JPH06180256A - Temperature measuring method - Google Patents

Temperature measuring method

Info

Publication number
JPH06180256A
JPH06180256A JP4331593A JP33159392A JPH06180256A JP H06180256 A JPH06180256 A JP H06180256A JP 4331593 A JP4331593 A JP 4331593A JP 33159392 A JP33159392 A JP 33159392A JP H06180256 A JPH06180256 A JP H06180256A
Authority
JP
Japan
Prior art keywords
light
optical fiber
temperature
scattered light
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4331593A
Other languages
Japanese (ja)
Other versions
JP3167202B2 (en
Inventor
Takeaki Yoshimura
武晃 吉村
Jiro Morita
二朗 森田
Hideaki Futajima
英明 二島
Yoshikazu Murata
吉和 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33159392A priority Critical patent/JP3167202B2/en
Publication of JPH06180256A publication Critical patent/JPH06180256A/en
Application granted granted Critical
Publication of JP3167202B2 publication Critical patent/JP3167202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To realize a highly accurate temperature distribution measurement for reducing the operation processing times and completing the processing in a short time by utilizing inductive Raman scattered light in a temperature distribution measuring method using an optical fiber sensor. CONSTITUTION:While a pulse light of a laser light sources 1 is used as a laser diode light at a level where there generates inductive Raman scattering, an inductive Raman backscattered light generating in an optical fiber sensor 3 is picked up by an optical directional coupler 2, and a secondary anti-stokes which is of a specified degree, is selected by an interference filter 4. The selected light is converted into an electrical signal by a light receiver and the signal is processed on the basis of a specified formula through a signal processing circuit 6 to find out its temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光ファイバを温度セ
ンサとして用いた分布温度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed temperature measuring method using an optical fiber as a temperature sensor.

【0002】[0002]

【従来の技術】光ファイバの一端から光パルスを入射す
ると、光ファイバ中を進んだ光パルスは光ファイバの任
意の位置の媒質でレーリ散乱、ブリリアン散乱、ラマン
散乱などの散乱光が発生する。このうちラマン散乱光に
ついて見ると、通常発生するのは自然ラマン散乱光とい
う線形光学効果による散乱光である。一方、入射する光
強度を上げると、誘導ラマン散乱光と呼ばれる非線形光
学効果による散乱光が生じることが知られている。
2. Description of the Related Art When an optical pulse is incident from one end of an optical fiber, the optical pulse traveling through the optical fiber produces scattered light such as Rayleigh scattering, Brillian scattering, and Raman scattering in a medium at an arbitrary position of the optical fiber. Looking at the Raman scattered light, the light that is usually generated is natural Raman scattered light, which is a scattered light due to the linear optical effect. On the other hand, it is known that when the incident light intensity is increased, scattered light due to a nonlinear optical effect called stimulated Raman scattered light is generated.

【0003】上記ラマン散乱光は、後方へ戻ってくる後
方ラマン散乱光が入射端へ遅れて戻ってくる時間を測定
することによって光ファイバのどの位置から戻って来た
かを知ることができる。又、ラマン散乱光は微弱ではあ
るが、その強度は温度に敏感に依存しており、その強度
変化を測定することによって所定位置の温度を測定でき
る。
From the Raman scattered light, it is possible to know from which position of the optical fiber the backward Raman scattered light returning backward is measured by measuring the time when the backward Raman scattered light returns to the incident end. Further, although the Raman scattered light is weak, its intensity sensitively depends on temperature, and the temperature at a predetermined position can be measured by measuring the intensity change.

【0004】かかる従来の温度測定方法は、例えば技術
報告「LD励起固体レーザを用いた分布型温度センサ」
(第5回光波センシング技術研究会、応用物理学会、1
990年5月)や、あるいは特開平1−212326号
公報等に開示されている。
Such a conventional temperature measuring method is described, for example, in the technical report “Distributed temperature sensor using LD pumped solid-state laser”.
(The 5th Workshop on Lightwave Sensing Technology, Japan Society of Applied Physics, 1
(May 990), or in Japanese Patent Application Laid-Open No. 1-212326.

【0005】上記公報等に開示されている測定方法は、
一般にOTDR(OpticalTime Domai
n Reflectometry)と呼ばれており、詳
細については上記公報等に詳しく示されているのでここ
ではその概要を図5を参照して簡単に述べる。
The measuring methods disclosed in the above publications are
Generally, OTDR (Optical Time Domain)
n Reflectometry), and the details thereof are described in detail in the above-mentioned publications and the like, so an outline thereof will be briefly described with reference to FIG.

【0006】図示のように、例えばレーザダイオード等
から成るレーザ光源1を駆動して基準波長の光パルス信
号を送りだして光ファイバセンサ3の入射端に入射し、
光ファイバの長さ方向の各部分で光散乱して入射端へ戻
ってくる後方散乱光を光方向性結合器2により取り出
し、その中から波長の異なる2つのフィルタ4を介して
ラマン散乱光のストークス光と反ストークス光を取り出
して受光素子5、5でそれぞれ電気信号に変換し、受光
信号の時間が表す光ファイバの長さ方向位置毎の分布温
度を上記信号の受光パワーから信号処理回路6で所定の
演算式に基づいて算出し測定するというものである。
As shown in the figure, the laser light source 1 including, for example, a laser diode is driven to send out an optical pulse signal having a reference wavelength, which is incident on the incident end of the optical fiber sensor 3.
Backscattered light that scatters at each part in the length direction of the optical fiber and returns to the incident end is extracted by the optical directional coupler 2, and Raman scattered light of the Raman scattered light is extracted from the backscattered light through two filters 4 having different wavelengths. The Stokes light and the anti-Stokes light are extracted and converted into electric signals by the light receiving elements 5 and 5, respectively, and the distribution temperature for each position in the length direction of the optical fiber, which represents the time of the light reception signal, is calculated from the light reception power of the signal to the signal processing circuit 6. Then, it is calculated and measured based on a predetermined arithmetic expression.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記従来の
分布温度の測定方法では、光源のパルス光はラマン散乱
が自然ラマン散乱となる強さの光として入射されるが、
光源のパルス光強度を強くするとあるレベル以上では誘
導ラマン散乱状態となる。
By the way, in the above-mentioned conventional method for measuring the distributed temperature, the pulsed light of the light source is incident as the light of such intensity that Raman scattering becomes natural Raman scattering.
When the intensity of the pulsed light from the light source is increased, the stimulated Raman scattering state occurs at a certain level or higher.

【0008】自然ラマン散乱は、例えば図6の(a)、
(b)に示すように、ストークス光と反ストークス光の
光強度を対数軸で縦軸にとり、光ファイバセンサの長さ
距離を横軸にとると、強度レベルは微弱であるが距離と
共に直線状に変化し、安定した変化を示す。但し、光フ
ァイバが均一で、温度が一様であるとする。そして、
(c)に示すように、温度が長さ距離の一部で変化する
と、光強度が変化し、その強度の変化から温度が測定で
きる。
Natural Raman scattering is, for example, as shown in FIG.
As shown in (b), when the light intensity of the Stokes light and the anti-Stokes light is plotted on the vertical axis on the logarithmic axis and the length distance of the optical fiber sensor is plotted on the horizontal axis, the intensity level is weak but linear with the distance. Changes to a stable change. However, it is assumed that the optical fiber is uniform and the temperature is uniform. And
As shown in (c), when the temperature changes in a part of the length distance, the light intensity changes, and the temperature can be measured from the change in the intensity.

【0009】この場合、一般にはストークス光を基準と
してストークス光と反ストークス光の比の値を用いる
が、反ストークス光の強度だけで測定してもよい。
In this case, the value of the ratio of the Stokes light to the anti-Stokes light is generally used with the Stokes light as a reference, but the intensity of the anti-Stokes light may be used for the measurement.

【0010】これに対して、誘導ラマン散乱状態では入
射端では強度変化は測定できるが、その強度の変化は距
離と共に大きく変化し不安定であるため、例えば前述の
技術報告書では温度分布測定には応用困難であると述べ
られている。従って、従来の温度測定では上記誘導ラマ
ン散乱が生じないように光パルスの強さを所定レベル以
下に制限して測定する方法が採用されている。
On the other hand, in the stimulated Raman scattering state, a change in intensity can be measured at the incident end, but the change in intensity changes greatly with distance and is unstable. Is said to be difficult to apply. Therefore, in the conventional temperature measurement, a method is adopted in which the intensity of the light pulse is limited to a predetermined level or less so that the stimulated Raman scattering does not occur.

【0011】しかしながら、自然ラマン散乱状態では受
光される後方散乱光が微弱であるため、ノイズが入り易
く、S/N比を向上させるため数万回と繰り返して受光
信号の平均化処理を行って測定精度を確保している。
However, since the backscattered light received in the natural Raman scattering state is weak, noise is likely to enter, and the averaging process of the received light signal is repeated tens of thousands times in order to improve the S / N ratio. The measurement accuracy is secured.

【0012】従って、測定精度の向上が困難であり、測
定に時間がかかり、急激な温度変化を検出するような用
途には適さず、誘導ラマン散乱光を積極的に利用した温
度測定法を実施することができなかった。
Therefore, it is difficult to improve the measurement accuracy, it takes a long time to perform the measurement, and it is not suitable for the purpose of detecting a sudden temperature change. Therefore, the temperature measurement method using the stimulated Raman scattered light positively is carried out. I couldn't.

【0013】この発明は、上述した従来の自然ラマン状
態で測定する光ファイバにより分布温度の測定をする方
法の問題点に留意して、光ファイバセンサに入射される
光源のパルス光強度を誘導ラマン散乱光が生じるレベル
に設定して後方ラマン散乱光としてこれを積極的に利用
し、誘導ラマン散乱光が安定な範囲内の信号を用いて分
布温度測定をし、光パルス強度が強いため測定時間が短
い温度測定方法を提供することを課題とする。
In the present invention, the pulsed light intensity of the light source incident on the optical fiber sensor is stimulated by taking into account the problem of the conventional method of measuring the distributed temperature by the optical fiber which is measured in the natural Raman state. The scattered light is set to a level at which it will be actively used as backward Raman scattered light, and the temperature distribution is measured using a signal within the range where the stimulated Raman scattered light is stable. It is an object of the present invention to provide a temperature measuring method having a short period.

【0014】[0014]

【課題を解決するための手段】上記課題を解決する手段
としてこの発明は、光ファイバの一端からパルス光を入
射し、その光ファイバ中で発生するラマン後方散乱光を
時間的にサンプリング測定し、得られたデータに演算処
理を施すことによって光ファイバの温度分布を測定する
温度測定方法において、使用する光源の強度を光ファイ
バ中で発生するラマン後方散乱光が誘導ラマン散乱光と
なるレベルに設定し、光ファイバへのパルス入射端から
誘導ラマン散乱光の強度がピークに達する位置までの間
から戻ってくるラマン散乱光を受光して温度測定をする
ようにしたのである。
As a means for solving the above-mentioned problems, the present invention provides pulsed light from one end of an optical fiber, and temporally samples and measures Raman backscattered light generated in the optical fiber. In the temperature measurement method that measures the temperature distribution of the optical fiber by performing arithmetic processing on the obtained data, set the intensity of the light source used to a level at which Raman backscattered light generated in the optical fiber becomes stimulated Raman scattered light. Then, the temperature is measured by receiving the Raman scattered light returning from the time from the pulse incident end to the optical fiber to the position where the intensity of the stimulated Raman scattered light reaches the peak.

【0015】この場合、誘導ラマン散乱光として2次の
反ストークス光を用いる測定方法とするのが好ましい。
In this case, it is preferable to use a second-order anti-Stokes light as the stimulated Raman scattered light.

【0016】[0016]

【作用】上述したこの発明による温度測定方法では、光
源の光パルス強度は光ファイバ中での光散乱が誘導ラマ
ン散乱状態となるレベルに設定して光ファイバセンサに
入射される。誘導ラマン散乱光は、自然ラマン散乱光に
比べて強度が強く、受光信号のS/N比を大きく得るこ
とができ、従来数万回の測定の平均処理によって得てい
た測定精度をより少ない回数、即ちより短い時間で得る
ことができるのである。
In the temperature measuring method according to the present invention described above, the light pulse intensity of the light source is set to a level at which the light scattering in the optical fiber becomes the stimulated Raman scattering state, and the light is incident on the optical fiber sensor. Stimulated Raman scattered light has a higher intensity than natural Raman scattered light and can obtain a large S / N ratio of the received light signal. That is, it can be obtained in a shorter time.

【0017】誘導ラマン散乱状態になると、従来は光フ
ァイバのそれぞれの部位から戻ってくる光強度の変化は
自然ラマン散乱下のように直線的な安定した変化となら
ず、不安定であるとされていた。
In the stimulated Raman scattering state, conventionally, it is considered that the change in the light intensity returning from each part of the optical fiber is not a stable linear change as under natural Raman scattering, but is unstable. Was there.

【0018】しかし、種々実験の結果、図4に示すよう
に、光強度は入射端から距離が遠くなるにつれて曲線状
に変化するが、入射端でのピーク値とは別にある一定の
距離で局所的なピーク値を示す位置Lpがあるという結
果が得られている。
However, as a result of various experiments, as shown in FIG. 4, the light intensity changes in a curve shape as the distance from the incident end increases, but the light intensity locally changes at a certain distance apart from the peak value at the incident end. The result is that there is a position Lp that exhibits a specific peak value.

【0019】そして、上記光強度の変化は、距離Lpよ
り遠い位置では不安定であるが、入射端から距離Lpま
での間は安定した状態であり、光源の光強度及び波長が
決まればそれぞれの状態で一定の変化を示す。
The change of the light intensity is unstable at a position farther than the distance Lp, but is stable from the incident end to the distance Lp, and if the light intensity and the wavelength of the light source are determined, the respective changes will occur. Shows a constant change in state.

【0020】この場合、図4に示すように、光ファイバ
の距離Lvの区間で一部温度変化が生じるとその温度に
応じて光強度が変化する。従って、基準温度となる曲線
に対して温度変化を生じた部分の光強度変化を求めるこ
とによって所定部位の分布温度測定ができるのである。
In this case, as shown in FIG. 4, when the temperature partially changes in the section of the distance Lv of the optical fiber, the light intensity changes according to the temperature. Therefore, the distribution temperature of a predetermined portion can be measured by obtaining the light intensity change of the portion where the temperature change occurs with respect to the curve serving as the reference temperature.

【0021】[0021]

【実施例】以下この発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1はこの発明の温度測定方法を実施する
のに用いられる測定装置の概略ブロック図である。
FIG. 1 is a schematic block diagram of a measuring apparatus used to carry out the temperature measuring method of the present invention.

【0023】レーザ光源1は半導体レーザ励起形YLF
パルスレーザを用い、光ファイバセンサ3に用いた光フ
ァイバはマルチモードGIファイバである。光方向性結
合器2は50:50のカプラを使用している。4は干渉
フィルタであり、所定次数のラマン散乱光を選択するも
のである。この干渉フィルタ4で選択された光は連続光
としてGe−APDから成る受光器5により受光され、
電気信号に変換される。6は信号処理回路であり、所定
の温度を算出するプログラム及び光源のパルス光を制御
する回路等が含まれている。7はデータ表示用のパーソ
ナルコンピュータである。
The laser light source 1 is a semiconductor laser excitation type YLF.
The optical fiber used for the optical fiber sensor 3 using a pulse laser is a multimode GI fiber. The optical directional coupler 2 uses a 50:50 coupler. An interference filter 4 selects Raman scattered light of a predetermined order. The light selected by the interference filter 4 is received as continuous light by the light receiver 5 made of Ge-APD,
It is converted into an electric signal. A signal processing circuit 6 includes a program for calculating a predetermined temperature, a circuit for controlling the pulsed light of the light source, and the like. Reference numeral 7 is a personal computer for displaying data.

【0024】なお、この実施例では受光器5は、従来の
装置のようにストークス光と反ストークス光用に2組設
けるのではなく、実際には反ストークス光用の1組のみ
が用いられている。これは、図3に示すように(a)の
自然ラマン散乱光ではストークス光、反ストークス光の
1次光が微弱であっても得られるのに対して、(b)の
誘導ラマン散乱光ではストークス光は1次、2次、……
の各次数のゴースト部分が影響するため、この実施例で
はその影響の少ない反ストークス光の2次光を利用して
いるからである。
In this embodiment, the light receiver 5 is not provided with two sets for Stokes light and anti-Stokes light as in the conventional device, but actually only one set for anti-Stokes light is used. There is. As shown in FIG. 3, the natural Raman scattered light of (a) can be obtained even if the first-order Stokes light and anti-Stokes light are weak, whereas the stimulated Raman scattered light of (b) is obtained. Stokes light is the primary, secondary ...
This is because the ghost part of each order has an effect, and in this embodiment, the secondary light of the anti-Stokes light, which has little effect, is used.

【0025】反ストークス光の2次光を前述の図4に示
す測定原理に従って測定した結果の一例を図2に示す。
この測定結果は、ファイバ端からの距離1870mから
1970mの間の温度を常温の20℃から80℃に変化
させたときと常温時との2次の反ストークス光のOTD
R波形をポンプ光パワー300(W)としてそれぞれ観
測し散乱光の比をとって記録したものである。加算演算
回数は5000回であり、散乱光の温度依存性について
の変化率は0.02%/℃である。
FIG. 2 shows an example of a result obtained by measuring the secondary light of the anti-Stokes light according to the measuring principle shown in FIG.
This measurement result shows that the OTD of the second anti-Stokes light when the temperature between the distance 1870 m and 1970 m from the fiber end is changed from 20 ° C. at room temperature to 80 ° C.
The R waveform was observed with the pump light power of 300 (W), and the ratio of scattered light was taken and recorded. The number of addition operations is 5000, and the rate of change in the temperature dependence of scattered light is 0.02% / ° C.

【0026】勿論、上記測定結果は測定位置が誘導ラマ
ン散乱下でのピーク位置より手前で行われたものであ
る。上記結果から光強度のピーク位置までの範囲であれ
ば温度測定ができることが分かるであろう。
Of course, the above measurement results are obtained at the measurement position before the peak position under stimulated Raman scattering. It will be understood from the above results that the temperature can be measured in the range up to the peak position of the light intensity.

【0027】又、自然ラマン散乱光の温度変化率は、例
えば前述の技術報告書によれば0.1〜0.8%/℃で
あるのに対して、上記誘導ラマン散乱光の温度変化率は
低下しているが、散乱光パワーが大きいため繰り返し加
算演算回数は減らすことができ、測定時間が短縮される
メリットがある。しかし、温度変化率が小さいため、実
施例のように20→80℃というように温度が大きく異
なる状態を測定するのに適している。
The temperature change rate of natural Raman scattered light is, for example, 0.1 to 0.8% / ° C. according to the above-mentioned technical report, whereas the temperature change rate of stimulated Raman scattered light is However, since the scattered light power is large, the number of repeated addition operations can be reduced, which has the advantage of shortening the measurement time. However, since the rate of temperature change is small, it is suitable for measuring a state in which the temperature is greatly different, such as 20 → 80 ° C. as in the embodiment.

【0028】[0028]

【効果】以上詳細に説明したように、この発明の温度測
定方法では光源の光強度を誘導ラマン散乱が生じるレベ
ル以上とし、その条件下で光ファイバ入射端から減衰す
る後方ラマン散乱光が再びピークとなる距離までの範囲
の受信信号の変化から温度変化を測定する方法としたか
ら、従来の自然ラマンのみを用いた光ファイバによる温
度測定方法に比べて、短時間で同等以上の精度の温度測
定ができ、さらに比較的温度変化の大きい火災位置検出
などの異常検出へ応用できる等種々の利点が得られる。
As described above in detail, in the temperature measuring method of the present invention, the light intensity of the light source is set to a level at which stimulated Raman scattering occurs or more, and under the condition, the backward Raman scattered light attenuated from the optical fiber entrance end peaks again. Since the temperature change is measured from the change of the received signal in the range up to, the temperature measurement with the same or higher accuracy in a short time compared with the conventional temperature measurement method using optical fiber using only Raman. In addition, various advantages such as application to abnormality detection such as fire position detection where the temperature change is relatively large can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の分布温度測定装置の概略ブロック図FIG. 1 is a schematic block diagram of a distributed temperature measuring device according to an embodiment.

【図2】光ファイバセンサによる温度測定結果の例[Fig. 2] Example of temperature measurement result by optical fiber sensor

【図3】自然ラマン散乱と誘導ラマン散乱の説明図FIG. 3 is an explanatory diagram of natural Raman scattering and stimulated Raman scattering.

【図4】誘導ラマン散乱光による測定原理の説明図FIG. 4 is an explanatory diagram of a measurement principle using stimulated Raman scattered light.

【図5】従来の分布温度測定装置の概略ブロック図FIG. 5 is a schematic block diagram of a conventional distributed temperature measuring device.

【図6】同上の測定方法の説明図FIG. 6 is an explanatory diagram of the same measurement method as above.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 光方向性結合器 3 光ファイバセンサ 4 干渉フィルタ 5 受光器 6 信号処理回路 7 パーソナルコンピュータ 1 Laser Light Source 2 Optical Directional Coupler 3 Optical Fiber Sensor 4 Interference Filter 5 Light Receiver 6 Signal Processing Circuit 7 Personal Computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 二朗 兵庫県加古川市加古川町西河原105番地の 1 (72)発明者 二島 英明 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 村田 吉和 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jiro Morita 1 of 105 Nishikawara, Kakogawa-cho, Kakogawa-shi, Hyogo Prefecture (72) Inventor Hideaki Nijima 1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric Industries Inside the Osaka Works Co., Ltd. (72) Yoshikazu Murata, 1-3 1-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric Industries Co., Ltd. Osaka Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの一端からパルス光を入射
し、その光ファイバ中で発生するラマン後方散乱光を時
間的にサンプリング測定し、得られたデータに演算処理
を施すことによって光ファイバの温度分布を測定する温
度測定方法において、使用する光源の強度を光ファイバ
中で発生するラマン後方散乱光が誘導ラマン散乱光とな
るレベルに設定し、光ファイバへのパルス入射端から誘
導ラマン散乱光の強度がピークに達する位置までの間か
ら戻ってくるラマン散乱光を受光して温度測定をするこ
とを特徴とする温度測定法。
1. A temperature of an optical fiber is obtained by inputting pulsed light from one end of the optical fiber, temporally sampling and measuring Raman backscattered light generated in the optical fiber, and applying arithmetic processing to the obtained data. In the temperature measurement method for measuring the distribution, the intensity of the light source used is set to a level at which the Raman backscattered light generated in the optical fiber becomes stimulated Raman scattered light, and the intensity of the stimulated Raman scattered light from the pulse incident end to the optical fiber is set. A temperature measuring method characterized by receiving Raman scattered light returning from a position where the intensity reaches a peak and measuring the temperature.
【請求項2】 誘導ラマン散乱光として2次の反ストー
クス光を用いることを特徴とする請求項1に記載の温度
測定方法。
2. The temperature measuring method according to claim 1, wherein second-order anti-Stokes light is used as the stimulated Raman scattered light.
JP33159392A 1992-12-11 1992-12-11 Temperature measurement method and device Expired - Fee Related JP3167202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33159392A JP3167202B2 (en) 1992-12-11 1992-12-11 Temperature measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33159392A JP3167202B2 (en) 1992-12-11 1992-12-11 Temperature measurement method and device

Publications (2)

Publication Number Publication Date
JPH06180256A true JPH06180256A (en) 1994-06-28
JP3167202B2 JP3167202B2 (en) 2001-05-21

Family

ID=18245389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33159392A Expired - Fee Related JP3167202B2 (en) 1992-12-11 1992-12-11 Temperature measurement method and device

Country Status (1)

Country Link
JP (1) JP3167202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240174A (en) * 2006-03-06 2007-09-20 Yokogawa Electric Corp Optical fiber distribution type temperature measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240174A (en) * 2006-03-06 2007-09-20 Yokogawa Electric Corp Optical fiber distribution type temperature measuring apparatus

Also Published As

Publication number Publication date
JP3167202B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
Zhang et al. Analysis and reduction of large errors in Rayleigh-based distributed sensor
Lu et al. Distributed vibration sensor based on coherent detection of phase-OTDR
Parker et al. Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers
Garcus et al. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements
EP3376169A1 (en) Temperature or strain distribution sensor
JPH0364812B2 (en)
CN104677396A (en) Dynamic distributed Brillouin optical fiber sensing device and method
CN110518969B (en) Optical cable vibration positioning device and method
WO2004102840A1 (en) Optic communication or transmission media sensing
CN204439100U (en) Dynamic distributed Brillouin light fiber sensing equipment
CN108801305B (en) Method and device of Brillouin optical time domain reflectometer based on step pulse self-amplification
CN112378430A (en) Distributed optical fiber Raman sensing device and method based on chaotic laser
He et al. Distributed temperature/vibration fiber optic sensor with high precision and wide bandwidth
JP2017003339A (en) Brillouin scattering measurement device and brillouin scattering measurement method
JPH06180256A (en) Temperature measuring method
CN113091783B (en) High-sensitivity sensing device and method based on two-stage Brillouin scattering
JPH03122538A (en) Method of analyzing guided optical element optical fiber or optical guide network by temporal reflector measurement and reflector apparatus
Motil et al. High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses
Liu et al. Design of distributed fiber optical temperature measurement system based on Raman scattering
CN103335967A (en) Fiber loop cavity ringdown spectroscopy device based on Brillouin slow light effect
US6366348B1 (en) Optical fiber distortion measuring apparatus and optical fiber distortion measuring method
CN113124931A (en) Method, device and storage medium for improving power optical fiber state monitoring precision
Wakami et al. 1.55-um long-span fiber optic distributed temperature sensor
JP2747565B2 (en) Method and apparatus for measuring curvature distribution of optical fiber
JPH02201233A (en) Distribution type optical fiber temperature sensor and its method of temperature measurement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees