmに増加した。こ
れより、本多層膜ミラー14はビームエキスパンダーと
して働くことが確認された。
The multilayer mirror 14 was irradiated with collimated soft X-ray 6 having a wavelength of 130 Å and a beam size of 3 × 3 mm at an incident angle θ I = 40 °, and as shown in FIG. 5, a reflection angle θ R = X-ray 7 was reflected in the direction of 50 °. Further, the beam size of the reflected X-ray 7 is increased to 3.6 × 3 mm. From this, it was confirmed that the present multilayer mirror 14 works as a beam expander.

【0032】−第4実施例− 図10(c)は本発明の第4実施例を示す概略断面図であ
る。本図は図10(c)に示すような断面形状の基板2上
に多層膜1が積層しているX線用多層膜ミラー14を示
している。多層膜1の界面4はミラー14の表面3に対
し5゜傾いている。以下にこの多層膜ミラーの製造方法
を説明する。
-Fourth Embodiment- FIG. 10C is a schematic sectional view showing a fourth embodiment of the present invention. This figure shows an X-ray multilayer mirror 14 in which a multilayer film 1 is laminated on a substrate 2 having a sectional shape as shown in FIG. The interface 4 of the multilayer film 1 is inclined 5 ° with respect to the surface 3 of the mirror 14. The manufacturing method of this multilayer mirror will be described below.

【0033】まず、図11に示すような断面を有する多
層膜ミラーを用意する。多層膜1は周期96Å、1000ペア
のモリブデン層19と珪素層20とからなる多層膜であ
り、スパッタ法で作製した。この多層膜ミラーを、ダイ
ヤモンドカッターで図10(a)に示すように切断面25
に沿って切断して複数の切断ミラー14aを作製した。
このとき、各ミラー14aの幅rは100μmとした。次
に、図10(b)に示すように、隣合うミラー14aの表
面が多層膜1の積層方向に8.75μmずれるようにこれら
ミラー14aを接合した。さらに、表面3および裏面2
aが平面となるようにミラー14を研磨して図10(c)
に示すようなX線用多層膜ミラー14を得た。このミラ
ー14で実施例3と同様の実験を行ったところ、実施例
3と同様にビームエキスパンダーとして働くことがわか
った。
First, a multilayer mirror having a cross section as shown in FIG. 11 is prepared. The multilayer film 1 is a multilayer film composed of 1000 pairs of molybdenum layer 19 and silicon layer 20 with a period of 96 liters, and was manufactured by a sputtering method. This multilayer film mirror is cut with a diamond cutter 25 as shown in FIG. 10 (a).
A plurality of cutting mirrors 14a were produced by cutting along the line.
At this time, the width r of each mirror 14a was 100 μm. Next, as shown in FIG. 10B, the mirrors 14a were bonded so that the surfaces of the adjacent mirrors 14a were displaced by 8.75 μm in the stacking direction of the multilayer film 1. Furthermore, the front surface 3 and the back surface 2
The mirror 14 is polished so that a becomes a plane, as shown in FIG.
The multilayer film mirror 14 for X-ray as shown in FIG. When an experiment similar to that of the third embodiment was conducted with this mirror 14, it was found that the mirror 14 functions as a beam expander as in the case of the third embodiment.

【0034】なお、本発明のX線用多層膜ミラー等は、
その細部が上述の各実施例に限定されず、種々の変形例
が可能である。一例として、多層膜は本実施例で挙げた
モリブデンと珪素の組み合わせに限らない。また、角度
φも本実施例の値に限らない。
The multilayer mirror for X-ray according to the present invention,
The details are not limited to the above-mentioned embodiments, and various modifications are possible. As an example, the multilayer film is not limited to the combination of molybdenum and silicon described in this embodiment. Also, the angle φ is not limited to the value in this embodiment.

【0035】[0035]

【発明の効果】以上のように、本発明によれば、X線用
多層膜ミラーによりX線をミラー表面に対し非対称に反
射することができる。そのため、本発明によるX線用多
層膜ミラーを用いてX線投影露光用の反射型マスクを製
作すると、反射光のミラー表面に対する角度を90゜にす
ることができる。そのため、マスクに起因するアライメ
ント精度、照明光学系および結像光学系等への制限を小
さくすることができる。また、多層膜の周期および多層
膜を構成する各層の界面に対する多層膜表面の角度を適
宜選択することにより、特定の入射角をもって入射する
X線を任意の出射角で反射することが可能となり、照明
光学系、結像光学系および反射型マスクの配置の自由度
を増すことができる。また、本発明によるX線用多層膜
ミラーは、反射光のビームサイズを入射光に比べ小さく
したり大きくしたりすることが可能である。従って、ビ
ーム断面積が非常に小さいという欠点があるシンクロト
ロン放射光から放射される光でも、本ミラーにより、そ
の断面積を大きくすることができる。従って、例えばX
線投影露光においては、照明光学系に本ミラーを用いる
とマスクの広い領域が照明できる等の効果がある。
As described above, according to the present invention, the X-ray multilayer mirror can reflect X-rays asymmetrically with respect to the mirror surface. Therefore, when a reflective mask for X-ray projection exposure is manufactured using the multilayer mirror for X-rays according to the present invention, the angle of reflected light with respect to the mirror surface can be 90 °. Therefore, it is possible to reduce the alignment accuracy due to the mask and the restrictions on the illumination optical system, the imaging optical system, and the like. Further, by appropriately selecting the cycle of the multilayer film and the angle of the surface of the multilayer film with respect to the interface of each layer forming the multilayer film, it becomes possible to reflect X-rays incident at a specific incident angle at an arbitrary exit angle, The degree of freedom in arranging the illumination optical system, the imaging optical system, and the reflective mask can be increased. Further, the multilayer mirror for X-ray according to the present invention can make the beam size of the reflected light smaller or larger than that of the incident light. Therefore, even with the light emitted from the synchrotron radiation, which has the drawback that the beam cross-sectional area is very small, the present mirror can increase the cross-sectional area. So, for example, X
In line projection exposure, the use of the present mirror in the illumination optical system has the effect of illuminating a wide area of the mask.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による多層膜ミラーを示す概略断面図で
ある。
FIG. 1 is a schematic sectional view showing a multilayer mirror according to the present invention.

【図2】本発明の第1実施例である反射型X線マスクを
示す概略断面図である。
FIG. 2 is a schematic sectional view showing a reflective X-ray mask that is a first embodiment of the present invention.

【図3】本発明の第2実施例である反射型X線マスクを
示す概略断面図である。
FIG. 3 is a schematic sectional view showing a reflective X-ray mask that is a second embodiment of the present invention.

【図4】(a)は透過型マスクを、(b)は従来の反射型マ
スクを、(c)は本発明による反射型マスクを用いた縮小
露光装置の概念図である。
4A is a conceptual diagram of a reduction exposure apparatus using a transmissive mask, FIG. 4B is a conventional reflective mask, and FIG. 4C is a reduction exposure apparatus using the reflective mask according to the present invention.

【図5】本発明による多層膜ミラーにおける、入射およ
び反射ビームの断面積の変化を示す図である。
FIG. 5 is a diagram showing changes in cross-sectional areas of incident and reflected beams in the multilayer mirror according to the present invention.

【図6】(a)は第1実施例の反射型X線マスクの製造に
用いられるスリットを示す概略斜視図、(b)は基板を示
す概略斜視図である。
6A is a schematic perspective view showing a slit used for manufacturing the reflective X-ray mask of the first embodiment, and FIG. 6B is a schematic perspective view showing a substrate.

【図7】第1実施例の反射型X線マスクの製造工程を示
す概略図である。
FIG. 7 is a schematic view showing a manufacturing process of the reflective X-ray mask of the first embodiment.

【図8】第3実施例の多層膜ミラーの製造工程を示す概
略図である。
FIG. 8 is a schematic view showing the manufacturing process of the multilayer mirror according to the third embodiment.

【図9】第2実施例の反射型X線マスクの製造工程を示
す概略断面図である。
FIG. 9 is a schematic cross-sectional view showing the manufacturing process of the reflective X-ray mask of the second embodiment.

【図10】第4実施例の多層膜ミラーの製造工程を示す
概略図である。
FIG. 10 is a schematic view showing the manufacturing process of the multilayer mirror according to the fourth embodiment.

【図11】従来の多層膜ミラーを示す概略断面図であ
る。
FIG. 11 is a schematic sectional view showing a conventional multilayer mirror.

【図12】従来の反射型X線マスクを示す概略断面図で
ある。
FIG. 12 is a schematic sectional view showing a conventional reflective X-ray mask.

【符号の説明】[Explanation of symbols]

G 溝 1 多層膜 2 基板 3 ミラー表面 4 多層膜の界面(反射面) 5 基板表面 6 入射X線 7 反射X線 8 吸収体 10 結像光学系 12 X線 13 反射型マスク 14 多層膜ミラー 15 スリット板 15a スリット 16 傾斜面 17 平坦面 18 スパッタ粒子 19 モリブデン層 20 珪素層 21 多層膜の一部 22、23 表面 25 切断面 G groove 1 multilayer film 2 substrate 3 mirror surface 4 interface of multilayer film (reflection surface) 5 substrate surface 6 incident X-ray 7 reflected X-ray 8 absorber 10 imaging optical system 12 X-ray 13 reflective mask 14 multilayer mirror 15 Slit plate 15a Slit 16 Slanted surface 17 Flat surface 18 Sputtered particles 19 Molybdenum layer 20 Silicon layer 21 Part of multilayer film 22, 23 Surface 25 Cut surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成され、X線領域の波長を有
する光の屈折率と真空中の屈折率との差が小さい物質か
らなる第一層と前記差が大きい物質からなる第二層とを
交互に積層してなる多層膜を備えたX線用多層膜ミラー
において、 前記多層膜を構成する各層の界面に対して前記多層膜の
表面を所定角度だけ傾斜して形成したことを特徴とする
X線用多層膜ミラー。
1. A first layer formed on a substrate, the first layer being made of a substance having a small difference between the refractive index of light having a wavelength in the X-ray region and the refractive index in vacuum, and the second layer being made of a substance having the large difference. In a multilayer mirror for X-rays having a multilayer film formed by alternately stacking and, the surface of the multilayer film is formed to be inclined at a predetermined angle with respect to the interface of each layer forming the multilayer film. X-ray multilayer film mirror.
【請求項2】 請求項1に記載のX線用多層膜ミラーに
おいて、 前記多層膜の表面で反射されるX線がこの多層膜表面の
法線方向に沿って反射されるように前記多層膜の周期お
よびこれを構成する各層の界面と前記多層膜の表面とが
なす前記所定角度が設定されていることを特徴とするX
線用多層膜ミラー。
2. The multilayer film mirror for X-rays according to claim 1, wherein the X-rays reflected on the surface of the multilayer film are reflected along a normal direction of the surface of the multilayer film. X and the predetermined angle formed by the interface of each layer constituting the same and the surface of the multilayer film are set.
Multilayer mirror for wire.
【請求項3】 請求項1に記載のX線用多層膜ミラーの
前記多層膜の一部にX線を反射しないX線非反射部が形
成され、前記X線非反射部が所定のパターンに形成され
てなる反射型X線マスク。
3. An X-ray non-reflective portion that does not reflect X-rays is formed on a part of the multi-layer film of the X-ray multilayer mirror according to claim 1, and the X-ray non-reflective portion has a predetermined pattern. A reflection type X-ray mask formed.
【請求項4】 X線領域の波長を有する光の屈折率と真
空中の屈折率との差が小さい物質からなる第一層と前記
差が大きい物質からなる第二層とを基板上に交互に積層
して多層膜を形成する工程を備えたX線用多層膜ミラー
の製造方法において、 平坦面およびこの平坦面に対して所定角度をもって傾斜
する傾斜面を有する基板を用意し、前記傾斜面から前記
平坦面に向かって前記第一層および第二層を交互に形成
して前記多層膜を形成することを特徴とするX線用多層
膜ミラーの製造方法。
4. A first layer made of a substance having a small difference between a refractive index of light having a wavelength in the X-ray region and a refractive index in vacuum and a second layer made of a substance having the large difference are alternately arranged on a substrate. In a method of manufacturing a multilayer mirror for X-rays, which comprises a step of forming a multilayer film by laminating on a flat surface, a substrate having a flat surface and an inclined surface inclined at a predetermined angle with respect to the flat surface is prepared. To the flat surface, the first layer and the second layer are alternately formed to form the multilayer film.
【請求項5】 X線領域の波長を有する光の屈折率と真
空中の屈折率との差が小さい物質からなる第一層と前記
差が大きい物質からなる第二層とを基板上に交互に積層
して多層膜を形成する工程を備えたX線用多層膜ミラー
の製造方法において、 前記基板上に設けられた平坦面に沿って前記第一層およ
び第二層を交互に形成して前記多層膜を形成した後、こ
の多層膜を構成する前記各層の界面と前記多層膜の表面
とが所定角度をもって傾斜するように前記多層膜の一部
を除去することを特徴とするX線用多層膜ミラーの製造
方法。
5. A first layer made of a substance having a small difference between the refractive index of light having a wavelength in the X-ray region and a refractive index in vacuum and a second layer made of a substance having the large difference are alternately arranged on a substrate. In a method for manufacturing a multilayer mirror for X-rays, which comprises a step of forming a multilayer film by stacking on a substrate, a first layer and a second layer are alternately formed along a flat surface provided on the substrate. After forming the multi-layer film, a part of the multi-layer film is removed so that the interface between the layers forming the multi-layer film and the surface of the multi-layer film are inclined at a predetermined angle. Manufacturing method of multilayer mirror.
【請求項6】 請求項5に記載のX線用多層膜ミラーの
製造方法において、 前記多層膜を構成する前記各層の界面に対して所定角度
をなす研磨面に沿って前記多層膜を研磨することを特徴
とするX線用多層膜ミラーの製造方法。
6. The method of manufacturing a multilayer film mirror for X-rays according to claim 5, wherein the multilayer film is polished along a polishing surface forming a predetermined angle with respect to an interface of each layer forming the multilayer film. A method of manufacturing a multilayer film mirror for X-rays, comprising:
【請求項7】 請求項5に記載のX線用多層膜ミラーの
製造方法において、 断面V字型の溝が一定周期で一次元に配列され、各溝を
構成する一対の面のうち一方の面が互いに平行に配置さ
れた基板を用意し、この基板の前記一方の面に沿って前
記第一層および第二層を交互に形成して前記多層膜を形
成することを特徴とするX線用多層膜ミラーの製造方
法。
7. The method for manufacturing a multilayer film mirror for X-rays according to claim 5, wherein grooves having a V-shaped cross section are one-dimensionally arranged at a constant cycle, and one of a pair of surfaces constituting each groove is formed. An X-ray characterized in that a substrate whose surfaces are arranged in parallel to each other is prepared, and the first layer and the second layer are alternately formed along the one surface of the substrate to form the multilayer film. For manufacturing a multilayer film mirror for automobiles.
【請求項8】 請求項5に記載のX線用多層膜ミラーの
製造方法において、 前記多層膜を基板とともに前記多層膜の厚さ方向に切断
した後、切断した前記多層膜をその積層方向に互いにず
らして接合し、接合した多層膜の一部を除去することを
特徴とするX線用多層膜ミラーの製造方法。
8. The method of manufacturing an X-ray multilayer mirror according to claim 5, wherein the multilayer film is cut together with a substrate in a thickness direction of the multilayer film, and the cut multilayer film is cut in a stacking direction thereof. A method for manufacturing a multilayer film mirror for X-rays, which comprises shifting and bonding the parts, and removing a part of the bonded multilayer film.
JP33473592A 1992-12-15 1992-12-15 X-ray multilayer mirror, reflective X-ray mask, method for manufacturing X-ray multilayer mirror, exposure apparatus, and method for manufacturing silicon wafer having pattern Expired - Lifetime JP3230105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33473592A JP3230105B2 (en) 1992-12-15 1992-12-15 X-ray multilayer mirror, reflective X-ray mask, method for manufacturing X-ray multilayer mirror, exposure apparatus, and method for manufacturing silicon wafer having pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33473592A JP3230105B2 (en) 1992-12-15 1992-12-15 X-ray multilayer mirror, reflective X-ray mask, method for manufacturing X-ray multilayer mirror, exposure apparatus, and method for manufacturing silicon wafer having pattern

Publications (2)

Publication Number Publication Date
JPH06180399A true JPH06180399A (en) 1994-06-28
JP3230105B2 JP3230105B2 (en) 2001-11-19

Family

ID=18280634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33473592A Expired - Lifetime JP3230105B2 (en) 1992-12-15 1992-12-15 X-ray multilayer mirror, reflective X-ray mask, method for manufacturing X-ray multilayer mirror, exposure apparatus, and method for manufacturing silicon wafer having pattern

Country Status (1)

Country Link
JP (1) JP3230105B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041155A1 (en) * 1999-11-29 2001-06-07 Tohoku Techno Arch Co., Ltd. Optical element such as multilayer film reflection mirror, production method therefor and device using it
JP2002162499A (en) * 2000-11-27 2002-06-07 Technos Kenkyusho:Kk X-ray reflecting element, and method and device for manufacturing the same, and x-ray analyzer
JP2008197593A (en) * 2007-02-16 2008-08-28 Konica Minolta Medical & Graphic Inc Transmission type diffraction grating for x-ray, x-ray talbot interferometer and x-ray imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041155A1 (en) * 1999-11-29 2001-06-07 Tohoku Techno Arch Co., Ltd. Optical element such as multilayer film reflection mirror, production method therefor and device using it
KR100446126B1 (en) * 1999-11-29 2004-08-30 토호쿠 테크노 아르크 코포레이션 리미티드 Optical Element Such As Multilayer Film Reflection Mirror, Production Method Therefor And Device Using It
US7474733B1 (en) 1999-11-29 2009-01-06 Nikon Corporation Optical element such as multilayer film reflection mirror, production method therefor and device using it
JP2002162499A (en) * 2000-11-27 2002-06-07 Technos Kenkyusho:Kk X-ray reflecting element, and method and device for manufacturing the same, and x-ray analyzer
JP2008197593A (en) * 2007-02-16 2008-08-28 Konica Minolta Medical & Graphic Inc Transmission type diffraction grating for x-ray, x-ray talbot interferometer and x-ray imaging apparatus

Also Published As

Publication number Publication date
JP3230105B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
KR0184278B1 (en) Reflection mask method of producing mask and method of forming pattern using the mask
US5272744A (en) Reflection mask
US5003567A (en) Soft x-ray reduction camera for submicron lithography
US5399448A (en) Reflection mask for X ray
JP3078163B2 (en) Lithographic reflective mask and reduction projection exposure apparatus
US8318288B2 (en) Optical element, lithographic apparatus including such optical element and device manufacturing method, and device manufactured thereby
JPH056853A (en) Lateral-position measuring device in proximity lithographic system and method thereof
JP2979667B2 (en) Reflective X-ray exposure mask
US5485497A (en) Optical element and projection exposure apparatus employing the same
JPH088164A (en) Semiconductor photolithography device
US4614433A (en) Mask-to-wafer alignment utilizing zone plates
JPH06120125A (en) Optical element and projection aligner using same
JPH03203737A (en) Mask and exposure device
KR20090015028A (en) Projection exposure system and use thereof
JP3230105B2 (en) X-ray multilayer mirror, reflective X-ray mask, method for manufacturing X-ray multilayer mirror, exposure apparatus, and method for manufacturing silicon wafer having pattern
JPH07130636A (en) Position detector and manufacture of semiconductor element using same
JPH1026698A (en) Device for forming thin film under vacuum and method for manufacturing reflector
JPH0588355A (en) Reflection type mask and exposure device using the same
JP3167074B2 (en) SOR exposure system and mask manufactured using the same
JPH0666251B2 (en) X-ray mask and method of manufacturing the same
JPH06177019A (en) Optical element and its manufacture
JPH0789537B2 (en) X-ray reduction projection exposure system
JP2614863B2 (en) X-ray reduction projection exposure equipment
JP2801270B2 (en) How to make a mask
JPH09326347A (en) Fine pattern transcribing method and its device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 12