JPH06179215A - Method for pulverizing vulcanized rubber material - Google Patents
Method for pulverizing vulcanized rubber materialInfo
- Publication number
- JPH06179215A JPH06179215A JP33311992A JP33311992A JPH06179215A JP H06179215 A JPH06179215 A JP H06179215A JP 33311992 A JP33311992 A JP 33311992A JP 33311992 A JP33311992 A JP 33311992A JP H06179215 A JPH06179215 A JP H06179215A
- Authority
- JP
- Japan
- Prior art keywords
- waste
- shearing force
- rubber material
- rubber
- vulcanized rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、廃材となった加硫ゴム
系材料からなる成形物等を微粉化して有効に利用するた
めの加硫ゴム系材料の微粉化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulverizing a vulcanized rubber-based material for pulverizing a waste product of a vulcanized rubber-based material and the like for effective use.
【0002】[0002]
【従来の技術】近年、あらゆる産業界において省資源
化、省エネルギー化が要求されており、樹脂材料を使用
する工業分野においても樹脂成形物等のスクラップ(以
下、廃材と省略する)を有効に再利用することが望まれ
ている。2. Description of the Related Art In recent years, resource saving and energy saving have been demanded in all industries, and scraps of resin moldings (hereinafter abbreviated as "waste materials") are effectively reclaimed in the industrial field where resin materials are used. It is desired to use it.
【0003】従来、樹脂材料の廃材を利用する方法とし
ては、第1の方法として廃材とバージン材(熱履歴のな
い新しい樹脂)を一定比率で混合して再度成形に供する
方法があり、第2の方法として廃材を填料あるいは燃料
として用いる方法がある。第1の方法は、樹脂材料とし
てのコストが高い、例えばポリエーテルスルフォン、ポ
リエーテルエーテルケトン、ポリイミド等のいわゆるエ
ンジニアリングプラスチックに適用され、第2の方法
は、材料としてのコストが安い、ポリエチレン並びに、
例えばエチレン−プロピレン共重合体、エチレン−酢酸
ビニル共重合体、エチレン−エチルアクリレート共重合
体等の非架橋もしくは架橋のポリエチレン系樹脂、また
はゴム系材料、特に高弾性付与のために加硫したゴム系
材料に適用される。Conventionally, as a method for utilizing a waste material of a resin material, there is a first method in which the waste material and a virgin material (new resin having no heat history) are mixed at a fixed ratio and subjected to molding again. There is a method of using waste materials as a filler or a fuel. The first method is applied to so-called engineering plastics having a high cost as a resin material, for example, polyether sulfone, polyether ether ketone, polyimide, etc., and the second method is a low-cost material such as polyethylene and polyethylene.
For example, non-crosslinked or crosslinked polyethylene resin such as ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, or rubber material, especially vulcanized rubber for imparting high elasticity. Applied to system materials.
【0004】従来より、樹脂材料およびゴム系材料の廃
材を微粉化する方法は、 A.粗粉砕…20mm程度に粗く粉砕 B.中粉砕…10mm〜1mm程度の中細粒に粉砕 C.微粉砕…ミクロンオーダーの微粒に粉砕 の3つの粉砕工程を必要とすることが知られている。こ
の微粉化方法は、工程が多く、かつ連続的に処理するこ
とが難しいので、コストが高くなってしまい、廃材を利
用するメリットがなくなるという問題がある。Conventionally, a method for pulverizing waste materials of resin materials and rubber materials has been described in A. Coarse crushing ... roughly crushing to about 20 mm B. Medium crushing ... Crushing to medium fine particles of about 10 mm to 1 mm. Fine pulverization: It is known that three pulverization steps of pulverization into fine particles of micron order are required. This pulverization method has a number of steps and is difficult to process continuously, so that there is a problem that the cost becomes high and the merit of using the waste material is lost.
【0005】[0005]
【発明が解決しようとする課題】本発明はかかる点に鑑
みてなされたものであり、簡単な工程で、効率良く、し
かも連続的に加硫ゴム系材料製の廃材を微粉化できる方
法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and provides a method capable of continuously and efficiently pulverizing waste material made of a vulcanized rubber-based material by a simple process. The purpose is to do.
【0006】[0006]
【課題を解決するための手段】本発明は、粒状の加硫し
たゴム系材料製の廃材に230℃以下の温度で剪断力を
加えることを特徴とする加硫ゴム系材料の微粉化方法を
提供する。DISCLOSURE OF THE INVENTION The present invention provides a method for atomizing a vulcanized rubber-based material, which comprises applying a shearing force to a waste material made of granular vulcanized rubber-based material at a temperature of 230 ° C. or less. provide.
【0007】ここで、本発明の対象となる加硫したゴム
系材料としては、天然ゴム(NR)、ブタジエンゴム
(BR)、スチレン−ブタジエンゴム(SBR)、アク
リロニトリル−ブタジエンゴム(NBR)、イソプレン
ゴム(IR)、クロロプレンゴム(CR)等のジエン系
合成ゴム;ブチルゴム(IIR)、エチレン−プロピレ
ンゴム(EPM)、エチレン−プロピレンターポリマー
(EPDM)、クロロスルフォン化ポリエチレン(CS
M)等のオレフィン系合成ゴム;フッ化ビニリデン、六
フッ化プロピレン等のフッ素系ゴム;アクリル系ゴム;
シリコーンゴム;ウレタンゴム等のゴム系材料を硫黄、
過酸化物、金属酸化物、多官能アミン、キノンジオキシ
ム等の加硫剤と混合して鎖状のゴム分子間に架橋結合を
形成させて可塑性を有するゴム系材料を弾性体にしたも
のをいう。Here, as the vulcanized rubber material to which the present invention is applied, natural rubber (NR), butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), isoprene Diene-based synthetic rubbers such as rubber (IR) and chloroprene rubber (CR); butyl rubber (IIR), ethylene-propylene rubber (EPM), ethylene-propylene terpolymer (EPDM), chlorosulphonated polyethylene (CS)
M) and other olefin-based synthetic rubbers; vinylidene fluoride, propylene hexafluoride and other fluorine-based rubbers; acrylic rubbers;
Silicone rubber; rubber-based materials such as urethane rubber are sulfur,
A rubber-based material that has plasticity and is made elastic by mixing it with a vulcanizing agent such as a peroxide, a metal oxide, a polyfunctional amine, or quinone dioxime to form a cross-linking bond between chain-like rubber molecules. Say.
【0008】さらに、これらの加硫ゴム系材料の廃材と
は、工業製品や部品のあらゆる廃材を意味し、素練り促
進剤、軟化剤、充填剤、加硫促進剤、加工助剤、酸化防
止剤、オゾン劣化防止剤、滑剤等の配合剤や、カーボン
ブラック、繊維等の補強剤が配合されていてもよい。こ
れらの廃材は、単独あるいは2種以上混合して、または
他の樹脂またはゴム系材料の廃材と混合して用いること
ができる。Further, the waste materials of these vulcanized rubber materials mean all waste materials of industrial products and parts, including mastication accelerators, softening agents, fillers, vulcanization accelerators, processing aids, and antioxidants. A compounding agent such as an agent, an ozone deterioration preventing agent, a lubricant, or a reinforcing agent such as carbon black or fiber may be mixed. These waste materials can be used alone or in combination of two or more kinds, or can be used by mixing with other resin or rubber-based waste materials.
【0009】本発明において、加硫したゴム系材料に剪
断力を加える際の温度は、230℃以下に設定する。こ
れは、温度が230℃を超えると悪臭を発生する上に微
粉化された廃材が熱融着してしまうからである。また、
温度が80℃未満であると充分に微粉化することができ
ない上に押出機の駆動モーターの負荷電流が著しく増大
して押出機が停止する恐れがある。In the present invention, the temperature at which shearing force is applied to the vulcanized rubber material is set to 230 ° C. or lower. This is because if the temperature exceeds 230 ° C., a foul odor is generated, and the pulverized waste material is thermally fused. Also,
If the temperature is lower than 80 ° C., the powder cannot be sufficiently pulverized, and the load current of the drive motor of the extruder is significantly increased, which may cause the extruder to stop.
【0010】本発明において、加硫したゴム系材料製の
廃材を剪断力を加える装置に供給する際に、廃材を粉砕
機等で所定の粒径の粒状体に粗粉砕する。これは、剪断
力を加える装置の投入手段(例えば、剪断力を加える装
置が押出機である場合のホッパー)内で廃材がブロッキ
ングやサージングを起こすことを防止するためである。
粒状体の好ましい粒径としては20mmφ程度である。な
お、オフグレード品等のペレットで粒径が20mmφ以下
のものは粉砕せずにそのまま用いることができる。In the present invention, when the waste material made of vulcanized rubber material is supplied to the device for applying a shearing force, the waste material is roughly crushed into a granular material having a predetermined particle diameter by a crusher or the like. This is to prevent the waste material from causing blocking or surging in the charging means of the device for applying the shearing force (for example, a hopper when the device for applying the shearing force is an extruder).
The preferable particle size of the granular material is about 20 mmφ. In addition, pellets such as off-grade products having a particle size of 20 mmφ or less can be used as they are without crushing.
【0011】本発明において用いる、加硫したゴム系材
料に剪断力を加える押出機としては、パイプおよびチュ
ーブの成形、電線の被覆、コンパウンディング等に用い
られる単軸押出機、多軸押出機等を適用することができ
る。特に、加硫したゴム系材料を微粉砕する場合には、
適切な剪断力の指定が可能であり、相互のスクリューで
生ずるかきとり(セルフクリーニング)作用により所望
粒径の粉砕物を長時間にわたって安定して得ることがで
きるので、二軸押出機を使用することが好ましい。The extruder for applying shearing force to the vulcanized rubber material used in the present invention is a single-screw extruder, a multi-screw extruder or the like used for forming pipes and tubes, covering electric wires, compounding and the like. Can be applied. Especially when finely pulverizing the vulcanized rubber material,
Use a twin-screw extruder because it is possible to specify an appropriate shearing force, and it is possible to stably obtain a pulverized product with a desired particle size for a long time by the scraping (self-cleaning) action generated by mutual screws. Is preferred.
【0012】本発明のようにしてゴム系材料製の廃材を
微粉化する場合においては、樹脂に添加される充填剤、
特にタルク粉末、マイカ粉末、ステアリン酸亜鉛粉末等
のアンチブロッキング剤に分類されるものを廃材に加え
てから剪断力を加えると、ゴム系材料が粘着することを
防止でき、微粉化されたゴム系材料が凝集することを防
止できる。したがって、凝集したゴム系材料微粉末をほ
ぐす作業が不要となり効率的である。When the waste material made of the rubber material is pulverized as in the present invention, a filler added to the resin,
In particular, if a shearing force is applied after adding a substance classified as an anti-blocking agent such as talc powder, mica powder, zinc stearate powder, etc. to the waste material, it is possible to prevent the rubber-based material from sticking, and the finely divided rubber-based It is possible to prevent the material from aggregating. Therefore, the work of loosening the agglomerated rubber-based material fine powder is not required, which is efficient.
【0013】[0013]
【作用】本発明においては、粒状の加硫したゴム系材料
製の廃材に230℃以下の温度で剪断力を加える。この
ように温度を規定することにより、悪臭を生じることな
く、熱融着を起こさず、充分に加硫したゴム系材料製の
廃材を微粉化することができる。In the present invention, shearing force is applied to the waste material made of granular vulcanized rubber material at a temperature of 230 ° C. or lower. By defining the temperature in this way, it is possible to pulverize a sufficiently vulcanized waste material made of a rubber-based material without causing a foul odor, causing no heat fusion.
【0014】[0014]
【実施例】以下、本発明の実施例を具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below.
【0015】実施例1 ポリブタジエンゴムおよび天然ゴムをベースとし、これ
に酸化亜鉛、カーボンブラック、ステアリン酸、オイ
ル、老化防止剤、加硫剤として硫黄、並びに加硫促進剤
としてN−オキシジエチレン−2−ベンゾチアゾールサ
ルフェナマイド(OBS)を加えたゴム系材料を145
℃×30分で加硫してなるタイヤの廃材を粉砕機を用い
て粗粉砕して、平均粒径約20mmの粗粉末を得た。次い
で、得られた粗粉末を、スクリュー径Dが30mm、スク
リュー長さLに対するスクリュー径Dの比L/Dが24
である二軸押出機のホッパーに投入した。その後、スク
リュー回転数を100rpm とし、シリンダ温度を下記表
1に示すように設定して、この粗粉末をシリンダに送り
込み、押出機内で剪断力を付与して実施例1の微粉末を
得た。なお、シリンダ温度は、シリンダを4つの領域
(ホッパーに近い領域から領域1〜4とする)に分割し
てそれぞれについて設定した。Example 1 Based on polybutadiene rubber and natural rubber, zinc oxide, carbon black, stearic acid, oil, an antioxidant, sulfur as a vulcanizing agent, and N-oxydiethylene-2 as a vulcanization accelerator were used. -145% rubber-based material to which benzothiazole sulfenamide (OBS) was added.
The tire waste material vulcanized at 30 ° C. for 30 minutes was roughly crushed using a crusher to obtain a coarse powder having an average particle size of about 20 mm. Then, the obtained coarse powder has a screw diameter D of 30 mm and a ratio L / D of the screw diameter D to the screw length L of 24.
Was charged into the hopper of the twin-screw extruder. Then, the screw rotation speed was set to 100 rpm, the cylinder temperature was set as shown in Table 1 below, and this coarse powder was fed into the cylinder, and shearing force was applied in the extruder to obtain fine powder of Example 1. In addition, the cylinder temperature was set for each of four regions (regions 1 to 4 starting from the region near the hopper) of the cylinder.
【0016】実施例2,3、比較例1 領域1〜4のシリンダ温度を下記表1に示すように設定
すること以外は実施例1と同様にして実施例2,3、比
較例1の微粉末を得た。Examples 2 and 3 and Comparative Example 1 Similar to Example 1 except that the cylinder temperatures in the regions 1 to 4 are set as shown in Table 1 below, only a slight difference from Examples 2 and 3 and Comparative Example 1 is performed. A powder was obtained.
【0017】[0017]
【表1】 実施例4 実施例1において得られた平均粒径が約20mmである粗
粉末を、スクリュー径D30mm、スクリュー長さLに対
するスクリュー径Dの比L/Dが20である単軸押出機
のホッパーに投入した。その後、スクリュー回転数を8
0rpm とし、シリンダ温度を下記表2に示すように設定
して、この粗粉末をシリンダに送り込み、押出機内で剪
断力を付与して実施例4の微粉末を得た。なお、シリン
ダ温度は、シリンダを4つの領域(ホッパーに近い領域
から領域1〜4とする)に分離してそれぞれについて設
定した。[Table 1] Example 4 The coarse powder having an average particle size of about 20 mm obtained in Example 1 was put into a hopper of a single-screw extruder having a screw diameter D of 30 mm and a ratio L / D of the screw diameter D to the screw length L of 20. I put it in. After that, set the screw rotation speed to 8
At 0 rpm, the cylinder temperature was set as shown in Table 2 below, this coarse powder was fed into the cylinder, and shearing force was applied in the extruder to obtain fine powder of Example 4. In addition, the cylinder temperature was set for each of four regions (regions 1 to 4 starting from the region near the hopper) of the cylinder.
【0018】[0018]
【表2】 実施例5 ニトリルゴムおよび塩化ビニルをベースとし、これに酸
化亜鉛、ステアリン酸、カーボンブラック、可塑剤、ア
ルキルフェノール樹脂、老化防止剤、ワックス、加硫剤
として硫黄、並びに加硫促進剤としてN−シクロヘキシ
ル−2−ベンゾチアゾール−サルファネイド(CBS)
およびテトラエチルチウラムジサルファイド(TET
D)を加えたゴム系材料を150℃×20分で加硫して
なるホースの廃材を粉砕機を用いて粗粉砕して、平均粒
径が約15mmの粗粉末を得た。次いで、得られた粗粉末
を、スクリュー径D44mm、スクリュー長さLに対する
スクリュー径Dの比L/Dが20である二軸押出機のホ
ッパーに投入した。その後、スクリュー回転数を150
rpm とし、シリンダ温度を下記表3に示すように設定し
て、この粗粉末をシリンダに送り込み、押出機内で剪断
力を付与して実施例5の微粉末を得た。なお、シリンダ
温度は、シリンダを4つの領域(ホッパーに近い領域か
ら領域1〜4とする)に分割してそれぞれについて設定
した。[Table 2] Example 5 Based on nitrile rubber and vinyl chloride, on which zinc oxide, stearic acid, carbon black, plasticizer, alkylphenol resin, antioxidant, wax, sulfur as vulcanizing agent, and N-cyclohexyl as vulcanization accelerator. -2-benzothiazole-sulfanide (CBS)
And tetraethyl thiuram disulphide (TET
The rubber material to which D) was added was vulcanized at 150 ° C. for 20 minutes, and the waste material of the hose was roughly crushed using a crusher to obtain a coarse powder having an average particle size of about 15 mm. Next, the obtained coarse powder was put into a hopper of a twin-screw extruder having a screw diameter D of 44 mm and a ratio L / D of the screw diameter D to the screw length L of 20. After that, change the screw speed to 150.
The crude powder was fed into the cylinder at a rpm of cylinder with the cylinder temperature set as shown in Table 3 below, and a shearing force was applied in the extruder to obtain a fine powder of Example 5. In addition, the cylinder temperature was set for each of four regions (regions 1 to 4 starting from the region near the hopper) of the cylinder.
【0019】実施例6,7、比較例2 領域1〜4のシリンダ温度を下記表3に示すように設定
すること以外は実施例4と同様にして実施例6,7、比
較例2の微粉末を得た。Examples 6, 7 and Comparative Example 2 Similar to Example 4, except that the cylinder temperatures in the regions 1 to 4 are set as shown in Table 3 below, the results of Examples 6, 7 and Comparative Example 2 are slightly different. A powder was obtained.
【0020】[0020]
【表3】 実施例8 実施例5において得られた平均粒径が約15mmである粗
粉末を、スクリュー径D40mm、スクリュー長さLに対
するスクリュー径Dの比L/Dが18である単軸押出機
のホッパーに投入した。その後、スクリュー回転数を6
0rpm とし、シリンダ温度を下記表4に示すように設定
して、この粗粉末をシリンダに送り込み、押出機内で剪
断力を付与して実施例8の微粉末を得た。なお、シリン
ダ温度は、シリンダを3つの領域(ホッパーに近い領域
から領域1〜3とする)に分離してそれぞれについて設
定した。[Table 3] Example 8 The coarse powder having an average particle size of about 15 mm obtained in Example 5 was put into a hopper of a single-screw extruder having a screw diameter D of 40 mm and a ratio L / D of the screw diameter D to the screw length L of 18. I put it in. After that, change the screw rotation speed to 6
At 0 rpm, the cylinder temperature was set as shown in Table 4 below, this coarse powder was fed into the cylinder, and shearing force was applied in the extruder to obtain fine powder of Example 8. The cylinder temperature was set for each of the three regions (the regions closer to the hopper to the regions 1 to 3) in which the cylinder was divided.
【0021】[0021]
【表4】 実施例9 エチレン−プロピレンゴムに酸化亜鉛、ステアリン酸、
焼成クレー、カーボンブラック、オイル、ワックス、老
化防止剤、架橋剤としてジクミルパーオキサイド、並び
に加硫促進剤としてジベンゾイルキノンジオキシムを加
えたゴム系材料を160℃×30分で加硫してなる電線
被覆の廃材を粉砕機を用いて粗粉砕して、平均粒径が約
25mmの粗粉末を得た。次いで、得られた粗粉末を、ス
クリュー径D44mm、スクリュー長さLに対するスクリ
ュー径Dの比L/Dが20である二軸押出機のホッパー
に投入した。その後、スクリュー回転数を350rpm と
し、シリンダ温度を下記表5に示すように設定して、こ
の粗粉末をシリンダに送り込み、押出機内で剪断力を付
与して実施例9の微粉末を得た。なお、シリンダ温度
は、シリンダを4つの領域(ホッパーに近い領域から領
域1〜4とする)に分割してそれぞれについて設定し
た。[Table 4] Example 9 Ethylene-propylene rubber with zinc oxide, stearic acid,
A rubber material containing calcined clay, carbon black, oil, wax, anti-aging agent, dicumyl peroxide as a crosslinking agent, and dibenzoylquinonedioxime as a vulcanization accelerator is vulcanized at 160 ° C. for 30 minutes. The electric wire coating waste material was roughly crushed using a crusher to obtain a coarse powder having an average particle size of about 25 mm. Next, the obtained coarse powder was put into a hopper of a twin-screw extruder having a screw diameter D of 44 mm and a ratio L / D of the screw diameter D to the screw length L of 20. Then, the screw rotation speed was set to 350 rpm, the cylinder temperature was set as shown in Table 5 below, and this coarse powder was fed into the cylinder, and shearing force was applied in the extruder to obtain fine powder of Example 9. In addition, the cylinder temperature was set for each of four regions (regions 1 to 4 starting from the region near the hopper) of the cylinder.
【0022】実施例10,11、比較例3 領域1〜4のシリンダ温度を下記表5に示すように設定
すること以外は実施例9と同様にして実施例10,1
1、比較例3の微粉末を得た。Examples 10 and 11 and Comparative Example 3 Examples 10 and 1 were carried out in the same manner as Example 9 except that the cylinder temperatures in the regions 1 to 4 were set as shown in Table 5 below.
1. Fine powders of Comparative Example 3 were obtained.
【0023】[0023]
【表5】 実施例12 実施例9において得られた平均粒径が約15mmである粗
粉末を、スクリュー径D40mm、スクリュー長さLに対
するスクリュー径Dの比L/Dが16である単軸押出機
のホッパーに投入した。その後、スクリュー回転数を6
0rpm とし、シリンダ温度を下記表6に示すように設定
して、この粗粉末をシリンダに送り込み、押出機内で剪
断力を付与して実施例12の微粉末を得た。なお、シリ
ンダ温度は、シリンダを3つの領域(ホッパーに近い領
域から領域1〜3とする)に分割してそれぞれについて
設定した。[Table 5] Example 12 The coarse powder having an average particle size of about 15 mm obtained in Example 9 was loaded into a hopper of a single-screw extruder having a screw diameter D of 40 mm and a ratio L / D of the screw diameter D to the screw length L of 16. I put it in. After that, change the screw rotation speed to 6
At 0 rpm, the cylinder temperature was set as shown in Table 6 below, this coarse powder was fed into the cylinder, and a shearing force was applied in the extruder to obtain a fine powder of Example 12. The cylinder temperature was set for each of the three divided regions of the cylinder (regions closer to the hopper to regions 1 to 3).
【0024】[0024]
【表6】 得られた実施例1〜12および比較例1〜3の微粉末に
ついて、押出機から排出された時の臭いとその平均粒径
を測定した。その結果を下記表7に示す。なお、平均粒
径の測定はレーザ回析式粒度分布測定装置により行っ
た。[Table 6] With respect to the obtained fine powders of Examples 1 to 12 and Comparative Examples 1 to 3, the odor when discharged from the extruder and the average particle size thereof were measured. The results are shown in Table 7 below. The average particle size was measured by a laser diffraction type particle size distribution measuring device.
【0025】[0025]
【表7】 表7から明らかなように、本発明の方法により得られた
微粉末(実施例1〜12)は、異臭がなく、ブロッキン
グが起こらないものであった。特に、二軸押出機を用い
て得られた微粉末(実施例1〜3,5〜7,9〜11)
は、平均粒径が小さいものであった。これに対して粗粉
末に剪断力を加える際の設定温度が230℃以上の条件
で得られた微粉末(比較例1〜3)は、異臭があり、し
かも粉末同士が熱融着した。[Table 7] As is apparent from Table 7, the fine powders (Examples 1 to 12) obtained by the method of the present invention had no offensive odor and did not cause blocking. In particular, fine powder obtained using a twin-screw extruder (Examples 1-3, 5-7, 9-11)
Had a small average particle size. On the other hand, the fine powders (Comparative Examples 1 to 3) obtained under the condition that the set temperature when the shearing force was applied to the coarse powder was 230 ° C. or higher had an offensive odor, and the powders were heat-sealed to each other.
【0026】実施例13 実施例1において使用したタイヤの廃材を粉砕機を用い
て粗粉砕して、平均粒径約20mmの粗粉末を得た。この
粗粉末100重量部に対して3〜10重量部の割合でタ
ルク粉末を混合した。次いで、得られた混合物を、スク
リュー径Dが30mm、スクリュー長さLに対するスクリ
ュー径Dの比L/Dが24である二軸押出機のホッパー
に投入した。その後、実施例1と同様にして、この混合
物をシリンダに送り込み、押出機内で剪断力を付与して
微粉末を得た。このとき、得られた微粉末は、いずれも
凝集していなかった。したがって、従来必要とされてい
た、凝集により塊状となった微粉末をほぐす作業が不要
となり、効率よく微粉化を行うことができた。Example 13 The waste material of the tire used in Example 1 was roughly pulverized by using a pulverizer to obtain a coarse powder having an average particle size of about 20 mm. The talc powder was mixed at a ratio of 3 to 10 parts by weight with respect to 100 parts by weight of this coarse powder. Then, the obtained mixture was put into a hopper of a twin-screw extruder having a screw diameter D of 30 mm and a ratio L / D of the screw diameter D to the screw length L of 24. Then, in the same manner as in Example 1, this mixture was fed into a cylinder, and shearing force was applied in the extruder to obtain fine powder. At this time, none of the obtained fine powders aggregated. Therefore, it is not necessary to loosen the fine powder that has become agglomerate due to agglomeration, which is conventionally required, and the fine powder can be efficiently pulverized.
【0027】[0027]
【発明の効果】以上説明した如く本発明の加硫ゴム系材
料の微粉化方法は、廃材を粒状体に粉砕し、これに剪断
力を加えるので、簡単な工程で、効率良く、しかも連続
的に加硫したゴム系材料の廃材を微粉化でき、パウダー
状の微粉末を得ることができるものである。Industrial Applicability As described above, the pulverized method of vulcanized rubber material of the present invention pulverizes the waste material into granules and applies a shearing force to the granules. Therefore, the method is simple, efficient and continuous. The waste material of the vulcanized rubber material can be pulverized to obtain powdery fine powder.
【0028】本発明によれば、近年産業界に課せられた
省資源、省エネルギーへの要請に対応することができ、
極めて工業的価値を有する。According to the present invention, it is possible to meet the demands for resource saving and energy saving imposed on the industry in recent years,
It has extremely industrial value.
Claims (1)
30℃以下の温度で剪断力を加えることを特徴とする加
硫ゴム系材料の微粉化方法。1. A waste material made of granular vulcanized rubber-based material.
A method for atomizing a vulcanized rubber-based material, which comprises applying a shearing force at a temperature of 30 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33311992A JPH06179215A (en) | 1992-12-14 | 1992-12-14 | Method for pulverizing vulcanized rubber material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33311992A JPH06179215A (en) | 1992-12-14 | 1992-12-14 | Method for pulverizing vulcanized rubber material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06179215A true JPH06179215A (en) | 1994-06-28 |
Family
ID=18262506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33311992A Pending JPH06179215A (en) | 1992-12-14 | 1992-12-14 | Method for pulverizing vulcanized rubber material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06179215A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0887372A1 (en) * | 1995-12-19 | 1998-12-30 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Devulcanized rubber, method of manufacturing devulcanized rubber, and method of manufacturing reclaimed molded rubber products from devulcanized rubber |
JPH11209480A (en) * | 1998-01-27 | 1999-08-03 | Toyota Central Res & Dev Lab Inc | Rubber composite material |
WO2008128549A1 (en) * | 2007-04-23 | 2008-10-30 | Ibrahim Hamed Mohamed Abou-Elwafa | Recycling of rubbery residuals with the same original properties |
US7654477B2 (en) | 2002-12-02 | 2010-02-02 | Pirelli & C. S.P.A. | Pulverization process of a vulcanized rubber material |
WO2014042510A1 (en) * | 2012-09-12 | 2014-03-20 | Sekhar Research Innovations Sdn. Bhd. | A method for producing devulcanized rubber and an apparatus therefor |
WO2015198538A1 (en) * | 2014-06-25 | 2015-12-30 | バンドー化学株式会社 | Regenerated rubber, process for producing same, and transmission belt including same |
-
1992
- 1992-12-14 JP JP33311992A patent/JPH06179215A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0887372A1 (en) * | 1995-12-19 | 1998-12-30 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Devulcanized rubber, method of manufacturing devulcanized rubber, and method of manufacturing reclaimed molded rubber products from devulcanized rubber |
JPH11209480A (en) * | 1998-01-27 | 1999-08-03 | Toyota Central Res & Dev Lab Inc | Rubber composite material |
US7654477B2 (en) | 2002-12-02 | 2010-02-02 | Pirelli & C. S.P.A. | Pulverization process of a vulcanized rubber material |
WO2008128549A1 (en) * | 2007-04-23 | 2008-10-30 | Ibrahim Hamed Mohamed Abou-Elwafa | Recycling of rubbery residuals with the same original properties |
WO2014042510A1 (en) * | 2012-09-12 | 2014-03-20 | Sekhar Research Innovations Sdn. Bhd. | A method for producing devulcanized rubber and an apparatus therefor |
CN104822747A (en) * | 2012-09-12 | 2015-08-05 | 谢卡尔研究及创新私人有限公司 | Method for producing devulcanized rubber and apparatus therefor |
US9550880B2 (en) | 2012-09-12 | 2017-01-24 | Sekhar Research Innovations Sdn. Bhd. | Method for producing devulcanized rubber and an apparatus therefor |
US10005892B2 (en) | 2012-09-12 | 2018-06-26 | Sekhar Research Innovations Sdn. Bhd. | Method for producing devulcanized rubber and an apparatus therefor |
WO2015198538A1 (en) * | 2014-06-25 | 2015-12-30 | バンドー化学株式会社 | Regenerated rubber, process for producing same, and transmission belt including same |
WO2015198537A1 (en) * | 2014-06-25 | 2015-12-30 | バンドー化学株式会社 | Regenerated rubber, process for producing same, and transmission belt including same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7654477B2 (en) | Pulverization process of a vulcanized rubber material | |
CA2811004C (en) | Elastomer composite with silica-containing filler and methods to produce same | |
KR101688256B1 (en) | Tire composition using elastomer composite blends | |
US9714325B2 (en) | Method for producing rubber wet masterbatch, rubber wet masterbatch, and rubber composition including rubber wet masterbatch | |
GB2168057A (en) | Method of making powder from rubber and vulcanization products | |
US6924319B1 (en) | Devulcanization product consisting of scrap rubber, a devulcanization compound, a method for producing same, the reuse thereof in fresh mixtures and the use thereof for producing injection moulded parts | |
JP2006305982A (en) | Method for kneading raw material mixture and kneading device | |
WO2017061442A1 (en) | Rubber composition and tire | |
US20220403146A1 (en) | Reclaimed material for manufacturing shoes and method of producing reclaimed rubber by processing recycled shoe material waste | |
JP6844889B2 (en) | Rubber composition for tire tread and tire | |
US4045403A (en) | Method of compounding thermo-plastic polymeric materials and fillers | |
JPH06179215A (en) | Method for pulverizing vulcanized rubber material | |
KR20090087206A (en) | Elastic filler supporting artificial turf and method for manufacturing the same | |
JP2023514621A (en) | rubber compound | |
US3962531A (en) | Electrical conductor insulated with filled polymeric compounds | |
KR100969040B1 (en) | Recylcled thermoplastic elastomer using rubber waste and its preparation method | |
De | Re-use of ground rubber waste-A review | |
JP2516667B2 (en) | Matrix-Rubber containing degrading agent | |
JP2004035663A (en) | Rubber composition containing reclaimed rubber | |
JP2004182777A (en) | Method for pulverizing vulcanized rubber to be used as rubber raw material and method for reusing rubber waste | |
Bleyie | Influence of morphology and particle size of powdered rubber on mill processing | |
JP2001315121A (en) | Powder rubber and method of manufacturing the same | |
JPH068242A (en) | Grinding method for rubber | |
JP2008169330A (en) | Processed powdery rubber, and rubber composition and pneumatic tire produced by using the same | |
Jacob et al. | Powdered rubber waste in rubber compounds |