JPH0617923A - Hydraulic control unit of continuously variable transmission for vehicle - Google Patents

Hydraulic control unit of continuously variable transmission for vehicle

Info

Publication number
JPH0617923A
JPH0617923A JP17302192A JP17302192A JPH0617923A JP H0617923 A JPH0617923 A JP H0617923A JP 17302192 A JP17302192 A JP 17302192A JP 17302192 A JP17302192 A JP 17302192A JP H0617923 A JPH0617923 A JP H0617923A
Authority
JP
Japan
Prior art keywords
primary
pulley
hydraulic
pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17302192A
Other languages
Japanese (ja)
Other versions
JP2760216B2 (en
Inventor
Makoto Shimada
誠 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP4173021A priority Critical patent/JP2760216B2/en
Publication of JPH0617923A publication Critical patent/JPH0617923A/en
Application granted granted Critical
Publication of JP2760216B2 publication Critical patent/JP2760216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To prevent belt slip and enhance acceleration responsiveness by correcting a second primary pulley controlling hydraulic pressure value by a predetermined amount if a primary pully controlling hydraulic pressure signal value does not reach a desired control hydraulic pressure after the vehicle has reached a low-speed running range. CONSTITUTION:A continuously variable transmission 2 comprises a steel belt 13 hung between a primary 9 and secondary 12 pulley and provides a desired transmission gear ratio by changing the effective diameter of each pulley 9, 12 through the axial displacement of the movable side pulley member 902, 122 of each pulley 9, 12 by a hydraulic actuator 15, 16. Governed pressure oil is fed to and discharged from each hydraulic actuator 15, 16 via a transmission gear ratio control valve by a hydraulic control unit. In this case, delivery pressure introduced into the primary side hydraulic actuator 15 is detected and when the vehicle speed is at or below a predetermined value a primary control signal is corrected by a predetermined amount so that the delivery pressure detected equals a preset desired value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一対のプーリに巻装され
るベルトの巻き付け径比を油圧アクチュエータの切り換
え操作によって変化させて無段変速を行う車両用無段変
速機の油圧制御装置、特に、車両の停止後のプライマリ
プーリと駆動ベルトとのスリップを排除するための車両
用無段変速機の油圧制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic control device for a continuously variable transmission for a vehicle, in which the winding diameter ratio of a belt wound around a pair of pulleys is changed by switching operation of a hydraulic actuator, and a continuously variable transmission is provided. The present invention relates to a hydraulic control device for a vehicle continuously variable transmission that eliminates slippage between a primary pulley and a drive belt after the vehicle has stopped.

【0002】[0002]

【従来の技術】この無段変速機はプライマリ及びセカン
ダリのピストンを備えており、車両の運転情報に応じた
ライン圧となるようにレギュレータバルブを電磁制御弁
で調圧し、同ライン圧をセカンダリプーリ側の油圧ピス
トンへ供給してベルトクランプ力を得るようにしてい
る。また、このライン圧を変速比制御バルブに供給し、
車両の運転情報に応じた目標変速比と成るよう、同変速
比制御バルブ用電磁制御弁によりさらに調圧して得られ
た変速比制御油圧を、プライマリプーリ側の油圧ピスト
ンへ供給して変速比を変更させ、無段変速を行うように
構成されている。
2. Description of the Related Art This continuously variable transmission is provided with a primary piston and a secondary piston, and a regulator valve is regulated by an electromagnetic control valve so that a line pressure according to operating information of a vehicle is obtained. It is supplied to the hydraulic piston on the side to obtain the belt clamping force. Also, by supplying this line pressure to the gear ratio control valve,
The gear ratio control hydraulic pressure, which is obtained by further adjusting the pressure using the electromagnetic control valve for the same gear ratio control valve, is supplied to the hydraulic piston on the primary pulley side to adjust the gear ratio so that it becomes the target gear ratio according to the vehicle driving information. It is configured to be changed to perform continuously variable transmission.

【0003】[0003]

【発明が解決しようとする課題】ところでこの無段変速
機の変速部(ベルト、プーリ間)でトルクを伝達するに
は、ベルトをプーリがしっかり挾む(押し付ける)こと
が必要であるが、プーリがベルトを押し付ける力が弱い
とプーリのコーン面と駆動ベルトとの間でスリップが生
じる。
By the way, in order to transmit the torque in the speed change portion (between the belt and the pulley) of the continuously variable transmission, it is necessary for the pulley to firmly pinch (press) the belt. If the force pressing the belt is weak, slip will occur between the cone surface of the pulley and the drive belt.

【0004】特に従来の変速制御装置では、車両の減速
より停止時に、次回の発進に備えて、変速比を大きくす
る。そのために、プライマリ油圧室に通じる通路を排油
孔に開放して、油を排出しつつ、プライマリプーリをス
トッパに当たる(最大変速比状態)まで移動させる必要
がある。また、車両の減速乃至停止の期間においては流
体継手によりトルクが吸収されるため、プライマリプー
リは殆どあるいは全く回転しないので、油圧室内の油に
遠心力が働かず、油圧室の油は排出され続け、油通路の
ある軸中心部まで油が無くなる。
Particularly, in the conventional shift control device, when the vehicle is stopped due to deceleration, the gear ratio is increased in preparation for the next start. For this reason, it is necessary to open the passage leading to the primary hydraulic chamber to the oil drain hole to discharge the oil and move the primary pulley to the stopper (maximum gear ratio state). Further, since the torque is absorbed by the fluid coupling during the vehicle deceleration or stop, the primary pulley hardly rotates or at all, the centrifugal force does not act on the oil in the hydraulic chamber, and the oil in the hydraulic chamber continues to be discharged. , Oil is exhausted up to the center of the shaft where the oil passage is located.

【0005】ところで、プーリがストッパに当たってい
る場合の発進では、セカンダリプーリの油圧室に油が入
れば、セカンダリプーリ隙間は小さくなり、セカンダリ
プーリに巻き付いているベルトは外周方向に押しださ
れ、ベルトは引っ張られる。プライマリプーリがストッ
パに当たっている時は(プーリは働かないので)、プラ
イマリプーリ側でもベルトプーリ間に反力が生じ、ベル
トのスリップは生じない、しかし、急停車後の発進時な
どに起こり易いプーリがストッパに当たらないときは、
セカンダリプーリの油圧室に油が入っても、プライマリ
プーリはまず軸方向に移動するので、そのストッパに当
たるまではベルトとシーブのコーン面間に反力が得られ
ず、ベルトスリップが生じる。
By the way, in starting the vehicle when the pulley is in contact with the stopper, if the oil enters the hydraulic chamber of the secondary pulley, the gap between the secondary pulley becomes small, and the belt wound around the secondary pulley is pushed out in the outer peripheral direction, and the belt is Be pulled. When the primary pulley hits the stopper (because the pulley does not work), the reaction force is generated between the belt pulleys even on the primary pulley side, and the belt does not slip. However, the pulley that is likely to occur when the vehicle starts after a sudden stop is the stopper. If you don't hit
Even if oil enters the hydraulic chamber of the secondary pulley, the primary pulley first moves in the axial direction, so that a reaction force cannot be obtained between the belt and the cone surface of the sheave until it hits the stopper, causing belt slip.

【0006】これに対向すべく、従来、図4(a),
(b)に示すように、発進に先立ち、定期的に(予め決
まった油圧導入周期Toに決まった油圧導入時間tだ
け)プライマリプーリの油圧室に油圧を込め、油圧室に
油圧を保ちシーブのコーン面とベルト間のベルトスリッ
プを防止している。これは、プライマリプーリの油圧室
内に油があるとプーリ移動時に排圧が生じ、プーリとベ
ルト間に大きな反力が発生するので、ベルトをクランプ
することが出来るためである。
In order to face this, conventionally, as shown in FIG.
As shown in (b), prior to starting, the hydraulic pressure is periodically introduced into the hydraulic chamber of the primary pulley (only for the hydraulic pressure introduction time t determined in the predetermined hydraulic pressure introduction period To) to keep the hydraulic pressure in the hydraulic chamber and to keep the sheave of the sheave. Prevents belt slip between the cone surface and the belt. This is because if there is oil in the hydraulic chamber of the primary pulley, a discharge pressure is generated when the pulley moves, and a large reaction force is generated between the pulley and the belt, so that the belt can be clamped.

【0007】しかし、従来方法では見込の油圧導入周期
To及び油圧導入時間tで油圧込めを行っているため、
プライマリ油圧Ppがバラツキ、これが目標値Poを下
回る場合、ベルトスリップ対策としては不十分で、発進
時にベルトスリップが生じる。即ち、シーブのコーン面
と駆動ベルトとの間でスリップが生じ易く、このスリッ
プに伴う不快なショックが生じ、しかも、ベルトやシー
ブコーン面の耐久性が損なわれ、問題と成る。
However, in the conventional method, since the hydraulic pressure is introduced at the expected hydraulic pressure introduction period To and the hydraulic pressure introduction time t,
If the primary hydraulic pressure Pp varies and falls below the target value Po, it is not sufficient as a measure against belt slip, and belt slip occurs when starting. That is, a slip easily occurs between the sheave cone surface and the drive belt, an uncomfortable shock occurs due to the slip, and the durability of the belt and the sheave cone surface is impaired, which is a problem.

【0008】逆にプライマリ油圧Ppが大きすぎて目標
値Poを上回る場合、小変速比(高変速段)側に変化し
てしまうため、発進時の加速応答性が低くい(加速がト
ロい)という、問題がある。
On the other hand, when the primary oil pressure Pp is too large and exceeds the target value Po, it changes to the small gear ratio (high gear stage) side, so the acceleration response at the start is low (acceleration is slow). There is a problem.

【0009】本発明の目的は無段変速機のベルトスリッ
プを防止し、加速応答性を確保することに有る。
An object of the present invention is to prevent belt slip of a continuously variable transmission and ensure acceleration responsiveness.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、駆動ベルトが巻装されたプライマリプ
ーリ及びセカンダリプーリから成り、両プーリ間の間隙
を調整することで変速比を無段階に変更する車両用無段
変速機において、上記プライマリプーリの間隙を調整す
るプライマリ側油圧アクチュエータと、上記セカンダリ
プーリの間隙を調整するセカンダリ側油圧アクチュエー
タと、油圧源からの油圧を調整するレギュレータバルブ
と、同レギュレータバルブからの吐出圧が導入される変
速比制御バルブと、同変速比制御バルブからの吐出圧を
上記プライマリ側油圧アクチュエータへ導く油路中に配
設された油圧検出手段と、上記変速比制御バルブを調整
する電磁制御弁と、車両の運転状態に基づいて上記電磁
制御弁を制御する電子制御手段と、を備え、上記電子制
御手段は上記車両の車速が所定車速以下のとき、上記油
圧検出手段からの検出値が予め設定された目標となるよ
う、上記電磁制御弁駆動信号を補正することを特徴とす
る。
In order to achieve the above-mentioned object, the present invention comprises a primary pulley and a secondary pulley around which a drive belt is wound, and the gear ratio is adjusted by adjusting the gap between the pulleys. In a continuously variable transmission for a vehicle that changes continuously, a primary-side hydraulic actuator that adjusts the gap between the primary pulleys, a secondary-side hydraulic actuator that adjusts the gap between the secondary pulleys, and a regulator that adjusts the hydraulic pressure from a hydraulic source. A valve, a gear ratio control valve to which the discharge pressure from the regulator valve is introduced, and a hydraulic pressure detection means arranged in an oil passage for guiding the discharge pressure from the gear ratio control valve to the primary side hydraulic actuator, An electromagnetic control valve that adjusts the gear ratio control valve, and controls the electromagnetic control valve based on the operating state of the vehicle Child control means, and the electronic control means corrects the electromagnetic control valve drive signal so that the detection value from the hydraulic pressure detection means becomes a preset target when the vehicle speed of the vehicle is equal to or lower than a predetermined vehicle speed. It is characterized by doing.

【0011】[0011]

【作用】車両が低速走行域に達した場合、電子制御手段
はプライマリプーリ制御油圧信号の一の値が予め設定さ
れる目標制御油圧に達しないと、次のプライマリプーリ
制御油圧値を予め設定されている修正量だけ修正して設
定するので、プライマリプーリ制御油圧を目標制御油圧
に保持出来、プライマリプーリの油圧アクチュエータが
プライマリプーリのプーリ隙間を狭めるように作動す
る。
When the vehicle reaches the low speed traveling range, the electronic control means presets the next primary pulley control hydraulic pressure value unless one value of the primary pulley control hydraulic pressure signal reaches the preset target control hydraulic pressure. Since the correction amount is corrected and set, the primary pulley control oil pressure can be maintained at the target control oil pressure, and the hydraulic actuator of the primary pulley operates so as to narrow the pulley gap of the primary pulley.

【0012】[0012]

【実施例】図1及び図2の車両用無段変速機の油圧制御
装置は車両のエンジン1に連結された動力伝達系Pw内
の無段変速機2に付設される。ここでエンジン1は電子
制御燃料噴射型4サイクルエンジンであり、図示しない
インジェクタや混合気への点火をおこなう点火プラグ
等、種々の装置が図示しないエンジンの電子制御手段の
制御下におかれ、しかも、この制御手段には動力伝達系
Pw内の無段変速機(CVT)2の電子制御手段である
CVTECU3が接続され、同CVTECU3にエンジ
ン1の運転情報がエンジンの電子制御手段より送信され
るように構成されている。CVTECU3には、無段変
速機2の変速比iを油圧制御する一対の電磁制御弁4,
5が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The hydraulic control system for a vehicle continuously variable transmission shown in FIGS. 1 and 2 is attached to a continuously variable transmission 2 in a power transmission system Pw connected to an engine 1 of the vehicle. Here, the engine 1 is an electronically controlled fuel injection type four-cycle engine, and various devices such as an injector (not shown) and a spark plug for igniting an air-fuel mixture are placed under the control of an electronic control means (not shown) of the engine. A CVT ECU 3 which is an electronic control unit of the continuously variable transmission (CVT) 2 in the power transmission system Pw is connected to this control unit, and the operation information of the engine 1 is transmitted to the CVT ECU 3 from the electronic control unit of the engine. Is configured. The CVTECU 3 includes a pair of electromagnetic control valves 4 for hydraulically controlling the gear ratio i of the continuously variable transmission 2.
5 is connected.

【0013】エンジン1のクランクシャフトにはエンジ
ンの出力を動力伝達系Pw側になめらかに伝達する流体
継手6及び遊星歯車式の前後進切り換え装置7を介して
無段変速機2が接続されている。ここで、無段変速機2
は前後進切り換え及び変速装置7の出力軸に一体結合さ
れたプライマリシャフト8を有するプライマリプーリ9
と減速機10側に回転力を出力するセカンダリシャフト
11を有するセカンダリプーリ12を備え、このプライ
マリプーリ9とセカンダリプーリ12とにスチールベル
ト13が掛け渡される。セカンダリシャフト11は変速
機10やデフ14を介して図示しない駆動輪に回転力を
伝達するように構成されている。
A continuously variable transmission 2 is connected to the crankshaft of the engine 1 via a fluid coupling 6 for smoothly transmitting the output of the engine to the power transmission system Pw side and a planetary gear type forward / reverse switching device 7. . Here, the continuously variable transmission 2
Is a primary pulley 9 having a primary shaft 8 integrally coupled to the output shaft of the forward / reverse switching and transmission 7.
And a secondary pulley 12 having a secondary shaft 11 that outputs a rotational force to the speed reducer 10 side, and a steel belt 13 is stretched over the primary pulley 9 and the secondary pulley 12. The secondary shaft 11 is configured to transmit a rotational force to a drive wheel (not shown) via the transmission 10 and the differential 14.

【0014】両プーリ9,12は共に2分割され、可動
側プーリ材901,121は固定側プーリ材902,1
22に相対回転不可に相対間隔を接離可能に外嵌され
る。この可動側プーリ材901,121には固定側プー
リ材902,122との相対間隔を接離操作する油圧ア
クチュエータとしてのプライマリシリンダ15とセカン
ダリシリンダ16とが装着される。なお、プライマリプ
ーリ9とセカンダリプーリ12の両回転数Wp,Wsを
検出する一対の回転センサ17,18が実変速比in
(=Wp/Ws)の検出手段として装着されている。
Both the pulleys 9 and 12 are divided into two parts, and the movable pulley members 901 and 121 are fixed pulley members 902 and 1, respectively.
It is fitted on the outer surface 22 such that it cannot rotate relative to it and can be separated and contacted at a relative interval. A primary cylinder 15 and a secondary cylinder 16 are mounted on the movable pulley members 901 and 121 as hydraulic actuators for operating the relative distance between the movable pulley members 901 and 121 and the fixed pulley members 902 and 122. It should be noted that the pair of rotation sensors 17 and 18 for detecting the rotational speeds Wp and Ws of the primary pulley 9 and the secondary pulley 12 are the actual speed ratio in.
(= Wp / Ws) is mounted as a detection means.

【0015】ここで、無段変速機の変速比は次のように
変化する。プライマリプーリ9の固定側プーリ材902
に対し可動側プーリ材901を近付けてプライマリプー
リの巻き付け径を大きくし、セカンダリプーリ12の固
定側プーリ材122より可動側プーリ121を遠ざけて
巻き付け径を小さくする。これによって無段変速機はそ
の実変速比in(プライマリ回転数Wp/セカンダリ回
転数Ws)を小さくし、即ち、小変速比(高速段)と
し、逆に作動すると大変速比(低速段)を達成すること
が出来る。このような無段変速機2の油圧回路を図1と
共に説明する。この油圧回路はオイルポンプ20を備
え、その吐出油が流体継手6と、前後進切り換え及び変
速部7の前進クラッチ21及び後進クラッチ22と、無
段変速機2のプライマリシリンダ15及びセカンダリシ
リンダ16に供給される。
Here, the gear ratio of the continuously variable transmission changes as follows. Fixed pulley material 902 of the primary pulley 9
On the other hand, the winding diameter of the primary pulley is increased by bringing the movable pulley member 901 closer, and the winding diameter of the secondary pulley 12 is made smaller than the fixed pulley member 122 of the secondary pulley 12 to reduce the winding diameter. As a result, the continuously variable transmission reduces its actual speed ratio in (primary speed Wp / secondary speed Ws), that is, a small speed ratio (high speed), and when it operates in reverse, a large speed ratio (low speed) is achieved. You can do it. A hydraulic circuit of such a continuously variable transmission 2 will be described with reference to FIG. This hydraulic circuit is provided with an oil pump 20, and its discharged oil is distributed to the fluid coupling 6, the forward / reverse switching 21 and the reverse clutch 22 of the forward / reverse switching / transmission unit 7, the primary cylinder 15 and the secondary cylinder 16 of the continuously variable transmission 2. Supplied.

【0016】ここでオイルポンプ20はエンジン回転に
応じ駆動し、その油圧を変化する。このためそのオイル
ポンプ20の最大許容圧がリリーフバルブ23で規制さ
れ、しかも所定のライン圧を保持する様に第1電磁制御
弁4及びレギュレータバルブ24が調圧作動する。ライ
ン圧路25の一部はクラッチプレッシャコントロールバ
ルブ26に連結され、同弁によって設定値に調圧された
圧油はクラッチ油路27を経てマニュアルバルブ28に
供給される。このマニュアルバルブ28は変速段切り換
え用の手動切り換えレバー(図示せず)に連動し、前進
側D,2,Lの各レンジと、後進側Rレンジと、ニュー
トラルN及びパーキングPの各レンジを備え、各レンジ
相当のギア列を達成すべく前後進切り換え及び変速部7
の前進クラッチ21及び後進クラッチ22や図示しない
変速用の切り換え弁を切り換え操作する。なお、マニュ
アルバルブ28には各変速段位置信号を出力する変速位
置センサ34が付設され、同変速信号はCVTECU3
に出力される。
Here, the oil pump 20 is driven according to the rotation of the engine to change its oil pressure. Therefore, the maximum allowable pressure of the oil pump 20 is regulated by the relief valve 23, and the first electromagnetic control valve 4 and the regulator valve 24 are pressure-regulated so as to maintain a predetermined line pressure. A part of the line pressure passage 25 is connected to the clutch pressure control valve 26, and the pressure oil whose pressure is adjusted to a set value by the valve is supplied to the manual valve 28 via the clutch oil passage 27. The manual valve 28 is interlocked with a manual switching lever (not shown) for shifting the shift speed, and is provided with each range of forward side D, 2, L, reverse side R range, and neutral N and parking P range. , Forward / reverse switching and transmission unit 7 to achieve a gear train corresponding to each range
The forward clutch 21 and the reverse clutch 22 and the changeover switching valve (not shown) are switched. The manual valve 28 is provided with a gear shift position sensor 34 for outputting each gear shift position signal, and the gear shift signal indicates the CVTECU3.
Is output to.

【0017】マニュアルバルブ28はこのレンジが前進
側D,2,Lでは前進クラッチ21を接合し、この時エ
ンジン回転は前後進切換装置7を介してそのまま無段変
速機2に伝達され、他方、後進側Rレンジではエンジン
回転が逆転されて無段変速機2に伝達される。ライン圧
路25の一部は分岐してプレッシャコントロールモジュ
レータバルブ29によって設定値に減圧調調整され、同
油圧が電磁制御弁4,5に供給される。同油圧をもとに
電磁制御弁5は目標変速比に応じて変速制御油圧Pcを
調圧する。なおこの電磁制御弁5はCVTECU3に接
続され、その変速比に応じた変速制御油圧Pcを後述の
変速比制御バルブ30に出力する。
In the manual valve 28, the forward clutch 21 is engaged in this range on the forward drive side D, 2, L, and at this time, the engine rotation is directly transmitted to the continuously variable transmission 2 via the forward / reverse switching device 7, while In the reverse range R range, the engine rotation is reversed and transmitted to the continuously variable transmission 2. A part of the line pressure path 25 is branched and pressure-reduced and adjusted to a set value by the pressure control modulator valve 29, and the hydraulic pressure is supplied to the electromagnetic control valves 4 and 5. Based on the hydraulic pressure, the electromagnetic control valve 5 regulates the shift control hydraulic pressure Pc according to the target gear ratio. The electromagnetic control valve 5 is connected to the CVTECU 3 and outputs a shift control oil pressure Pc according to the gear ratio to a gear ratio control valve 30 described later.

【0018】無段変速機2のプライマリシリンダ15と
セカンダリシリンダ16はそれぞれ、変速比制御バルブ
30の主ポート301、副ポート302に連通され、特
にセカンダリシリンダ16はライン圧路25にも直結さ
れる。ここで変速比制御バルブ30は主、副ポート30
1,302のほかに電磁制御弁5の変速制御油圧Pcを
受ける制御ポート303、プレッシャコントロールモジ
ュレータバルブ29からの調整圧を受ける調圧ポート3
04、オイルタンク31に連通するドレーンポートXを
備え、スプール弁32によって油路の切り換え制御が成
される。ここで、スプール32はその制御ポート303
との対抗部分が変速制御油圧Pcを左向きに受け、他端
が逆方向に調整圧及びバネ力を受け、そのバランス位置
(調圧状態を保持できる位置)に切り換え移動する。こ
の場合、スプール32の右移動(変速制御油圧Pcが
減)に応じてドレーンポートXが閉鎖され、一定移動の
後に完全に閉鎖され、更に、一定移動の後に主ポート3
01と副ポート302の連通状態の増加量が増し、プラ
イマリシリンダ15のプライマリプーリ制御油圧Ppを
増加させ(セカンダリプーリ制御圧は常時ライン圧)、
実変速比inを減少させて小変速比(高速段)とし、逆
に制御油圧Ppを減少させ、実変速比inを増加させて
大変速比(低速段)とすることが出来る。
The primary cylinder 15 and the secondary cylinder 16 of the continuously variable transmission 2 are respectively connected to the main port 301 and the sub port 302 of the gear ratio control valve 30, and particularly the secondary cylinder 16 is also directly connected to the line pressure passage 25. . Here, the gear ratio control valve 30 includes the main and sub ports 30.
1, 302, a control port 303 that receives the shift control oil pressure Pc of the electromagnetic control valve 5, and a pressure adjusting port 3 that receives the adjusting pressure from the pressure control modulator valve 29.
04, the drain port X communicating with the oil tank 31 is provided, and the switching control of the oil passage is performed by the spool valve 32. Here, the spool 32 has its control port 303
The portion opposite to and receives the shift control hydraulic pressure Pc to the left, and the other end receives the adjusting pressure and the spring force in the opposite direction, and switches and moves to the balance position (position where the pressure adjusted state can be maintained). In this case, the drain port X is closed in accordance with the right movement of the spool 32 (the shift control hydraulic pressure Pc is reduced), is completely closed after a certain movement, and is further closed after the certain movement.
01 and the auxiliary port 302 increase in communication state, the primary pulley control hydraulic pressure Pp of the primary cylinder 15 is increased (secondary pulley control pressure is always line pressure),
It is possible to reduce the actual speed ratio in to a small speed ratio (high speed), conversely decrease the control oil pressure Pp, and increase the actual speed ratio in to a high speed ratio (low speed).

【0019】CVTECU3はマイクロコンピュータに
よりその主要部が構成され、内蔵する記憶回路には図5
の調圧周期算出マップや、図6の開時間算出マップや、
図8のCVTECU3のメインルーチンや、図9のP,
Nレンジ用低速制御ルーチンや、図10走行レンジ用低
速制御ルーチンや、図11プライマリプーリへの油圧間
欠出力の設定ルーチンや、図12のプライマリプーリへ
の油圧間欠出力の実行ルーチンの各制御プログラムが記
憶処理されている。
The main part of the CVTECU 3 is composed of a microcomputer, and the built-in storage circuit is shown in FIG.
Of the pressure regulation period calculation map, the open time calculation map of FIG.
The main routine of the CVTECU3 of FIG. 8 and P of FIG.
Each control program of the low speed control routine for the N range, the low speed control routine for the running range of FIG. 10, the setting routine of the intermittent hydraulic pressure output to the primary pulley of FIG. 11, and the execution routine of the intermittent hydraulic pressure output of the primary pulley of FIG. Amnestics are being processed.

【0020】ここでCVTECU3は、変速制御手段と
して、目標変速比i相当の調圧状態に変速比制御バルブ
を切り換えるための変速制御油圧を調圧するように電磁
制御弁5を制御する。更に、この変速制御手段はプライ
マリプーリのプーリ制御油圧Ppをプーリ制御油圧セン
サ33より取り込み、車両の低速走行域での目標変速比
への変速制御時に、プライマリプーリ制御油圧Ppの値
が予め設定される目標制御油圧Poに達しないと、次の
電磁弁駆動信号を予め設定されている修正量Δp(ここ
では後述する導入時間補正項Δtnによって修正量を達
成している)だけ修正して設定するという機能を備え
る。以下、本実施例の車両用無段変速機の油圧制御装置
を図8乃至図12の制御プログラムを参照して説明す
る。
Here, the CVTECU 3 as the shift control means controls the electromagnetic control valve 5 so as to regulate the shift control oil pressure for switching the gear ratio control valve to a pressure regulated state corresponding to the target gear ratio i. Further, this shift control means takes in the pulley control hydraulic pressure Pp of the primary pulley from the pulley control hydraulic pressure sensor 33, and the value of the primary pulley control hydraulic pressure Pp is preset when the shift control to the target speed change ratio in the low speed traveling range of the vehicle is performed. If the target control oil pressure Po is not reached, the next solenoid valve drive signal is corrected and set by a preset correction amount Δp (the correction amount is achieved by the introduction time correction term Δtn described later). It has the function. Hereinafter, a hydraulic control device for a vehicle continuously variable transmission according to the present embodiment will be described with reference to the control programs shown in FIGS.

【0021】本実施例では、図示しないイグニッション
キーを操作することによってエンジンが始動し、CVT
ECU3や図示しないエンジンの電子制御手段内での制
御も開始される。制御が開始すると、CVTECU3は
図8のメインルーチンを実行する。ここでは、まずステ
ップs1において初期設定及び各センサの検出データを
読み、例えばプライマリプーリ9とセカンダリプーリ1
2の両回転数Wp,Wsや、図示しないエンジンの電子
制御手段よりのスロットル開度θaや、エンジン回転数
Neその他が取り込まれ、所定のエリアにストアされ
る。
In this embodiment, the engine is started by operating an ignition key (not shown), and the CVT
The control in the electronic control means of the ECU 3 and the engine (not shown) is also started. When the control is started, the CVTECU3 executes the main routine of FIG. Here, first, in step s1, the initial setting and the detection data of each sensor are read, and, for example, the primary pulley 9 and the secondary pulley 1 are read.
The two rotational speeds Wp and Ws of 2, the throttle opening θa from the electronic control means of the engine (not shown), the engine rotational speed Ne and the like are fetched and stored in a predetermined area.

【0022】ステップs2ではセカンダリプーリ12の
回転数Wsに応じた車速Vが極低速、又は停車を示す判
定値Va以下か否か判断し、Va以下ではステップs3
に進み、そうで無い場合にはステップs6に進んでCV
T通常制御を行う。CVT通常制御では周知のプログラ
ム、即ち、スロットル開度θs相当の目標エンジン回転
数Neoを、例えば図7の特性に沿った目標エンジン回
転数Neo算出マップ(図示せず)によって算出し、同
値に達するとCVTECU3が目標エンジン回転数Ne
oを保持するように変速比のアップ処理を連続的に行
う。
In step s2, it is determined whether the vehicle speed V according to the rotation speed Ws of the secondary pulley 12 is an extremely low speed or a judgment value Va indicating a stop or less, and if it is Va or less, step s3.
If not, go to step s6 and go to CV
T Perform normal control. In the CVT normal control, a well-known program, that is, the target engine speed Neo corresponding to the throttle opening θs is calculated by a target engine speed Neo calculation map (not shown) according to the characteristics of FIG. 7, and the same value is reached. Then, CVTECU3 sets the target engine speed Ne.
The process of increasing the gear ratio is continuously performed so that o is maintained.

【0023】メインルーチンのステップs3では変速段
信号に基づき、現変速レンジがP,Nレンジか否か判断
され、P,Nレンジではステップs4のP,Nレンジ用
低速制御ルーチンを、そうでないとステップs5の走行
レンジ用低速制御ルーチンを行う。
At step s3 of the main routine, it is judged whether or not the current gear shift range is the P or N range based on the gear stage signal. The low range control routine for the traveling range in step s5 is performed.

【0024】P,Nレンジ用低速制御ルーチンでは、図
9に示すように、ステップe1で現在制御中か否かを
P,Nレンジ制御フラグPRFLGによって判断し、制
御中(PRFLG=1)ではステップe2でプライマリ
回転数Wpが発進域を離脱したか否かの判定値Wp1を
上回っているか否か判断し、上回っているとステップe
3で低速制御フラグPRFLGをクリアしステップe6
に進み、そうでないと直接ステップe6に進む。ステッ
プe1で低速制御フラグPRFLG=0でステップe4
に達すると、プライマリ回転数Wpが発進域に達したか
否かの判定値Wp2を下回っているか否か判断し、下回
っているとステップe5で低速制御フラグPRFLG=
1としてステップe6に進み、そうでないと直接ステッ
プe6に進む。ステップe6ではP,Nレンジ制御フラ
グPRFLG=1でないとメインルーチンに戻り、そう
でなく低速制御域ではステップe7に進み、セカンダリ
プーリの制御油圧Ps(ライン圧)を最低値(予め設定
されている)にし、ステップe8のプライマリプーリ油
圧間欠出力を行い、メインルーチンに戻る。
In the low speed control routine for the P and N ranges, as shown in FIG. 9, it is judged in step e1 whether or not the control is currently performed by the P and N range control flag PRFLG, and if the control is in progress (PRFLG = 1), the step is executed. At e2, it is determined whether or not the primary rotation speed Wp exceeds a determination value Wp1 for whether or not the vehicle has left the starting range.
In step 3, the low speed control flag PRFLG is cleared and step e6
Otherwise go directly to step e6. In step e1, low speed control flag PRFLG = 0 and in step e4
Is reached, it is determined whether or not the primary rotation speed Wp is below the determination value Wp2 for determining whether or not the primary rotation speed has reached the starting range. If it is below, the low speed control flag PRFLG =
The process proceeds to step e6 as 1, otherwise proceeds directly to step e6. In step e6, if the P / N range control flag PRFLG is not 1, the process returns to the main routine. Otherwise, in the low speed control range, the process proceeds to step e7, in which the control oil pressure Ps (line pressure) of the secondary pulley is set to the minimum value (preset). ), The primary pulley hydraulic pressure is intermittently output in step e8, and the process returns to the main routine.

【0025】次にこのプライマリプーリ油圧間欠出力の
説明に先立ち、走行レンジ用低速制御ルーチンを図10
に沿って説明する。ステップf1で現在制御中か否かを
前回設定した制御フラグPRFLGによって判断し、制
御中(PRFLG=1)ではステップf2でプライマリ
回転数Wpが発進域を離脱したか否かの判定値Wp1を
上回っているか否か判断し、上回っているとステップf
3で低速制御フラグPRFLGをクリアしステップf6
に進み、そうでないと直接ステップf6に進む。ステッ
プf1で低速制御フラグPRFLG=0でステップf4
に達すると、プライマリ回転数Wpが発進域に達したか
否かの判定値Wp2を下回っているか否か判断し、下回
っているとステップf5で低速制御フラグPRFLG=
1としてステップf6に進み、そうでないと直接ステッ
プf6に進む。
Prior to the description of the intermittent output of the primary pulley hydraulic pressure, the low speed control routine for the traveling range is shown in FIG.
Follow along. In step f1, it is determined whether or not the control is currently performed by the control flag PRFLG that was set last time, and in control (PRFLG = 1), in step f2, the primary rotation speed Wp exceeds the determination value Wp1 that determines whether or not the primary speed Wp has left the start range. It is judged whether or not there is, and if it exceeds, step f
In step 3, the low speed control flag PRFLG is cleared and step f6
Otherwise go directly to step f6. In step f1, low speed control flag PRFLG = 0 and in step f4
Is reached, it is determined whether or not the primary rotation speed Wp is below a determination value Wp2 that has reached the start range.
If it is 1, the process proceeds to step f6, and if not, the process directly proceeds to step f6.

【0026】ステップf6では低速制御フラグPRFL
G=1でないとメインルーチンに戻り、そうでなく低速
制御域ではステップf7に進み、車両の停止後の時間が
所定時間を経過したか否か判断し、時間内ではステップ
f8で目標セカンダリプーリ油圧Ps即ちライン圧Pl
を最大値にセットしてベルト押し付け力の強化を図り、
ステップf10のプライマリプーリ油圧間欠出力を行
い、メインルーチンに戻る。他方、車両の停止後の時間
が所定時間を経過するとベルト押し付け力の強化処理を
解除し、ステップf9で目標セカンダリプーリ油圧Ps
であるライン圧Plの通常算出処理に入る。この場合、
入力トルクTがスロットル開度及びエンジン回転数によ
り算出され、現変速比i、現車速Vよりライン圧Plに
基づきライン圧Plが通常処理で算出され、目標ライン
圧Pl相当のデューティー出力が電磁制御弁4に出力さ
れ、これに応じてレギュレータバルブ24が調圧作動し
てライン圧Plを目標値に修正保持する。
At step f6, the low speed control flag PRFL is set.
If G = 1 is not satisfied, the process returns to the main routine. Otherwise, in the low speed control range, the process proceeds to step f7, where it is determined whether the time after the vehicle has stopped has passed a predetermined time. Ps or line pressure Pl
Is set to the maximum value to enhance the belt pressing force,
The primary pulley hydraulic pressure is intermittently output in step f10, and the process returns to the main routine. On the other hand, when the time after the vehicle is stopped has passed the predetermined time, the process for strengthening the belt pressing force is canceled, and in step f9, the target secondary pulley hydraulic pressure Ps is released.
Then, the normal calculation process of the line pressure Pl is started. in this case,
The input torque T is calculated from the throttle opening and the engine speed, the line pressure Pl is calculated in the normal process based on the line pressure Pl from the current gear ratio i and the current vehicle speed V, and the duty output corresponding to the target line pressure Pl is electromagnetically controlled. The pressure is output to the valve 4, and the regulator valve 24 operates to adjust the line pressure Pl in accordance with the output to correct and hold the line pressure Pl at a target value.

【0027】次に、ステップf10及び図9のステップ
e9のプライマリプーリ油圧間欠出力設定を図11に沿
って説明する。ここでは、まず基本時間の設定に入る。
即ち、ステップg1に達すると、プライマリ油圧室への
油圧導入周期Tint=f1(Pl,Toil)(図3
(b)参照)をライン圧Pl及び油温より図5の周期T
int算出マップによって算出する。ここでの周期Ti
nt算出マップによれば、周期Tintはライン圧Pl
及び油温Toilが大きく高いほど長く設定され、ライ
ン圧Pl及び油温Toilが小さく低いほど短く設定さ
れる。
Next, the primary pulley hydraulic pressure intermittent output setting in step f10 and step e9 in FIG. 9 will be described with reference to FIG. Here, the basic time is set first.
That is, when step g1 is reached, the hydraulic pressure introduction cycle Tint = f1 (P1, Toil) into the primary hydraulic chamber (FIG. 3).
(See (b)) from the line pressure Pl and the oil temperature, the cycle T of FIG.
It is calculated by the int calculation map. Period Ti here
According to the nt calculation map, the cycle Tint is the line pressure Pl.
And the oil temperature Toil are set to be large and high, and are set to be long, and the line pressure Pl and the oil temperature Toil are set to be small and set to be short.

【0028】続いてステップg2に達すると、プライマ
リ油圧室への油圧導入時間tinl=f2(Pl,To
il)(図3(b)参照)をライン圧Pl及び油温To
ilより図6の油圧導入時間tinl算出マップによっ
て算出する。ここでの油圧導入時間tinl算出マップ
によれば、油圧導入時間tinlはライン圧Pl及び油
温Toilが大きく高いほど短く設定され、ライン圧P
l及び油温Toilが小さく低いほど長く設定される。
このようなステップg1,g2の処理によって、油圧導
入周期Tint及び油圧導入時間tinlの油圧値補正
及びオイルの粘性補正を行える。
Then, when step g2 is reached, the oil pressure introduction time tinl = f2 (Pl, To
il) (see FIG. 3B), line pressure Pl and oil temperature To
It is calculated from il using the hydraulic pressure introduction time tinl calculation map of FIG. According to the oil pressure introduction time tinl calculation map here, the oil pressure introduction time tinl is set shorter as the line pressure Pl and the oil temperature Toil are higher, and the line pressure P
The smaller l and the oil temperature Toil are, the longer the value is set.
By such processing of steps g1 and g2, the hydraulic pressure value of the hydraulic pressure introduction cycle Tint and the hydraulic pressure introduction time tinl and the viscosity of the oil can be corrected.

【0029】ステップg3に達すると、本ステップg3
に達したのが初回か否か判定し、初回ではステップg4
に進み、制御変数の初期化即ち、ステップg5で導入時
間補正項Δtn=0に処理する。ステップg3に達した
ことが初回で無いと判定されステップg6に達すると、
前回のプライマリ圧Ppが予め設定される目標制御油圧
Poに達っしたか否か判断し、例えば、図3(a)に符
号m3に示すように達していると、ステップg7に進
み、導入時間補正項ΔtnをΔtn=Δtn-1−ΔtHP
の通り低減修正する。逆に、ステップg6で前回のプラ
イマリ圧Ppが予め設定される目標制御油圧Poに達っ
しない、例えば、図3(a)に符号m1,m2に示すよ
うな場合、ステップg8に進み、導入時間補正項Δtn
をΔtn=Δtn-1+ΔtHMの通り増加修正する。
When step g3 is reached, this step g3
It is determined whether or not the first time has been reached, and at the first time, step g4
Then, the control variable is initialized, that is, the introduction time correction term Δtn = 0 is processed in step g5. When it is determined that the step g3 has not been reached for the first time and the step g6 is reached,
It is judged whether or not the previous primary pressure Pp has reached a preset target control oil pressure Po. For example, if it has reached as shown by reference sign m3 in FIG. 3 (a), the process proceeds to step g7, and the introduction time The correction term Δtn is set to Δtn = Δtn-1−ΔtHP
Correct as follows. On the contrary, in step g6, when the previous primary pressure Pp does not reach the preset target control oil pressure Po, for example, as shown by reference signs m1 and m2 in FIG. Correction term Δtn
Is increased and corrected as Δtn = Δtn-1 + ΔtHM.

【0030】ここでΔtHP,ΔtHMは夫々プライマリ圧
が目標圧Poに達した場合にプライマリ圧を減ずるため
の電磁弁制御デューティ補正項、プライマリ圧が目標圧
Poに達しない場合にプライマリ圧を増やすための電磁
弁制御デューティ補正項を示すものであり、本実施例で
は一定値として与えているが、油圧センサ33の出力に
応じて可変としても良い。この後、ステップg9では目
標導入周期TをT(=Tint)とし、目標導入時間t
をt(=tinl+Δtn)としてそれぞれ算出する。
但し、目標導入時間tは一定範囲(tmin≦t≦tm
ax)内に設定されるようにする。
Here, ΔtHP and ΔtHM are solenoid valve control duty correction terms for reducing the primary pressure when the primary pressure reaches the target pressure Po, respectively, and increase the primary pressure when the primary pressure does not reach the target pressure Po. In the present embodiment, it is given as a constant value, but it may be variable according to the output of the hydraulic sensor 33. Thereafter, in step g9, the target introduction period T is set to T (= Tint), and the target introduction time t
Is calculated as t (= tinl + Δtn).
However, the target introduction time t is within a certain range (tmin ≦ t ≦ tm
ax).

【0031】このように設定された目標導入周期T及び
目標導入時間tは図12に示すプライマリプーリへの油
圧間欠出力実行ルーチンで順次採用される。ここでの油
圧間欠出力実行ルーチンは、メインルーチンに所定時間
毎に割り込みが掛けられることによって実行される。即
ち、ステップh1に達すると現時刻をエリアTIMEO
にストアし、ステップh2では目標導入時間tが経過す
るのを待ち、即ち、現時刻TIME≦TIMEO+tの
間はステップh3に進み、そこでプライマリ油圧室への
油圧供給処理、即ち、電磁制御弁5を操作して変速比制
御バルブ30を開き、ライン圧25の油をプライマリシ
リンダ15に目標導入時間tだけ送出する。ステップh
3及びステップh2より直接ステップh4に達すると、
次回の出力開始すべき時刻、即ち、目標導入周期TをT
IMEOに加算して得た時刻t−n(図3(b)のt
1,t2,t3参照)を算出し、所定のエリアにストア
し、メインルーチンに戻る。
The target introduction period T and the target introduction time t thus set are sequentially adopted in the routine for intermittently outputting the hydraulic pressure to the primary pulley shown in FIG. The intermittent hydraulic pressure output execution routine is executed by interrupting the main routine every predetermined time. That is, when step h1 is reached, the current time is set to the area TIMEO.
In step h2, the process waits for the target introduction time t to elapse, that is, while the current time TIME ≦ TIMEO + t, the process proceeds to step h3, in which the hydraulic pressure supply processing to the primary hydraulic chamber, that is, the electromagnetic control valve 5 is performed. The gear ratio control valve 30 is operated to open and the oil of the line pressure 25 is sent to the primary cylinder 15 for the target introduction time t. Step h
When step h4 is directly reached from step 3 and step h2,
The time to start the next output, that is, the target introduction period T is T
Time t-n obtained by adding to IMEO (t in FIG. 3B)
1, t2, t3) are calculated and stored in a predetermined area, and the process returns to the main routine.

【0032】このような油圧間欠出力実行ルーチンの実
行によって、例えば、図3(b)に示すようにプライマ
リシリンダへの油圧回路の油圧が制御されるのに応じ
て、図3(a)に示すようにプライマリ油圧が変化す
る。結果として、低速制御域にあると、プライマリシリ
ンダ15のプライマリ油圧Ppが目標油圧Poに保持さ
れるので、プライマリプーリの油圧室内に油を充満させ
ておくことが出来、スチールベルト13に押し付け力を
与えられる。このため発進要求によりプライマリプーリ
の回転数が急増しても、ベルトスリップの発生を低減さ
せることが出来る。逆にプライマリ油圧Ppが大きすぎ
て目標値Poを上回る場合、これを低減させて、プライ
マリ油圧Ppを目標油圧Poに保持するので、変速比を
確実に目標値に制御でき、発進時の加速応答性を確保す
ることができる。なお、油圧センサ33の故障時に備
え、プライマリプーリ側油室への油圧回路開時間はある
基準値(油温、ライン圧をパラメータとしてメモリ内に
備えておく)を中心にある制御幅内で増減させるように
しておいてもよい。
By executing the hydraulic pressure intermittent output execution routine as described above, for example, as shown in FIG. 3B, the hydraulic pressure of the hydraulic circuit to the primary cylinder is controlled. The primary oil pressure changes. As a result, in the low speed control range, the primary hydraulic pressure Pp of the primary cylinder 15 is maintained at the target hydraulic pressure Po, so that the hydraulic chamber of the primary pulley can be filled with oil, and the pressing force to the steel belt 13 is applied. Given. Therefore, the occurrence of belt slip can be reduced even if the rotation speed of the primary pulley sharply increases due to a start request. On the contrary, when the primary hydraulic pressure Pp is too large and exceeds the target value Po, the primary hydraulic pressure Pp is reduced to maintain the primary hydraulic pressure Pp at the target hydraulic pressure Po, so that the gear ratio can be reliably controlled to the target value, and the acceleration response at the time of starting It is possible to secure the sex. In case of failure of the oil pressure sensor 33, the opening time of the oil pressure circuit to the oil chamber on the primary pulley side increases or decreases within a control range centered on a certain reference value (oil temperature and line pressure are stored in the memory as parameters). You may let it be done.

【0033】[0033]

【発明の効果】以上のように、本発明の車両用無段変速
機の油圧制御装置は、車両が低速走行域に達した場合
に、プライマリプーリ油圧制御信号を油圧センサ出力に
応じて修正するので、プライマリプーリ制御油圧を目標
制御油圧に保持出来、プライマリプーリの油圧アクチュ
エータ内に、油が充填されベルトへの押し付け力を確保
することが出来るので、発進時等にもプライマリプーリ
のコーン面とベルトとの間でのスリップの発生を無くす
ことが出来、このスリップに伴う不快なショックを防止
し、しかも、ベルトやシーブコーン面の耐久性を確保す
ることが出来る。さらに、プライマリ油圧を目標油圧P
oに保持するので、変速比を応答性良く目標値に制御で
き、発進時のドライバビリディ、燃費を向上させること
もできる。また、本発明によれば、P,Nレンジと走行
レンジとでセカンダリプーリへ供給する油圧を変えるこ
とで、例えばP,Nレンジではすぐに走りだすことがな
いので、必要最低限の油圧としてポンプロスを低減する
こができ、また走行レンジではいつ走りだしてもベルト
が滑らないように最大油圧値、又は走行状態に応じた油
圧とすることでベルトスリップを確実に防止できる。
As described above, the hydraulic control system for a continuously variable transmission for a vehicle according to the present invention corrects the primary pulley hydraulic control signal in accordance with the output of the hydraulic sensor when the vehicle reaches the low speed traveling range. Therefore, the primary pulley control hydraulic pressure can be kept at the target control hydraulic pressure, and the hydraulic actuator of the primary pulley can be filled with oil to secure the pressing force against the belt, so that the primary pulley cone surface can be maintained even when starting. It is possible to eliminate the occurrence of slippage with the belt, prevent uncomfortable shocks associated with this slippage, and ensure the durability of the belt and the sheave cone surface. Further, the primary oil pressure is set to the target oil pressure P.
Since it is held at o, it is possible to control the gear ratio to a target value with good responsiveness, and it is also possible to improve the driver's mileage when starting and fuel consumption. Further, according to the present invention, by changing the hydraulic pressure supplied to the secondary pulley between the P and N ranges and the running range, for example, the P and N ranges do not start running immediately, so the pump loss is the minimum necessary hydraulic pressure. In addition, the belt slip can be surely prevented by setting the maximum hydraulic pressure value or the hydraulic pressure according to the running state so that the belt does not slip when running in the running range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての車両用無段変速機の
油圧制御装置の要部油圧回路及び制御系の概略構成図で
ある。
FIG. 1 is a schematic configuration diagram of a main part hydraulic circuit and a control system of a hydraulic control device for a vehicle continuously variable transmission according to an embodiment of the present invention.

【図2】図1の油圧制御装置を備えた車両の動力伝達系
の概略構成図である。
FIG. 2 is a schematic configuration diagram of a power transmission system of a vehicle including the hydraulic control device of FIG.

【図3】(a)は図1の油圧制御装置内のプライマリ油
圧の波形図、(b)は図1の油圧制御装置内のプライマ
リシリンダに連通する油圧回路の開閉作動を示す波形図
ある。
3A is a waveform diagram of a primary hydraulic pressure in the hydraulic control device of FIG. 1, and FIG. 3B is a waveform diagram showing an opening / closing operation of a hydraulic circuit communicating with a primary cylinder in the hydraulic control device of FIG.

【図4】(a)は従来の油圧制御装置内のプライマリ油
圧の波形図、(b)は従来の油圧制御装置内のプライマ
リシリンダに連通する油圧回路の開閉作動を示す波形図
ある。
FIG. 4A is a waveform diagram of a primary hydraulic pressure in a conventional hydraulic control device, and FIG. 4B is a waveform diagram showing an opening / closing operation of a hydraulic circuit communicating with a primary cylinder in the conventional hydraulic control device.

【図5】図1の油圧制御装置内のCVTECUが採用す
る油圧導入周期算出マップの特性線図である。
5 is a characteristic diagram of a hydraulic pressure introduction period calculation map adopted by the CVTECU in the hydraulic control device of FIG.

【図6】図1の油圧制御装置内のCVTECUが採用す
る油圧導入時間算出マップの特性線図である。
FIG. 6 is a characteristic diagram of a hydraulic pressure introduction time calculation map adopted by CVTECU in the hydraulic control device of FIG.

【図7】図1の油圧制御装置内の電子制御装置が採用す
るトルク算出マップの特性線図である。
FIG. 7 is a characteristic diagram of a torque calculation map used by the electronic control device in the hydraulic control device of FIG.

【図8】図1の油圧制御装置内の電子制御装置が採用す
るメインルーチンのフローチャートである。
8 is a flowchart of a main routine adopted by the electronic control device in the hydraulic control device of FIG.

【図9】図1の装置内の電子制御装置が採用するP,N
レンジ用低速制御ルーチンのフローチャートである。
9 is a diagram illustrating P and N adopted by the electronic control unit in the apparatus of FIG.
It is a flow chart of a low speed control routine for ranges.

【図10】図1の装置内の電子制御装置が採用する走行
レンジ用低速制御ルーチンのフローチャートである。
10 is a flowchart of a low-speed control routine for a travel range adopted by the electronic control device in the device of FIG.

【図11】図1の装置内の電子制御装置が採用するプラ
イマリプーリへの油圧間欠出力の設定ルーチンのフロー
チャートである。
11 is a flowchart of a routine for setting an intermittent hydraulic pressure output to a primary pulley adopted by the electronic control unit in the apparatus of FIG.

【図12】図1の装置内の電子制御装置が採用するプラ
イマリプーリへの油圧間欠出力の実行ルーチンのフロー
チャートである。
12 is a flowchart of an execution routine of intermittent hydraulic pressure output to a primary pulley adopted by an electronic control unit in the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 エンジン 2 無段変速機 3 CVTECU 4 電磁制御弁 5 電磁制御弁 9 プライマリプーリ 901 可動側プーリ材 902 固定側プーリ材 12 セカンダリプーリ 121 可動側プーリ材 122 セカンダリプーリ 13 スチールベルト 15 プライマリシリンダ 16 セカンダリシリンダ 17 回転センサ 18 回転センサ 24 レギュレータバルブ 30 変速比制御バルブ 34 変速位置センサ Ws セカンダリプーリ回転数 Wp プライマリプーリ回転数 V 車速 1 Engine 2 Continuously Variable Transmission 3 CVT ECU 4 Electromagnetic Control Valve 5 Electromagnetic Control Valve 9 Primary Pulley 901 Movable Pulley Material 902 Fixed Pulley Material 12 Secondary Pulley 121 Movable Pulley Material 122 Secondary Pulley 13 Steel Belt 15 Primary Cylinder 16 Secondary Cylinder 17 Rotation Sensor 18 Rotation Sensor 24 Regulator Valve 30 Gear Ratio Control Valve 34 Gear Shift Position Sensor Ws Secondary Pulley Rotational Speed Wp Primary Pulley Rotational Speed V Vehicle Speed

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】駆動ベルトが巻装されたプライマリプーリ
及びセカンダリプーリから成り、両プーリ間の間隙を調
整することで変速比を無段階に変更する車両用無段変速
機において、 上記プライマリプーリの間隙を調整するプライマリ側油
圧アクチュエータと、 上記セカンダリプーリの間隙を調整するセカンダリ側油
圧アクチュエータと、 油圧源からの油圧を調整するレギュレータバルブと、 同レギュレータバルブからの吐出圧が導入される変速比
制御バルブと、 同変速比制御バルブからの吐出圧を上記プライマリ側油
圧アクチュエータへ導く油路中に配設された油圧検出手
段と、 上記変速比制御バルブを調整する電磁制御弁と、 車両の運転状態に基づいて上記電磁制御弁を制御する電
子制御手段と、を備え、 上記電子制御手段は上記車両の車速が所定車速以下のと
き、上記油圧検出手段からの検出値が予め設定された目
標となるよう、上記電磁制御弁駆動信号を補正すること
を特徴とする車両用無段変速機の油圧制御装置。
1. A continuously variable transmission for a vehicle, which comprises a primary pulley and a secondary pulley around which a drive belt is wound, and which continuously changes the gear ratio by adjusting the gap between the pulleys. A primary hydraulic actuator that adjusts the clearance, a secondary hydraulic actuator that adjusts the clearance of the secondary pulley, a regulator valve that adjusts the hydraulic pressure from the hydraulic source, and a gear ratio control that introduces the discharge pressure from the regulator valve. A valve, a hydraulic pressure detection means arranged in an oil passage for guiding the discharge pressure from the gear ratio control valve to the primary hydraulic actuator, an electromagnetic control valve for adjusting the gear ratio control valve, and a vehicle operating condition. And electronic control means for controlling the electromagnetic control valve based on the electronic control means. When the vehicle speed is less than or equal to a predetermined vehicle speed, the electromagnetic control valve drive signal is corrected so that the detected value from the hydraulic pressure detecting means becomes a preset target. apparatus.
JP4173021A 1992-06-30 1992-06-30 Hydraulic control device for continuously variable transmission for vehicles Expired - Lifetime JP2760216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173021A JP2760216B2 (en) 1992-06-30 1992-06-30 Hydraulic control device for continuously variable transmission for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173021A JP2760216B2 (en) 1992-06-30 1992-06-30 Hydraulic control device for continuously variable transmission for vehicles

Publications (2)

Publication Number Publication Date
JPH0617923A true JPH0617923A (en) 1994-01-25
JP2760216B2 JP2760216B2 (en) 1998-05-28

Family

ID=15952743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173021A Expired - Lifetime JP2760216B2 (en) 1992-06-30 1992-06-30 Hydraulic control device for continuously variable transmission for vehicles

Country Status (1)

Country Link
JP (1) JP2760216B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095593A (en) * 2000-04-11 2001-11-07 정주호 Slip prevent method of belt in continuously variable transmission for vehicle
US6533702B1 (en) 1999-11-22 2003-03-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Shift control system of hydraulic continuously variable transmission for vehicle
JP2005351444A (en) * 2004-06-14 2005-12-22 Toyota Motor Corp Hydraulic pressure controller for automatic transmission
US7029410B2 (en) * 2002-08-26 2006-04-18 Jatco Ltd System for preventing belt slip of belt-type continuously variable transmission
US7494288B2 (en) 2001-06-27 2009-02-24 Fujikura Ltd. Optical fiber fusion splicer and method for estimating a shape of beam discharged by the optical fiber fusion splicer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629063A (en) * 1985-07-03 1987-01-17 Daihatsu Motor Co Ltd Method for controlling coast-down for v-belt type stepless transmission
JPS6331833A (en) * 1986-07-25 1988-02-10 Nissan Motor Co Ltd Line pressure controller for v-belt type continuously variable transmission
JPS6338750A (en) * 1986-08-02 1988-02-19 Daihatsu Motor Co Ltd Hydraulic controller for v-belt type continuously variable transmission
JPS6367457A (en) * 1986-09-10 1988-03-26 Mazda Motor Corp Control device for continuously variable tansmission
JPS63130952A (en) * 1986-11-18 1988-06-03 Toyota Motor Corp Hydraulic control unit for continuously variable transmission for vehicle
JPH02292567A (en) * 1989-04-28 1990-12-04 Mazda Motor Corp Hydraulic control device for automatic transmission
JPH04131564A (en) * 1990-09-25 1992-05-06 Toyota Motor Corp Hydraulic control device for vehicular belt-type continuously variable transmission

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629063A (en) * 1985-07-03 1987-01-17 Daihatsu Motor Co Ltd Method for controlling coast-down for v-belt type stepless transmission
JPS6331833A (en) * 1986-07-25 1988-02-10 Nissan Motor Co Ltd Line pressure controller for v-belt type continuously variable transmission
JPS6338750A (en) * 1986-08-02 1988-02-19 Daihatsu Motor Co Ltd Hydraulic controller for v-belt type continuously variable transmission
JPS6367457A (en) * 1986-09-10 1988-03-26 Mazda Motor Corp Control device for continuously variable tansmission
JPS63130952A (en) * 1986-11-18 1988-06-03 Toyota Motor Corp Hydraulic control unit for continuously variable transmission for vehicle
JPH02292567A (en) * 1989-04-28 1990-12-04 Mazda Motor Corp Hydraulic control device for automatic transmission
JPH04131564A (en) * 1990-09-25 1992-05-06 Toyota Motor Corp Hydraulic control device for vehicular belt-type continuously variable transmission

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533702B1 (en) 1999-11-22 2003-03-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Shift control system of hydraulic continuously variable transmission for vehicle
DE10057855B4 (en) * 1999-11-22 2004-11-11 Mitsubishi Jidosha Kogyo K.K. Circuit control system of a hydraulically continuously variable transmission for a motor vehicle
KR20010095593A (en) * 2000-04-11 2001-11-07 정주호 Slip prevent method of belt in continuously variable transmission for vehicle
US7494288B2 (en) 2001-06-27 2009-02-24 Fujikura Ltd. Optical fiber fusion splicer and method for estimating a shape of beam discharged by the optical fiber fusion splicer
US7029410B2 (en) * 2002-08-26 2006-04-18 Jatco Ltd System for preventing belt slip of belt-type continuously variable transmission
JP2005351444A (en) * 2004-06-14 2005-12-22 Toyota Motor Corp Hydraulic pressure controller for automatic transmission
JP4548006B2 (en) * 2004-06-14 2010-09-22 トヨタ自動車株式会社 Hydraulic control device for automatic transmission

Also Published As

Publication number Publication date
JP2760216B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
EP2233792B1 (en) Belt type continuously variable transmission and control method thereof
WO2012017536A1 (en) Device for controlling continuous variable transmission for vehicle
US4771658A (en) System for controlling the pressure of oil in a system for a continuously variable transmission
US20040110584A1 (en) System for preventing belt slip of belt-type continuosly variable transmission
JP2001304392A (en) Line-pressure controller for belt-type continuously variable transmission
KR930004583B1 (en) Continuous speed variable transmission control apparatus
JPH0554588B2 (en)
US4747807A (en) Control system for an infinitely variable transmission
US7192372B2 (en) Hydraulic pressure sensor failure control system for belt-type continuously variable transmission
US4850935A (en) Transmission ratio control system for a continuously variable transmission
JPH04136564A (en) Engaging force control device for fluid coupling
JPH0617923A (en) Hydraulic control unit of continuously variable transmission for vehicle
EP2053281A2 (en) Vehicle control apparatus
EP1217266B1 (en) Control system and continuously variable transmission provided therewith
EP0228800A1 (en) System for controlling the pressure of oil in a system for a continuously variable transmission
JP4556535B2 (en) Control device for continuously variable transmission
KR100343512B1 (en) control Apparatus of non-stage transmission
JP3718405B2 (en) Hydraulic control device for continuously variable transmission
JPH05209545A (en) Controller of engine for vehicle
JPH06288449A (en) Pulley lateral pressure control device for belt-type continuously variable transmission
JP2699343B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles
JP4453198B2 (en) Shift control device for belt type continuously variable transmission
JP2956333B2 (en) Transmission control device for continuously variable transmission
US20040171458A1 (en) Shift control apparatus of continuously variable transmission
JP2007224974A (en) Transmission control device for continuously variable transmission

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980217

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 15