JPH06180393A - Solidifying method of radioactive waste - Google Patents

Solidifying method of radioactive waste

Info

Publication number
JPH06180393A
JPH06180393A JP33409392A JP33409392A JPH06180393A JP H06180393 A JPH06180393 A JP H06180393A JP 33409392 A JP33409392 A JP 33409392A JP 33409392 A JP33409392 A JP 33409392A JP H06180393 A JPH06180393 A JP H06180393A
Authority
JP
Japan
Prior art keywords
hardening
cement
radioactive waste
solidifying material
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33409392A
Other languages
Japanese (ja)
Inventor
Kenji Noshita
健司 野下
Masami Matsuda
将省 松田
Takashi Nishi
高志 西
Itaru Komori
至 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33409392A priority Critical patent/JPH06180393A/en
Publication of JPH06180393A publication Critical patent/JPH06180393A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the elution rate of cation while reducing treatment cost using normal cement by performing solidification on condition that bivalent cations of Ca are increased for the cement at the time of hardening reaction. CONSTITUTION:A water hardening inorganic solidification material is subjected to main hardening process where water reacts on the surface of the hardening material to produce a hydrate from which bivalent cations of Ca are then eluted. The reaction progresses gradually into the solidifying material and sustains until the bivalent cation of Ca exceeds a saturable solubility. When the saturable solubility is exceeded, Ca(OH)2 is deposited on the surface of the solidifying material. At that time, concentration of bivalent cation of Ca in the liquid increases and a part of cations of Ca stays in the solidifying material thus creating a gel phase of CaO-SiO2-H2O. Consequently, hardening is ended within a normal interval by adding a Ca compound having high solubility or increasing elution rate of bivalent cation of Ca from the solidifying material through high temperature curing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電所から発生す
るセメントの硬化遅延を起こす物質を含むような放射性
廃棄物をセメントを用いて固化する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for solidifying radioactive waste generated from a nuclear power plant, which contains a substance that delays hardening of cement by using cement.

【0002】[0002]

【従来の技術】使用済イオン交換樹脂などの放射性廃棄
物はセメントを用いて固化処理が行われている。しか
し、イオン交換樹脂にフッ化物、またはホウ酸やリン酸
などが吸着されていると、それが固化時に硬化遅延作用
を起こし、正常な硬化過程を阻害することが知られてい
る。そのため従来は、放射性廃棄物処理処分に関する研
究開発(産業技術出版,1983,天沼・阪田)に示さ
れているように、バミキュライトのような特殊な固化材
が用いられていたが、コストが高くなるなどの欠点があ
った。
2. Description of the Related Art A radioactive waste such as a used ion exchange resin is solidified by using cement. However, it has been known that when fluoride, boric acid, phosphoric acid, or the like is adsorbed on the ion exchange resin, it causes a curing retarding action at the time of solidification and inhibits a normal curing process. Therefore, conventionally, as shown in R & D on radioactive waste treatment and disposal (Industrial Technology Publication, 1983, Amana and Sakata), a special solidifying material such as vermiculite has been used, but the cost is high. There were drawbacks such as.

【0003】[0003]

【発明が解決しようとする課題】使用済イオン交換樹脂
などの放射性廃棄物がセメントの硬化遅延剤となり得る
ようなフッ化物、またはホウ酸やリン酸などを含む場
合、正常な硬化過程が一時的に阻害され、硬化反応が遅
れることが知られている。
When radioactive waste such as used ion exchange resin contains a fluoride which can be a hardening retarder for cement, or boric acid or phosphoric acid, the normal hardening process is temporary. It is known that the curing reaction is delayed due to the inhibition of

【0004】本発明の目的は、通常のセメントを用いる
ことによって固化処理のコストを安くし、固化条件を変
えることにより遅延する硬化反応を正常な期間内に終了
させる放射性廃棄物の固化方法を提供することにある。
An object of the present invention is to provide a method for solidifying radioactive waste, which reduces the cost of solidification treatment by using ordinary cement, and completes a delayed hardening reaction within a normal period by changing solidification conditions. To do.

【0005】[0005]

【課題を解決するための手段】セメントに対して、硬化
反応時のCaの2価の陽イオンを増加させる条件、即ち
Caの2価の陽イオンの飽和溶解度の高い化合物の添
加、あるいは高温で養生することにより、固化材からの
Caの2価の陽イオンの溶出速度を上げることにより達
成される。
[Means for Solving the Problems] Conditions for increasing the divalent cation of Ca during hardening reaction, that is, addition of a compound having a high saturated solubility of the divalent cation of Ca, or high temperature to cement. The curing is achieved by increasing the elution rate of Ca divalent cations from the solidified material.

【0006】[0006]

【作用】水硬性無機固化材に働く主要な硬化過程は、ま
ず固化材表面が水と反応することにより水和生成物を生
じ、次にこの水和生成物からCaの2価の陽イオンが溶
出する。この反応は次第に固化材内部へと進行し、Ca
の2価の陽イオンが飽和溶解度を超えるまで続く。飽和
溶解度を超えると、固化材表面にCa(OH)2 として析
出する。このとき、液中のCaの2価の陽イオンが非常
に高くなるため、一部のCaの2価の陽イオンは固化材
内部に留まり、CaO−SiO2−H2Oからなるゲル相
が生成される。これらが次第に結晶化し、成長すること
によって固化体は強度を発現していく。
The main hardening process that acts on the hydraulic inorganic solidifying material is that the surface of the solidifying material reacts with water to form a hydration product, and then the divalent cation of Ca is produced from this hydration product. Elute. This reaction gradually progresses inside the solidified material, and Ca
Continues until the divalent cation of s exceeds the saturation solubility. When it exceeds the saturation solubility, Ca (OH) 2 is deposited on the surface of the solidified material. At this time, since the divalent cation of Ca in the liquid becomes extremely high, a part of the divalent cation of Ca remains inside the solidifying material, and a gel phase composed of CaO—SiO 2 —H 2 O is formed. Is generated. The solidified body develops strength as these gradually crystallize and grow.

【0007】発明者らはホウ酸などの硬化遅延を引き起
こす物質について、水硬性無機固化材のCaの2価の陽
イオンの時間変化にともなう濃度測定を行ったところ、
ホウ酸はCaの2価の陽イオンの溶出の過程で、Caの
2価の陽イオンと錯塩を形成するため、図2に示すよう
に液中のCaの2価の陽イオン濃度がゆっくりとしか上
がらず、Ca(OH)2 結晶の析出やゲル相の生成の時期
が遅れ、これが硬化遅延を引き起こす原因となっている
ことがわかった。
The inventors measured the concentration of a divalent cation of Ca in the hydraulic inorganic solidifying material with respect to a substance such as boric acid which causes retardation of curing, and
Since boric acid forms a complex salt with the divalent cation of Ca during the process of elution of the divalent cation of Ca, the concentration of the divalent cation of Ca in the liquid slowly increases as shown in FIG. However, it was found that the timing of precipitation of Ca (OH) 2 crystals and formation of the gel phase was delayed, which was the cause of retardation of hardening.

【0008】したがって、これに対してCaの2価の陽
イオン濃度を上げるような条件、即ち、溶解度の高いカ
ルシウム化合物の添加、または高温での養生による固化
材からのCaの2価の陽イオンの溶出速度の増加により
硬化を通常の期間内に終了させる。
Therefore, on the other hand, the divalent cation of Ca from the solidified material obtained by increasing the concentration of divalent cation of Ca, that is, by adding a highly soluble calcium compound or curing at high temperature. Curing is completed within a normal period by increasing the elution rate of.

【0009】[0009]

【実施例】【Example】

〈実施例1〉次に本発明の実施例について説明する。 Example 1 Next, an example of the present invention will be described.

【0010】本実施例は、普通ポルトランドセメントを
用いて、普通ポルトランドセメントのみの場合、ホウ酸
を1%添加した場合、ホウ酸1%及び塩化カルシウム
(CaCl2)を1%添加した場合、ホウ酸を1%添加
し、100℃で養生した場合の四つのケースについて圧
縮強度100kg/cm2 に達するまでの期間を発明者らが
測定したものである。表1に結果を示すが、このように
硬化遅延剤を含むセメントに対して、硬化反応時のCa
の2価の陽イオン濃度を上げるようなCaCl2のような
添加剤、あるいは高温での養生によるCaの2価の陽イ
オンの溶出速度の増加が硬化促進の効果を持つことがわ
かる。
In this example, using ordinary Portland cement, only ordinary Portland cement, 1% boric acid added, 1% boric acid and calcium chloride
(CaCl 2 ) was added by 1%, boric acid was added by 1%, and the inventors measured the period until the compressive strength reached 100 kg / cm 2 in four cases when cured at 100 ° C. is there. The results are shown in Table 1. As described above, when the cement containing the set retarder was used, the Ca
It can be seen that an additive such as CaCl 2 for increasing the concentration of divalent cations, or an increase in the elution rate of divalent cations of Ca due to curing at high temperature has an effect of promoting hardening.

【0011】[0011]

【表1】 [Table 1]

【0012】〈実施例2〉本発明の実施例を図1を用い
て説明する。本実施例は原子力発電所から発生するホウ
酸5wt%を含むイオン交換樹脂を普通ポルトランドセ
メントを用いて固化する一例である。
<Embodiment 2> An embodiment of the present invention will be described with reference to FIG. This example is an example of solidifying an ion exchange resin containing 5 wt% of boric acid generated from a nuclear power plant using ordinary Portland cement.

【0013】図1にイオン交換樹脂を固化するシステム
のブロック図を示す。固化材タンク1にはセメント、ま
た添加剤が予め適当な配合で十分に混合,分散され貯蔵
されている。この固化材粉末は定量移送装置2により一
定量混練機9へ供給される。廃樹脂タンク3には硬化遅
延剤であるホウ酸を5wt%含んだ使用済イオン交換樹
脂が貯蔵されており、同じく定量移送装置4により一定
量混練機9へと供給される。混練水も混練水タンク5か
ら一定時間、電磁バルブ6を通して供給される。またホ
ウ酸による硬化反応の遅延をなくすために、固化時のカ
ルシウムイオン濃度を上げるための塩化カルシウム(C
aCl2)も添加剤タンク7に貯蔵されており、定量移
送装置8により一定量混練機9へと供給される。供給さ
れた固化材,廃樹脂,CaCl2 、及び混練水の割合は
重量で100:30:1:30となる。これを混練機9
で十分に混練し、ペースト状にする。作成されたペース
トを一定量、電磁バルブ10を介して徐々に固化容器1
1に注入する。注入後、蓋をした固化容器11は約1週
間の静置の後、搬出可能な固化体となる。このとき固化
体の圧縮強度は約100kg/cm2 となっている。本実施
例ではCaCl2 を添加剤タンク7に入れたが、予め混
練水に適量を溶解させておき混練機に供給すると、添加
剤の分散が容易になる。
FIG. 1 shows a block diagram of a system for solidifying an ion exchange resin. In the solidifying material tank 1, cement and additives are sufficiently mixed and dispersed in advance with an appropriate composition and stored. A fixed amount of the solidifying material powder is supplied to the kneading machine 9 by the fixed amount transfer device 2. The waste resin tank 3 stores a used ion-exchange resin containing 5 wt% of boric acid, which is a curing retarder, and is also supplied to the kneading machine 9 by a fixed amount by the quantitative transfer device 4. Kneading water is also supplied from the kneading water tank 5 for a certain period of time through the electromagnetic valve 6. Also, in order to eliminate the delay of the hardening reaction due to boric acid, calcium chloride (C
aCl 2 ) is also stored in the additive tank 7, and is supplied to the kneading machine 9 in a fixed amount by the constant quantity transfer device 8. The ratio of the supplied solidifying material, waste resin, CaCl 2 , and kneading water is 100: 30: 1: 30 by weight. Kneader 9
Knead thoroughly to form a paste. A certain amount of the prepared paste is gradually solidified via the electromagnetic valve 10
Inject 1. After the injection, the solidified container 11 with the lid becomes a solidified body that can be carried out after standing for about 1 week. At this time, the compression strength of the solidified body is about 100 kg / cm 2 . Although CaCl 2 was put in the additive tank 7 in this embodiment, if an appropriate amount is dissolved in the kneading water in advance and supplied to the kneader, the additive can be easily dispersed.

【0014】従来のCaCl2 を添加しない場合には、
上述の装置で固化体の圧縮強度が100kg/cm2 に達す
るまでの期間は約1か月となる。これはホウ酸による硬
化遅延が原因である。これに対し、CaCl2 を添加し
た場合には固化材と反応し、溶解度の大きいxCaCl
2・yCa(OH)2・2H2O(x,yは定数)を生成す
る。このため、Caの2価の陽イオンの溶解速度が増加
し、ホウ酸によるCaの2価の陽イオン濃度の低下がふ
さがれている。
When conventional CaCl 2 is not added,
The period until the compressive strength of the solidified body reaches 100 kg / cm 2 with the above-mentioned apparatus is about one month. This is due to the delayed curing due to boric acid. On the other hand, when CaCl 2 is added, it reacts with the solidifying material and has high solubility xCaCl 2.
2 · yCa (OH) 2 · 2H 2 O (x and y are constants) is generated. Therefore, the dissolution rate of the divalent cation of Ca is increased, and the decrease of the divalent cation concentration of Ca due to boric acid is blocked.

【0015】以上、本実施例によれば200リットル入
りの固化容器に入れられた、ホウ酸5wt%を含む廃樹
脂は塩化カルシウム添加することにより約4分の1の期
間で搬出可能な圧縮強度を持つ固化体となる利点があ
る。
As described above, according to the present embodiment, the waste resin containing 5 wt% of boric acid placed in the solidification container of 200 liters has a compressive strength which can be carried out in about 1/4 period by adding calcium chloride. It has the advantage of becoming a solidified body.

【0016】〈実施例3〉本実施例はセルロースを普通
ポルトランドセメントを用いて固化する一例である。表
2に示すケースについて、普通ポルトランドセメントに
対してセルロースを3wt%加えた場合に、圧縮強度が
100kg/cm2 に達するまでの期間を発明者らが測定し
た。
<Embodiment 3> This embodiment is an example of solidifying cellulose using ordinary Portland cement. In the cases shown in Table 2, the inventors measured the period until the compressive strength reached 100 kg / cm 2 when 3 wt% of cellulose was added to ordinary Portland cement.

【0017】[0017]

【表2】 [Table 2]

【0018】Ca(NO3)2を添加したケース及び100
℃で養生した場合の強度発現日数が普通ポルトランドセ
メントのみの場合に比べて短いのは、セルロースの硬化
遅延効果によるものである。
The case of adding Ca (NO 3 ) 2 and 100
The fact that the number of days of strength development when aged at ℃ is shorter than that of ordinary Portland cement alone is due to the effect of retarding the hardening of cellulose.

【0019】セルロースなどの多糖類は水硬性無機固化
材のアルカリ成分により、微量ではあるが糖類に加水分
解され、これが普通ポルトランドセメントの硬化遅延を
引き起こす。このような場合にも、溶解度の高いカルシ
ウム化合物の添加、あるいは高温での養生は有効である
ことを確認した。
Polysaccharides such as cellulose are hydrolyzed to a small amount of sugars by the alkaline component of the hydraulic inorganic solidifying material, which usually causes retardation of hardening of Portland cement. Even in such a case, it was confirmed that the addition of a highly soluble calcium compound or the curing at high temperature is effective.

【0020】[0020]

【発明の効果】本発明によれば、セメントに対して硬化
遅延剤となる物質を含む場合にも硬化反応時のCaの2
価の陽イオン濃度を増加させる条件で固化を行うことに
より、安全に通常の硬化時間で反応を終了させることが
できる。
EFFECTS OF THE INVENTION According to the present invention, even when a substance that serves as a hardening retarder is contained in cement, it is possible to reduce Ca content during the hardening reaction.
By carrying out the solidification under the condition that the cation concentration of valence is increased, the reaction can be safely completed in the usual curing time.

【図面の簡単な説明】[Brief description of drawings]

【図1】放射性廃棄物固化装置のブロック図。FIG. 1 is a block diagram of a radioactive waste solidification device.

【図2】硬化遅延剤添加時のCaの2価の陽イオンの経
時変化の特性図。
FIG. 2 is a characteristic diagram of changes with time of divalent cations of Ca when a curing retarder is added.

【符号の説明】[Explanation of symbols]

1…固化剤タンク、2,4,8…定量移送装置、3…廃
樹脂タンク、5…混練水タンク、6,10…電磁バル
ブ、7…添加剤タンク、9…混練機、11…固化容器。
1 ... Solidifying agent tank, 2, 4, 8 ... Quantitative transfer device, 3 ... Waste resin tank, 5 ... Kneading water tank, 6, 10 ... Electromagnetic valve, 7 ... Additive tank, 9 ... Kneading machine, 11 ... Solidifying container .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小森 至 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Komori 7-2-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Energy Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】原子力発電所から発生する、セメントの硬
化遅延を起こす物質を含む放射性廃棄物をセメントを用
いて固化する際に、硬化反応時のカルシウム濃度を上げ
る条件で固化を行うことを特徴とする放射性廃棄物の固
化方法。
1. When solidifying radioactive waste containing a substance that delays the hardening of cement generated from a nuclear power plant using cement, the hardening is performed under the condition of increasing the calcium concentration during hardening reaction. Method of solidifying radioactive waste.
【請求項2】請求項1において、セメントに飽和溶解度
の高いカルシウム化合物を添加する放射性廃棄物の固化
方法。
2. The method for solidifying radioactive waste according to claim 1, wherein a calcium compound having a high saturated solubility is added to the cement.
【請求項3】請求項2において、飽和溶解度の高いカル
シウム化合物が塩化カルシウムまたは硝酸カルシウムで
ある放射性廃棄物の固化方法。
3. The method for solidifying radioactive waste according to claim 2, wherein the calcium compound having high saturated solubility is calcium chloride or calcium nitrate.
【請求項4】請求項1において、セメントを高温で養生
する放射性廃棄物の固化方法。
4. The method for solidifying radioactive waste according to claim 1, wherein the cement is cured at a high temperature.
【請求項5】請求項4において、高温が100℃以上で
ある放射性廃棄物の固化方法。
5. The method for solidifying radioactive waste according to claim 4, wherein the high temperature is 100 ° C. or higher.
JP33409392A 1992-12-15 1992-12-15 Solidifying method of radioactive waste Pending JPH06180393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33409392A JPH06180393A (en) 1992-12-15 1992-12-15 Solidifying method of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33409392A JPH06180393A (en) 1992-12-15 1992-12-15 Solidifying method of radioactive waste

Publications (1)

Publication Number Publication Date
JPH06180393A true JPH06180393A (en) 1994-06-28

Family

ID=18273455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33409392A Pending JPH06180393A (en) 1992-12-15 1992-12-15 Solidifying method of radioactive waste

Country Status (1)

Country Link
JP (1) JPH06180393A (en)

Similar Documents

Publication Publication Date Title
US3988258A (en) Radwaste disposal by incorporation in matrix
JPH01191098A (en) Apparatus and method for containing waste into cement
DE3727907A1 (en) REPROCESSING OF CONCRETE MIXTURES
JPS6356959B2 (en)
JPH0631850B2 (en) How to dispose of radioactive liquid waste
JP2801517B2 (en) Curable inorganic slurry and method for solidifying waste using the inorganic slurry
JPH0531120B2 (en)
JPS63289498A (en) Solidifying agent for radioactive waste
JPH06180393A (en) Solidifying method of radioactive waste
JP3213054B2 (en) Treatment method for incinerated ash containing heavy metals
JPS55149673A (en) Method for solidification treatment of impalpable powder waste containing heavy metal
JPS6132000A (en) Method of solidifying and treating incinerating ash
JPS6186692A (en) Method of solidifying spent radioactive ion exchange resin
JP2002243892A (en) Solidification method for radioactive alkaline waste liquid
JPH08285995A (en) Method for solidification process of radioactive waste
JP3163876B2 (en) How to solidify radioactive waste
JPH0422238B2 (en)
JPS60179698A (en) Method of solidifying powdered body waste
JPS59133498A (en) Method of processing radioactive liquid waste
JPH0541562B2 (en)
JP2853773B2 (en) Ground injection agent
SU621442A1 (en) Solution for processing refractory filler
JPH0262199B2 (en)
JP4069520B2 (en) Solidified material for hydrous soil and method for improving solidification of hydrous soil
JPS62267700A (en) Method of solidifying and processing radioactive waste