JP6844889B2 - Rubber composition for tire tread and tire - Google Patents

Rubber composition for tire tread and tire Download PDF

Info

Publication number
JP6844889B2
JP6844889B2 JP2017544513A JP2017544513A JP6844889B2 JP 6844889 B2 JP6844889 B2 JP 6844889B2 JP 2017544513 A JP2017544513 A JP 2017544513A JP 2017544513 A JP2017544513 A JP 2017544513A JP 6844889 B2 JP6844889 B2 JP 6844889B2
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
tire
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017544513A
Other languages
Japanese (ja)
Other versions
JPWO2017061441A1 (en
Inventor
大二郎 永野
大二郎 永野
康之 佐伯
康之 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPWO2017061441A1 publication Critical patent/JPWO2017061441A1/en
Application granted granted Critical
Publication of JP6844889B2 publication Critical patent/JP6844889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L17/00Compositions of reclaimed rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

本発明は、タイヤトレッド用ゴム組成物及びタイヤに関する。 The present invention relates to a rubber composition for a tire tread and a tire.

近年、環境負荷低減の観点から、廃ゴム製品をリサイクルした再生原材料(再生ゴム、再生粉末ゴム等)のタイヤ用途への活用が望まれている。しかし、単純に再生原材料を配合しただけでは、耐摩耗性が低下してしまうなどの問題点があった。
特許文献1には、加硫粉末ゴムを有効に活用しつつ、耐クラック性、耐カット性及び耐チッピング性を向上したタイヤキャップトレッド用ゴム組成物を提供することを目的とし、ブタジエンゴムを含むジエン系ゴムに対し、特定の粒径を有する加硫粉末ゴムと、軟化剤を配合してなるタイヤキャップトレッド用ゴム組成物が開示されている。
また、特許文献2には、再生粉末ゴムを配合しても、強度、伸び及び耐発熱性を低下させることなく、耐摩耗性及び耐疲労性を向上させたタイヤ用ゴム組成物を提供することを目的とし、天然ゴム50重量部以上を含むゴム組成物100重量部、窒素比表面性が90m/g以上のカーボンブラック50重量部以上、軟化剤10〜30重量部、及び天然ゴム含量が70重量%以上で粒径500μm以上の粉末含量が10重量%以下の加硫粉末ゴム3〜30重量部を含んでなるタイヤ用ゴム組成物が開示されている。
更に、特許文献3には、操縦安定性を保持したまま、乗り心地の向上とノイズを低減することができるベーストレッド用ゴム組成物を提供することを目的として、加硫後のJIS−A硬度が65〜80となるマトリックス中に、JIS−A硬度が30〜60の粉末ゴム成分が配合されてなり、前記マトリックスのゴム成分100質量部に対して、前記粉末ゴムを1〜10質量部含有するベーストレッド用ゴム組成物が開示されている。
In recent years, from the viewpoint of reducing the environmental load, it has been desired to utilize recycled raw materials (recycled rubber, recycled powder rubber, etc.) obtained by recycling waste rubber products for tire applications. However, there is a problem that the wear resistance is lowered by simply blending the recycled raw material.
Patent Document 1 includes butadiene rubber for the purpose of providing a rubber composition for a tire cap tread having improved crack resistance, cut resistance and chipping resistance while effectively utilizing vulcanized powder rubber. A rubber composition for a tire cap tread, which comprises a vulcanized powder rubber having a specific particle size and a softening agent, is disclosed with respect to a diene rubber.
Further, Patent Document 2 provides a rubber composition for a tire having improved wear resistance and fatigue resistance without lowering strength, elongation and heat resistance even when recycled powder rubber is blended. 100 parts by weight of a rubber composition containing 50 parts by weight or more of natural rubber, 50 parts by weight or more of carbon black having a nitrogen ratio surface property of 90 m 2 / g or more, 10 to 30 parts by weight of a softener, and a natural rubber content. A rubber composition for a tire containing 3 to 30 parts by weight of sulfide powder rubber having a powder content of 70% by weight or more and a particle size of 500 μm or more and 10% by weight or less is disclosed.
Further, in Patent Document 3, JIS-A hardness after vulcanization is intended to provide a rubber composition for base tread capable of improving riding comfort and reducing noise while maintaining steering stability. A powdered rubber component having a JIS-A hardness of 30 to 60 is blended in a matrix having a value of 65 to 80, and 1 to 10 parts by mass of the powdered rubber is contained with respect to 100 parts by mass of the rubber component of the matrix. A rubber composition for a base tread is disclosed.

特開2012−116977号公報Japanese Unexamined Patent Publication No. 2012-116977 特開平11−335488号公報Japanese Unexamined Patent Publication No. 11-335488 特開2010−132772号公報Japanese Unexamined Patent Publication No. 2010-132772

本発明の目的は、再生ゴムを多量に配合しても、耐摩耗性の低下を抑制できるタイヤトレッド用ゴム組成物、及び前記ゴム組成物を用いたタイヤを提供することにある。 An object of the present invention is to provide a rubber composition for a tire tread capable of suppressing a decrease in wear resistance even when a large amount of recycled rubber is blended, and a tire using the rubber composition.

本発明者等は鋭意検討した結果、ゴム成分100質量部に対して、再生ゴムを多量(30〜60質量部)に配合しても、酸化亜鉛を3.5質量部以上配合することにより、上記の課題を解決しうることを見出した。 As a result of diligent studies by the present inventors, even if a large amount (30 to 60 parts by mass) of recycled rubber is blended with respect to 100 parts by mass of the rubber component, by blending 3.5 parts by mass or more of zinc oxide, We have found that the above problems can be solved.

すなわち、本発明は、以下の<1>〜<7>に関する。
<1> 天然ゴム及び合成ゴムよりなる群から選択される少なくとも1つからなるゴム成分100質量部に対し、再生ゴムを30〜60質量部、及び酸化亜鉛を3.5質量部以上配合してなることを特徴とする、タイヤトレッド用ゴム組成物。
<2> 更に、ゴム成分100質量部に対して、粉末ゴムを10〜20質量部配合してなる、<1>に記載のタイヤトレッド用ゴム組成物。
<3> 更に、ゴム成分100質量部に対して、加硫遅延剤を0.1〜1.0質量部配合してなる、<1>又は<2>に記載のタイヤトレッド用ゴム組成物。
<4> 更に、ゴム成分100質量部に対して、加硫促進剤を1.0〜3.0質量部配合してなる、<1>〜<3>のいずれか1つに記載のタイヤトレッド用ゴム組成物。
<5> 前記ゴム成分が、天然ゴム又はイソプレンゴムからなる、<1>〜<4>のいずれか1つに記載のタイヤトレッド用ゴム組成物。
<6> 前記ゴム組成物が、加硫促進剤及び加硫遅延剤を配合してなり、ゴム組成物中の加硫促進剤と加硫遅延剤との配合量の比(加硫促進剤/加硫遅延剤)が1〜5である、<1>〜<5>のいずれか1つに記載のタイヤトレッド用ゴム組成物。
<7> <1>〜<6>のいずれか1つに記載のゴム組成物を用いたタイヤ。
That is, the present invention relates to the following <1> to <7>.
<1> 30 to 60 parts by mass of recycled rubber and 3.5 parts by mass or more of zinc oxide are blended with 100 parts by mass of a rubber component consisting of at least one selected from the group consisting of natural rubber and synthetic rubber. A rubber composition for a tire tread, which is characterized by becoming.
<2> The rubber composition for tire tread according to <1>, wherein 10 to 20 parts by mass of powdered rubber is further blended with respect to 100 parts by mass of the rubber component.
<3> The rubber composition for tire tread according to <1> or <2>, which further comprises 0.1 to 1.0 parts by mass of a vulcanization retarder with respect to 100 parts by mass of the rubber component.
<4> The tire tread according to any one of <1> to <3>, which is obtained by blending 1.0 to 3.0 parts by mass of a vulcanization accelerator with respect to 100 parts by mass of the rubber component. Rubber composition for.
<5> The rubber composition for a tire tread according to any one of <1> to <4>, wherein the rubber component is a natural rubber or an isoprene rubber.
<6> The rubber composition is formed by blending a vulcanization accelerator and a vulcanization retarder, and the ratio of the blending amounts of the vulcanization accelerator and the vulcanization retarder in the rubber composition (vulcanization accelerator / The rubber composition for a tire tread according to any one of <1> to <5>, wherein the vulcanization retardant) is 1 to 5.
<7> A tire using the rubber composition according to any one of <1> to <6>.

本発明によれば、再生ゴムを多量に配合しても、耐摩耗性の低下を抑制できるタイヤトレッド用ゴム組成物、及び前記ゴム組成物を用いたタイヤを提供することができる。 According to the present invention, it is possible to provide a tire tread rubber composition capable of suppressing a decrease in wear resistance even when a large amount of recycled rubber is blended, and a tire using the rubber composition.

以下に、本発明をその実施形態に基づき詳細に例示説明する。なお、以下の説明において、数値範囲を示す「A〜B」の記載は、端点であるA及びBを含む数値範囲を表し、「A以上B以下」(A<Bの場合)、又は「A以下B以上」(A>Bの場合)を表す。
また、質量部及び質量%は、それぞれ、重量部及び重量%と同義である。
Hereinafter, the present invention will be illustrated in detail based on the embodiments thereof. In the following description, the description of "A to B" indicating the numerical range represents the numerical range including the end points A and B, and is "A or more and B or less" (in the case of A <B) or "A". Hereinafter, it represents "B or more" (in the case of A> B).
In addition, parts by mass and% by mass are synonymous with parts by weight and% by weight, respectively.

(タイヤトレッド用ゴム組成物)
本発明のタイヤトレッド用ゴム組成物(以下、単にゴム組成物ともいう。)は、天然ゴム及び合成ゴムよりなる群から選択される少なくとも1つからなるゴム成分100質量部に対し、再生ゴムを30〜60質量部、及び酸化亜鉛を3.5質量部以上配合してなることを特徴とする。
従来、粉末ゴムや再生ゴムをタイヤトレッド用ゴム組成物に配合すると、ゴム組成物の補強性が低下し、結果として耐摩耗性が低下するという問題が生じていた。その結果、再生原材料の使用量を抑制せざるを得ず、十分に環境負荷を低減することが困難であった。
本発明者等は鋭意検討することによって、再生ゴムを多量に配合しても、酸化亜鉛の含有量を特定量以上とすることにより、耐摩耗性の低下が抑制されることを見出し、本発明を完成するに至った。その詳細な機構は不明であるが、一部は以下のように推定される。
すなわち、再生ゴムは、使用履歴及び再生の過程において、劣化、過熱等により低分子量化していると推定される。酸化亜鉛を従来よりも多量に配合することにより、酸化亜鉛が加硫促進助剤として働き、耐摩耗性が向上したものと推定される。
以下、本発明について更に詳細に説明する。
(Rubber composition for tire tread)
The rubber composition for tire tread of the present invention (hereinafter, also simply referred to as a rubber composition) comprises 100 parts by mass of a rubber component consisting of at least one selected from the group consisting of natural rubber and synthetic rubber. It is characterized by blending 30 to 60 parts by mass and 3.5 parts by mass or more of zinc oxide.
Conventionally, when powdered rubber or recycled rubber is blended with a rubber composition for tire tread, there has been a problem that the reinforcing property of the rubber composition is lowered, and as a result, the wear resistance is lowered. As a result, the amount of recycled raw materials used had to be suppressed, and it was difficult to sufficiently reduce the environmental load.
The present inventors have found through diligent studies that even if a large amount of recycled rubber is blended, the decrease in abrasion resistance is suppressed by setting the zinc oxide content to a specific amount or more, and the present invention has been made. Has been completed. The detailed mechanism is unknown, but some are presumed as follows.
That is, it is presumed that the recycled rubber has a low molecular weight due to deterioration, overheating, etc. in the usage history and the process of regeneration. It is presumed that by blending a larger amount of zinc oxide than before, zinc oxide acts as a vulcanization accelerator and the wear resistance is improved.
Hereinafter, the present invention will be described in more detail.

<ゴム成分>
本発明のゴム組成物は、天然ゴム及び合成ゴムよりなる群から選択される少なくとも1つからなるゴム成分を配合してなる。ゴム成分として、天然ゴムを単独で使用してもよく、合成ゴムを単独で使用してもよく、また、天然ゴムと合成ゴムとを併用してもよい。
合成ゴムとしては特に限定されないが、合成ジエン系ゴムが好ましく例示される。合成ジエン系ゴムとしては、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、エチレン−プロピレン−ジエン三元共重合体ゴム、クロロプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリル−ブタジエンゴム等が例示される。これらの合成ゴムは、1種単独で使用してもよく、2種以上を併用してもよい。
本発明において、ゴム成分としては、天然ゴム、イソプレンゴムが好ましく、天然ゴムがより好ましい。
本発明において、天然ゴム及びイソプレンゴムの合計量が、ゴム成分全体の70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、天然ゴム及び/又はイソプレンゴムのみからなること、すなわち、天然ゴム及びイソプレンゴムの合計量がゴム成分の100質量%であることが特に好ましい。
<Rubber component>
The rubber composition of the present invention comprises a rubber component consisting of at least one selected from the group consisting of natural rubber and synthetic rubber. As the rubber component, natural rubber may be used alone, synthetic rubber may be used alone, or natural rubber and synthetic rubber may be used in combination.
The synthetic rubber is not particularly limited, but a synthetic diene rubber is preferably exemplified. Examples of synthetic diene rubbers include polybutadiene rubber (BR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), ethylene-propylene-diene ternary copolymer rubber, chloroprene rubber, butyl rubber, and halogenated products. Examples thereof include butyl rubber and acrylonitrile-butadiene rubber. These synthetic rubbers may be used alone or in combination of two or more.
In the present invention, as the rubber component, natural rubber and isoprene rubber are preferable, and natural rubber is more preferable.
In the present invention, the total amount of the natural rubber and the isoprene rubber is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more of the total rubber component. It is particularly preferable that it is composed of only natural rubber and / or isoprene rubber, that is, the total amount of natural rubber and isoprene rubber is 100% by mass of the rubber component.

<再生ゴム>
本発明のゴム組成物は、前記ゴム成分100質量部に対して、再生ゴムを30〜60質量部配合してなる。
再生ゴムの配合量が、ゴム成分100質量部に対して30質量部以上であると、環境負荷低減の観点から好ましく、60質量部以下であると耐摩耗性の低下が抑制されるので好ましい。
再生ゴムの配合量は、ゴム成分100質量部に対して、35〜55質量部であることが好ましく、40〜50質量部であることがより好ましい。
<Recycled rubber>
The rubber composition of the present invention comprises 30 to 60 parts by mass of recycled rubber with respect to 100 parts by mass of the rubber component.
When the blending amount of the recycled rubber is 30 parts by mass or more with respect to 100 parts by mass of the rubber component, it is preferable from the viewpoint of reducing the environmental load, and when it is 60 parts by mass or less, the decrease in wear resistance is suppressed, which is preferable.
The blending amount of the recycled rubber is preferably 35 to 55 parts by mass, and more preferably 40 to 50 parts by mass with respect to 100 parts by mass of the rubber component.

本発明で使用する再生ゴムとしては、市販の再生ゴムを使用することができる。再生ゴムとは、JIS K6313−2012に規定された自動車用タイヤ、チューブ及びその他のゴム製品の使用済みのゴムなどを再生したもの並びにこれと同等の性状を有するものとする。なお、粉状のものは除く。また、再生ゴムは、脱硫処理が施される。
再生ゴムの種類は、チューブ再生ゴム、タイヤ再生ゴム、及びその他の再生ゴムよりなる群から選ばれるいずれでもよく、複数の種類を組合わせることもできる。これらの中でも、タイヤ再生ゴムが好ましい。
再生ゴムの製造方法としては特に限定されず、オイルパン法、リクレメーター法など、公知の方法を採用すればよい。
As the recycled rubber used in the present invention, a commercially available recycled rubber can be used. The recycled rubber shall be a recycled rubber of automobile tires, tubes and other rubber products specified in JIS K6313-2012, and shall have the same properties as this. In addition, powdery ones are excluded. In addition, the recycled rubber is desulfurized.
The type of the recycled rubber may be any one selected from the group consisting of the tube recycled rubber, the tire recycled rubber, and other recycled rubber, and a plurality of types may be combined. Among these, tire recycled rubber is preferable.
The method for producing the recycled rubber is not particularly limited, and a known method such as an oil pan method or a recremator method may be adopted.

<酸化亜鉛>
本発明のゴム組成物は、酸化亜鉛を配合してなる。酸化亜鉛は、通常、亜鉛華と称される。
本発明のゴム組成物は、前記ゴム成分100質量部に対して、酸化亜鉛を3.5質量部以上配合してなる。酸化亜鉛の配合量がゴム成分100質量部に対して3.5質量部以上であると、耐摩耗性の低下が抑制されるので好ましい。
酸化亜鉛の配合量は、ゴム成分100質量部に対して、3.5〜6.5質量部であることが好ましく、4〜6質量部であることがより好ましい。
本発明のゴム組成物に配合する酸化亜鉛は、BET法による窒素吸着比表面積(NSA)が3m/g以上110m/g以下であることが好ましい。酸化亜鉛の比表面積は、ASTM D4567−03(2007)に規定されるBET法に準じて測定される窒素吸着法比表面積であり、以下では「BET比表面積」と記す。
酸化亜鉛のBET比表面積は、加硫速度への影響の観点から、3m/g以上25m/g以下がより好ましく、5m/g以上10m/g以下であることが更に好ましい。
<Zinc oxide>
The rubber composition of the present invention comprises zinc oxide. Zinc oxide is commonly referred to as zinc oxide.
The rubber composition of the present invention comprises 3.5 parts by mass or more of zinc oxide mixed with 100 parts by mass of the rubber component. When the blending amount of zinc oxide is 3.5 parts by mass or more with respect to 100 parts by mass of the rubber component, a decrease in wear resistance is suppressed, which is preferable.
The blending amount of zinc oxide is preferably 3.5 to 6.5 parts by mass, and more preferably 4 to 6 parts by mass with respect to 100 parts by mass of the rubber component.
The zinc oxide blended in the rubber composition of the present invention preferably has a nitrogen adsorption specific surface area (N 2 SA) of 3 m 2 / g or more and 110 m 2 / g or less by the BET method. The specific surface area of zinc oxide is the specific surface area of the nitrogen adsorption method measured according to the BET method specified in ASTM D4567-03 (2007), and will be referred to as "BET specific surface area" below.
The BET specific surface area of zinc oxide is more preferably 3 m 2 / g or more and 25 m 2 / g or less, and further preferably 5 m 2 / g or more and 10 m 2 / g or less, from the viewpoint of the influence on the vulcanization rate.

本発明のゴム組成物に配合してもよい、その他の成分について以下に説明する。
<粉末ゴム>
本発明のゴム組成物は、粉末ゴムを配合してなることが好ましい。粉末ゴムを配合することにより、再生ゴムの添加による未加硫ゴム組成物の密着性の上昇を抑制し、作業性が向上する。
粉末ゴムは、粉ゴムとも呼ばれ、廃ゴム製品をリサイクルした加硫粉末ゴム(再生粉末ゴム)である。この粉末ゴムの原料となる廃ゴムのゴム種は特に限定されるものではなく、天然ゴム及び合成ゴムの中から選択される少なくとも1種含むものであればよい。合成ゴムとしてはジエン系ゴムが好ましく、例えば、ポリイソプレンゴム、スチレン−ブタジエン共重合体ゴム、高シス−1,4−ポリブタジエンゴム、低シス−1,4−ポリブタジエンゴム、エチレン−プロピレン−ジエン三元共重合体、クロロプレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリル−ブタジエンゴム等が挙げられる。
Other components that may be blended in the rubber composition of the present invention will be described below.
<Powdered rubber>
The rubber composition of the present invention preferably contains powdered rubber. By blending the powdered rubber, the increase in the adhesiveness of the unvulcanized rubber composition due to the addition of the recycled rubber is suppressed, and the workability is improved.
Powdered rubber is also called powdered rubber and is vulcanized powdered rubber (recycled powdered rubber) obtained by recycling waste rubber products. The rubber type of the waste rubber used as the raw material of the powdered rubber is not particularly limited, and may include at least one selected from natural rubber and synthetic rubber. The synthetic rubber is preferably a diene rubber, for example, polyisoprene rubber, styrene-butadiene copolymer rubber, high cis-1,4-polybutadiene rubber, low cis-1,4-polybutadiene rubber, ethylene-propylene-diene tri. Examples thereof include a former copolymer, chloroprene rubber, butyl rubber, halogenated butyl rubber, and acrylonitrile-butadiene rubber.

本発明に用いられる粉末ゴムの製造方法は、特に限定されないが、例えば、以下のようにして製造される。
具体的には、チップ状に処理されたゴム原材料を微粉砕手段によって、必要に応じて固着防止剤を添加しながら、荒粉砕、中粉砕、及び仕上げ粉砕によって荒粉砕ゴムから中粉砕ゴムを経て微粉砕ゴムに順次仕上げていく微粉砕工程(A)と、上記微粉砕ゴムを分級して少なくともその一部を微粉末ゴム製品として回収する分級回収工程(B)を有する微粉砕ゴム処理方法が例示される。
更に、詳細に説明すると、下記の3工程を備えていることが好ましい。
予備粉砕工程(Y):ゴムチップを予備粉砕手段である予備粉砕機によって細粉砕ゴムに加工する。但し、予備粉砕工程は必要に応じて上記製法に組み込まれる、選択的な工程である。
微粉砕工程(A):上記細粉砕ゴムを微粉砕手段である微粉砕機によって、必要に応じて固着防止剤を添加しながら段階的に粉砕して最終的に微粉砕ゴムに仕上げる。
分級回収工程(B):分級手段である分級機により上記微粉砕ゴムを所定の粒径を有する粉末ゴム(所定の粒径より小さい粒径を有する微粉末ゴムを含む。)とそれ以外のものに分級(選別)して製品として回収する。分級に当たっては、所定の篩目開きのASTM D5603−01(2008)に規定されたメッシュの篩を用いればよい。
予備粉砕工程(Y)においては、例えば廃タイヤ(ビートワイヤ、スチールベルト及びプライなどタイヤ補強材除去処理済)を幾つかに切断したカットタイヤを所定の大きさに破砕したゴムチップ(タイヤチップ)をゴム原材料として予備粉砕機に投入し、粉砕室内に設けられている粉砕部によって細粉砕ゴムに加工する。予備粉砕機に供給するゴムチップは適宜であるが、1mm〜8mm程度の大きさにカットしておくことが、細粉砕ゴムの粒径を小さくするのに役立つ。ゴムチップに対して予め加熟しておくことによって、予備粉砕機による細粉砕を円滑にするが、通常の温度で処理することになんらの問題はなく、予熱の付加作業をするか否かは適宜選択される。
またゴムチップを予備粉砕機で複数回繰り返して粉砕することにより、小さい粒径の細粉砕ゴムを生産することができる。
ゴムチップの大きさの範囲は1mm〜8mmに限られないが、ゴムチップの大きさを上記範囲内にすることで、予備粉砕工程(Y)以前において粉砕加工に手間をかけることなく、予備粉砕工程(Y)における粉砕効率の低下が抑制される。
予備粉砕機としては、ゴムチップを撹拌粉砕する押出機、ロールによって粉砕するロール粉砕機など適宜のものが選択される。
The method for producing the powdered rubber used in the present invention is not particularly limited, but is produced as follows, for example.
Specifically, the rubber raw material processed into chips is subjected to rough crushing, medium crushing, and finish crushing from rough crushed rubber to medium crushed rubber while adding an anti-sticking agent as necessary by fine crushing means. A finely pulverized rubber treatment method having a finely pulverized step (A) for sequentially finishing the finely pulverized rubber and a classification recovery step (B) for classifying the finely pulverized rubber and recovering at least a part thereof as a finely powdered rubber product Illustrated.
Further, to be described in detail, it is preferable that the following three steps are provided.
Pre-crushing step (Y): The rubber chip is processed into finely crushed rubber by a pre-crushing machine which is a pre-crushing means. However, the preliminary pulverization step is a selective step incorporated into the above-mentioned production method as needed.
Fine pulverization step (A): The fine pulverized rubber is pulverized stepwise by a fine pulverizer as a fine pulverizing means while adding an anti-sticking agent as needed, and finally finished into a finely pulverized rubber.
Classification recovery step (B): The finely pulverized rubber is powdered rubber having a predetermined particle size (including fine powder rubber having a particle size smaller than a predetermined particle size) by a classifying machine as a classification means, and other than that. Classify (sort) and collect as a product. For classification, a mesh sieve specified in ASTM D5603-01 (2008) with a predetermined sieve opening may be used.
In the preliminary crushing step (Y), for example, a rubber chip (tire chip) obtained by crushing a cut tire obtained by cutting waste tires (tire reinforcing materials such as beat wires, steel belts and plies) into several pieces to a predetermined size is used. It is put into a preliminary crusher as a rubber raw material and processed into finely crushed rubber by a crushing section provided in the crushing chamber. The rubber chips supplied to the pre-crusher are appropriate, but cutting them to a size of about 1 mm to 8 mm helps to reduce the particle size of the finely crushed rubber. By ripening the rubber chips in advance, fine crushing by the pre-crusher is smoothed, but there is no problem in processing at normal temperature, and whether or not to add preheating is appropriately selected. Will be done.
Further, by repeatedly crushing the rubber chips with a pre-crusher a plurality of times, finely crushed rubber having a small particle size can be produced.
The range of the size of the rubber chip is not limited to 1 mm to 8 mm, but by setting the size of the rubber chip within the above range, the preliminary crushing step (preliminary crushing step (Y) and before the crushing process is not troublesome. The decrease in pulverization efficiency in Y) is suppressed.
As the preliminary crusher, an appropriate extruder such as an extruder for stirring and crushing rubber chips and a roll crusher for crushing with a roll is selected.

微粉砕工程(A)においては、予備粉砕機で処理された上記細粉砕ゴムは微粉砕機によって荒粉砕から中粉砕を経て仕上げ粉砕されて微粉砕ゴムに加工される。微粉砕機は荒粉砕部、中粉砕部及び仕上げ粉砕部を上段(又は上流)から下段(又は下流)に向けて連続的に配置しているロール粉砕手段が好ましい。仕上げ粉砕工程で処理された微粉砕ゴムは分級回収工程(B)における分級機へ送られる。 In the fine pulverization step (A), the fine pulverized rubber processed by the pre-pulverizer is subjected to rough pulverization to medium pulverization by the fine pulverizer and then finished and pulverized to be processed into fine pulverized rubber. The fine crusher is preferably a roll crushing means in which the rough crushing part, the middle crushing part and the finishing crushing part are continuously arranged from the upper stage (or upstream) to the lower stage (or downstream). The finely pulverized rubber processed in the finish pulverization step is sent to the classifier in the classification recovery step (B).

微粉砕工程において、必要に応じて添加される固着防止剤は、荒粉砕部、中粉砕部及び仕上げ粉砕部の上部に配置してある撹拌器に供給され、撹拌器内で粉砕ゴムと均一に撹拌されて上記荒粉砕部、中粉砕部及び仕上げ粉砕部にそれぞれ投入される。
固着防止剤は、充填材(炭酸カルシウム、アルミナ、酸化亜鉛等)や補強材(カーボンブラック、タルク、シリカなど)が適当である。固着防止剤の種類は、製造コスト、微粉砕ゴムの用途などを考慮して適宜選択される。
固着防止剤を添加することによって粉砕ゴムの表面がコーティングされ、粉砕ゴム同士が再び付着結合することが抑制され、分級機による分級(選別)が効率的にかつ容易となる利点がある。この種の利点を確保しながらも、固着防止剤の添加量が少ないことがコストダウンに寄与し、タイヤの原材料として再利用するのに好都合である。
In the fine crushing step, the anti-sticking agent added as needed is supplied to the stirrer arranged above the rough crushing part, the medium crushing part and the finish crushing part, and is uniformly with the crushed rubber in the stirrer. It is agitated and charged into the rough crushing section, the medium crushing section and the finish crushing section, respectively.
As the anti-sticking agent, a filler (calcium carbonate, alumina, zinc oxide, etc.) or a reinforcing material (carbon black, talc, silica, etc.) is suitable. The type of anti-sticking agent is appropriately selected in consideration of manufacturing cost, use of finely pulverized rubber, and the like.
By adding the anti-sticking agent, the surface of the crushed rubber is coated, the crushed rubbers are suppressed from being adhered and bonded again, and there is an advantage that the classification (sorting) by the classifier becomes efficient and easy. While ensuring this kind of advantage, the small amount of anti-sticking agent added contributes to cost reduction and is convenient for reuse as a raw material for tires.

また、原料ゴムの粉砕方法は、上記の方法に限定されるものではなく、冷凍粉砕する方法、石臼式の粉砕方法、押出機による粉砕方法などを採用してもよい。冷凍粉砕する方法では、必要に応じて予めカッターミル等で細粉砕した後、液体窒素等を用いてゴムを冷凍(凍結)させた後に粉砕することが好ましい。 Further, the raw material rubber crushing method is not limited to the above method, and a method of freezing crushing, a stone mill type crushing method, a crushing method using an extruder, or the like may be adopted. In the method of freezing and pulverizing, it is preferable that the rubber is pulverized in advance with a cutter mill or the like as necessary, and then the rubber is frozen (frozen) with liquid nitrogen or the like and then pulverized.

本発明において、粉末ゴムの粒径は、80メッシュ以上であることが好ましい。ここで、80メッシュの粉末ゴムとは、ASTM D563−01(2008)に規定された80メッシュの篩を通過した粉末ゴムをいう。
粉末ゴムの粒径は、40〜80メッシュであることがより好ましく、50〜70メッシュであることが更に好ましい。
In the present invention, the particle size of the powdered rubber is preferably 80 mesh or more. Here, the 80-mesh powder rubber means a powder rubber that has passed through an 80-mesh sieve specified in ASTM D563-01 (2008).
The particle size of the powdered rubber is more preferably 40 to 80 mesh, and further preferably 50 to 70 mesh.

粉末ゴムは、1種単独で使用してもよく、2種以上を併用してもよい。
粉末ゴムの配合量は、ゴム成分100質量部に対して、3〜40質量部であることが好ましく、より好ましくは5〜30質量部であり、更に好ましくは10〜20質量部である。
粉末ゴムの配合量が3質量部以上であると、再生ゴム添加による、ゴム組成物製造時のローター密着の発生が抑制され、良好な工場作業性が得られるので好ましい。また、粉末ゴムの配合量が40質量部以下であると、耐摩耗性が良好であるので好ましい。
The powdered rubber may be used alone or in combination of two or more.
The blending amount of the powdered rubber is preferably 3 to 40 parts by mass, more preferably 5 to 30 parts by mass, and further preferably 10 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
When the blending amount of the powdered rubber is 3 parts by mass or more, the occurrence of rotor adhesion during the production of the rubber composition due to the addition of recycled rubber is suppressed, and good factory workability can be obtained, which is preferable. Further, when the blending amount of the powdered rubber is 40 parts by mass or less, the abrasion resistance is good, which is preferable.

<加硫遅延剤>
本発明のゴム組成物は、加硫遅延剤を配合してなることが好ましい。
本発明で使用する加硫遅延剤は特に限定されいないが、無水フタル酸、安息香酸、サリチル酸、N−ニトロソジフェニルアミン、N,N’,N’’−トリス(イソプロピルチオ)−N,N’,N’’−トリフェニルホスホリックトリアミド、N−シクロヘキシルチオフタルイミド、及びN−(トリクロロメチルチオ)ベンゼンスルホンアミドが挙げられる。
これらの中でも、N−シクロヘキシルチオフタルイミドが好ましい。
<Vulcanization retarder>
The rubber composition of the present invention preferably contains a vulcanization retarder.
The vulcanization retarder used in the present invention is not particularly limited, but phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N, N', N''-tris (isopropylthio) -N, N', Examples include N''-triphenylphosphoric triamide, N-cyclohexylthiophthalimide, and N- (trichloromethylthio) benzenesulfonamide.
Among these, N-cyclohexylthiophthalimide is preferable.

加硫遅延剤は、1種単独で使用してもよく、2種以上を併用してもよい。
加硫遅延剤は、加硫剤及び加硫促進剤と同一の混練段階で、すなわち、混練の最終段階で配合することが好ましい。
本発明のゴム組成物における加硫遅延剤の配合量は、ゴム成分100質量部に対して、0.03〜3.0質量部であることが好ましく、0.1〜1.0質量部であることがより好ましく、0.3〜1.0質量部であることが更に好ましい。
ゴム成分100質量部に対する加硫遅延剤の配合量が上記範囲内であると、工場作業性が良好となる、つまり、ゴム焼けが生じにくくなるので好ましい。
The vulcanization retarder may be used alone or in combination of two or more.
The vulcanization retarder is preferably blended at the same kneading stage as the vulcanization agent and the vulcanization accelerator, that is, at the final stage of kneading.
The blending amount of the vulcanization retarder in the rubber composition of the present invention is preferably 0.03 to 3.0 parts by mass, preferably 0.1 to 1.0 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferable that the amount is 0.3 to 1.0 parts by mass.
When the blending amount of the vulcanization retarder with respect to 100 parts by mass of the rubber component is within the above range, the factory workability is improved, that is, rubber burning is less likely to occur, which is preferable.

<加硫促進剤>
本発明のゴム組成物は、加硫促進剤を配合してなることが好ましい。
本発明のゴム組成物に用いられる加硫促進剤としては、グアニジン類、スルフェンアミド類及びチアゾール類が挙げられる。
グアニジン類としては、1,3−ジフェニルグアニジン、1,3−ジ−o−トリルグアニジン、1−o−トリルビグアニド、ジカテコールボレートのジ−o−トリルグアニジン塩、1,3−ジ−o−クメニルグアニジン、1,3−ジ−o−ビフェニルグアニジン、1,3−ジ−o−クメニル−2−プロピオニルグアニジン等が挙げられ、反応性が高いため1,3−ジフェニルグアニジン、1,3−ジ−o−トリルグアニジン及び1−o−トリルビグアニドが好ましく、より反応性が高いため1,3−ジフェニルグアニジンがより好ましい。
<Vulcanization accelerator>
The rubber composition of the present invention preferably contains a vulcanization accelerator.
Examples of the vulcanization accelerator used in the rubber composition of the present invention include guanidines, sulfenamides and thiazoles.
Examples of guanidines include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, di-o-tolylguanidine salt of dicatecholbolate, and 1,3-di-o-. Examples thereof include cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine, etc., and because of their high reactivity, 1,3-diphenyl guanidine, 1,3- Di-o-tolylguanidine and 1-o-tolylbiguanidine are preferred, and 1,3-diphenylguanidine is more preferred because of its higher reactivity.

スルフェンアミド類としては、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾリルスルフェンアミド、N−メチル−2−ベンゾチアゾリルスルフェンアミド、N−エチル−2−ベンゾチアゾリルスルフェンアミド、N−プロピル−2−ベンゾチアゾリルスルフェンアミド、N−ブチル−2−ベンゾチアゾリルスルフェンアミド、N−ペンチル−2−ベンゾチアゾリルスルフェンアミド、N−ヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−ペンチル−2−ベンゾチアゾリルスルフェンアミド、N−オクチル−2−ベンゾチアゾリルスルフェンアミド、N−2−エチルヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−デシル−2−ベンゾチアゾリルスルフェンアミド、N−ドデシル−2−ベンゾチアゾリルスルフェンアミド、N−ステアリル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジメチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジエチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジプロピル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジブチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジペンチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジヘキシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジヘプチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジオクチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジ−2−エチルヘキシルベンゾチアゾリルスルフェンアミド、N−デシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジドデシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジステアリル−2−ベンゾチアゾリルスルフェンアミド等が挙げられ、反応性が高いためN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド及びN−tert−ブチル−2−ベンゾチアゾリルスルフェンアミドが好ましい。
チアゾール類としては2−メルカプトベンゾチアゾール、ジ−2−ベンゾチアゾリルジスルフィド、2−メルカプトベンゾチアゾールの亜鉛塩、2−メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2−(N,N−ジエチルチオカルバモイルチオ)ベンゾチアゾール、2−(4’−モルホリノジチオ)ベンゾチアゾール、4−メチル−2−メルカプトベンゾチアゾール、ジ−(4−メチル−2−ベンゾチアゾリル)ジスルフィド、5−クロロ−2−メルカプトベンゾチアゾール、2−メルカプトベンゾチアゾールナトリウム、2−メルカプト−6−ニトロベンゾチアゾール、2−メルカプト−ナフト[1,2−d]チアゾール、2−メルカプト−5−メトキシベンゾチアゾール、6−アミノ−2−メルカプトベンゾチアゾール等が挙げられ、反応性が高いため2−メルカプトベンゾチアゾール及びジ−2−ベンゾチアゾリルジスルフィドが好ましい。
Examples of sulfene amides include N-cyclohexyl-2-benzothiazolyl sulfeneamide, N, N-dicyclohexyl-2-benzothiazolyl sulfeneamide, N-tert-butyl-2-benzothiazolyl sulfeneamide, and the like. N-oxydiethylene-2-benzothiazolyl sulphenamide, N-methyl-2-benzothiazolyl sulphenamide, N-ethyl-2-benzothiazolyl sulphenamide, N-propyl-2-benzothiazolyl sulphenamide Fenamide, N-butyl-2-benzothiazolyl sulphenamide, N-pentyl-2-benzothiazolyl sulphenamide, N-hexyl-2-benzothiazolyl sulphenamide, N-pentyl-2-benzothia Zolyl sulphenamide, N-octyl-2-benzothiazolyl sulphen amide, N-2-ethylhexyl-2-benzothiazolyl sulphen amide, N-decyl-2-benzothiazolyl sulphen amide, N-dodecyl- 2-benzothiazolyl sulfene amide, N-stearyl-2-benzothiazolyl sulfene amide, N, N-dimethyl-2-benzothiazolyl sulfene amide, N, N-diethyl-2-benzothiazolyl sulfene Amide, N, N-dipropyl-2-benzothiazolyl sulphenamide, N, N-dibutyl-2-benzothiazolyl sulphenamide, N, N-dipentyl-2-benzothiazolyl sulphenamide, N, N -Dihexyl-2-benzothiazolyl sulphenamide, N, N-diheptyl-2-benzothiazolyl sulphenamide, N, N-dioctyl-2-benzothiazolyl sulphenamide, N, N-di-2- Ethylhexyl benzothiazolyl sulfene amide, N-decyl-2-benzothiazolyl sulfene amide, N, N-didodecyl-2-benzothiazolyl sulfene amide, N, N-distearyl-2-benzothiazolyl sulfene Examples thereof include amides, and N-cyclohexyl-2-benzothiazolyl sulphenamide and N-tert-butyl-2-benzothiazolyl sulphenamide are preferable because of their high reactivity.
Examples of thiazoles include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, 2-mercaptobenzothiazole cyclohexylamine salt, 2- (N, N-diethylthiocarbamoylthio). ) Benzothiazole, 2- (4'-morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-methyl-2-benzothiazolyl) disulfide, 5-chloro-2-mercaptobenzothiazole, 2 -Mercaptobenzothiazole sodium, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino-2-mercaptobenzothiazole, etc. 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide are preferable because of their high reactivity.

加硫促進剤は、1種単独で使用してもよく、2種以上を併用してもよい。
本発明のゴム組成物における加硫促進剤の配合量は、ゴム成分100質量部に対して、0.3〜3.5質量部であることが好ましく、1.0〜3.0質量部であることがより好ましい。
ゴム成分100質量部に対する加硫促進剤の配合量が上記範囲内であると、再生ゴムを適用した際にも弾性率を確保できるため、好ましい。
The vulcanization accelerator may be used alone or in combination of two or more.
The blending amount of the vulcanization accelerator in the rubber composition of the present invention is preferably 0.3 to 3.5 parts by mass, and 1.0 to 3.0 parts by mass with respect to 100 parts by mass of the rubber component. More preferably.
When the blending amount of the vulcanization accelerator with respect to 100 parts by mass of the rubber component is within the above range, the elastic modulus can be secured even when the recycled rubber is applied, which is preferable.

ゴム組成物中の加硫促進剤と加硫遅延剤との配合量の比(加硫促進剤/加硫遅延剤)は、0.1〜50であることが好ましく、0.5〜20であることがより好ましく、1〜5であることが更に好ましい。
加硫促進剤と加硫遅延剤との配合量の比(加硫促進剤/加硫遅延剤)が上記範囲内であると、弾性率確保と工場作業性(つまり、ゴム焼けが生じにくくなる)の両立が可能である。
The ratio of the blending amount of the vulcanization accelerator and the vulcanization retarder in the rubber composition (vulcanization accelerator / vulcanization retarder) is preferably 0.1 to 50, preferably 0.5 to 20. It is more preferably present, and further preferably 1 to 5.
When the ratio of the blending amount of the vulcanization accelerator and the vulcanization delay agent (vulcanization accelerator / vulcanization delay agent) is within the above range, the elastic modulus is secured and the factory workability (that is, rubber burning is less likely to occur). ) Can be compatible.

<その他の成分>
本発明のゴム組成物には、上述した成分に加え、加硫剤、加硫促進助剤(但し、酸化亜鉛を除く)、充填剤、オイル、その他の配合剤を適宜配合してもよい。
加硫剤としては、硫黄が挙げられる。
加硫促進助剤としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、カプリン酸、ペラルゴン酸、カプリル酸、エナント酸、カプロン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、ネルボン酸等の飽和脂肪酸及び不飽和脂肪酸、ロジン酸や変性ロジン酸等の樹脂酸を含む有機酸、並びに、飽和脂肪酸、不飽和脂肪酸及び樹脂酸のエステル等が挙げられる。
また、充填剤としては、シリカ、及びカーボンブラックが挙げられる。
オイルとしては、パラフィン系オイル、ナフテン系オイル、アロマチック系オイル等が例示される。
<Other ingredients>
In addition to the above-mentioned components, the rubber composition of the present invention may appropriately contain a vulcanizing agent, a vulcanization accelerating aid (excluding zinc oxide), a filler, an oil, and other compounding agents.
Examples of the vulcanizing agent include sulfur.
Sulfurization accelerators include stearic acid, palmitic acid, myristic acid, lauric acid, arachidic acid, bechenic acid, lignoceric acid, capric acid, pelargonic acid, capric acid, enanthic acid, caproic acid, oleic acid, bacenoic acid, Examples thereof include saturated fatty acids and unsaturated fatty acids such as linoleic acid, linolenic acid and nervonic acid, organic acids containing resin acids such as stearic acid and modified stearic acid, and esters of saturated fatty acids, unsaturated fatty acids and resin acids.
Examples of the filler include silica and carbon black.
Examples of the oil include paraffinic oil, naphthenic oil, aromatic oil and the like.

その他の配合剤としては、ゴム業界で通常使用されている配合剤を、本発明の目的を阻害しない限り、適宜配合することができる。具体的には、老化防止剤、軟化剤、滑剤等が例示される。 As other compounding agents, compounding agents usually used in the rubber industry can be appropriately blended as long as the object of the present invention is not impaired. Specific examples thereof include anti-aging agents, softeners, lubricants and the like.

<用途>
本発明のゴム組成物は、耐摩耗性に優れ、タイヤのトレッド部材として好適である。特に、トラック・バス用タイヤ、オフザロードタイヤ(建設車両用途、鉱山用車両用途)等の重荷重用空気入りタイヤのトレッド部材として好適である。
本発明のゴム組成物は、更生タイヤ(リトレッドタイヤ)のトレッド部材に好適であるが、新タイヤのタイヤトレッド部材に使用してもよい。
なお、更生タイヤ(リトレッドタイヤ)の製造において、摩耗して一次寿命を終えたタイヤ(以下、「台タイヤ」という。)のトレッド面をバフし、この上に、予め加硫された更生トレッドゴム部(=プレキュアトレッド)を貼りつける方法が代表的なものの1つとして知られている。この方法は、コールド(COLD)方式又はプレキュア方式等の名称で呼ばれている。その他の方法として、台タイヤに未加硫のトレッドゴムをのせてモールド加硫するホット(HOT)方式が挙げられる。
本発明のゴム組成物は、プレキュアトレッドとして特に好適である。
<Use>
The rubber composition of the present invention has excellent wear resistance and is suitable as a tread member of a tire. In particular, it is suitable as a tread member for heavy-duty pneumatic tires such as truck / bus tires and off-the-road tires (for construction vehicles and mining vehicles).
The rubber composition of the present invention is suitable for a tread member of a rehabilitated tire (retread tire), but may be used for a tire tread member of a new tire.
In the manufacture of rehabilitated tires (retread tires), the tread surface of a tire that has worn out and has reached the end of its primary life (hereinafter referred to as "base tire") is buffed, and a pre-vulcanized rehabilitated tread rubber is placed on the tread surface. The method of pasting the part (= precure tire) is known as one of the typical ones. This method is called by a name such as a cold (COLD) method or a precure method. As another method, there is a hot (HOT) method in which unvulcanized tread rubber is placed on a base tire and mold vulcanized.
The rubber composition of the present invention is particularly suitable as a precure red.

[ゴム組成物の調製、タイヤ]
本発明のゴム組成物は、前記配合処方により、バンバリーミキサー、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られる。
本発明のタイヤは、本発明のゴム組成物をトレッドに用いたことを特徴とする。上述した本発明のゴム組成物は、十分な耐摩耗性を有しており、トレッド部材(接地トレッド部材)に好適に使用することが出来る。
本発明のタイヤは、空気入りタイヤであることが好ましく、充填する気体としては、通常の又は酸素分圧を調整した空気、窒素、アルゴン、ヘリウム等の不活性ガスが例示される。
[Preparation of rubber composition, tire]
The rubber composition of the present invention can be obtained by kneading the rubber composition of the present invention using a kneader such as a Banbury mixer, a roll, or an internal mixer according to the above-mentioned compounding formulation.
The tire of the present invention is characterized in that the rubber composition of the present invention is used for a tread. The rubber composition of the present invention described above has sufficient wear resistance and can be suitably used for a tread member (grounding tread member).
The tire of the present invention is preferably a pneumatic tire, and examples of the gas to be filled include an ordinary gas or an inert gas such as nitrogen, argon, or helium whose oxygen partial pressure is adjusted.

本発明のゴム組成物を新タイヤのトレッド部材として使用する場合には、前記のように各種成分を含有させた本発明のゴム組成物が未加硫の段階で各部材に加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。 When the rubber composition of the present invention is used as a tread member of a new tire, the rubber composition of the present invention containing various components as described above is processed into each member at the unvulcanized stage to form a tire. Raw tires are molded by pasting and molding on the machine by a normal method. The raw tire is heated and pressurized in a vulcanizer to obtain a tire.

また、本発明のゴム組成物を更生トレッドゴム部として貼り付ける場合には、本発明のゴム組成物を加硫成形して、タイヤ部材としてのプレキュアトレッドを得て、これを所定長さに裁断した後、被接着タイヤ部材(例えば、台タイヤ)にプレキュアトレッドを巻き付ける。プレキュアトレッドの巻き付けに際しては、台タイヤ等の被接着タイヤ部材の外周面にセメントを塗布してシート状のクッションゴムを貼付しておくか、又は押出機より直接被接着タイヤにシート状のクッションゴムを施しておくことが好ましい。かかる被接着タイヤに巻きつけられたプレキュアトレッドの先端と後端は、ゴムセメント又はクッションゴム等を介して接合される。 When the rubber composition of the present invention is attached as a rehabilitated tread rubber portion, the rubber composition of the present invention is vulcanized and molded to obtain a precure tread as a tire member, which is brought to a predetermined length. After cutting, the precure rubber is wrapped around the tire member to be adhered (for example, a base tire). When wrapping the precure tread, either apply cement to the outer peripheral surface of the bonded tire member such as a base tire and attach a sheet-shaped cushion rubber, or directly from the extruder to the bonded tire with a sheet-shaped cushion. It is preferable to apply rubber. The front end and the rear end of the precure tread wrapped around the adhered tire are joined via rubber cement, cushion rubber, or the like.

なお、本発明のゴム組成物は、タイヤのトレッド部材として好適であるが、これに限定されるものではなく、ベーストレッド、サイドウォール、サイド補強ゴム、ビードフィラー等に用いてもよい。
また、タイヤ用途以外にも、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース、モランなどに本発明のゴム組成物を使用することができる。
The rubber composition of the present invention is suitable as a tread member of a tire, but is not limited to this, and may be used for a base tread, a sidewall, a side reinforcing rubber, a bead filler and the like.
In addition to tire applications, the rubber composition of the present invention can be used for anti-vibration rubber, seismic isolation rubber, belts (conveyor belts), rubber crawlers, various hoses, morans, and the like.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

[ゴム組成物の配合成分]
各実施例及び比較例のゴム組成物に配合される成分は、以下の通りである。
・天然ゴム:TSR20
・SBR:乳化重合スチレンブタジエン共重合体ゴム、JSR株式会社製、商品名「JSR 1500」
・BR:ポリブタジエンゴム、JSR株式会社製、商品名「BR01」
・カーボンブラック:N234、東海カーボン株式会社製、商品名「シースト7HM」
・再生ゴム:リクレームゴム、村岡ゴム工業株式会社製
・粉末ゴム:株式会社新生ゴム製、商品名「P−50」を用いて、更に60メッシュ(ASTM D5603−01(2008))の篩を通過した粉末ゴム
・加硫遅延剤:N−シクロヘキシルチオフタルイミド、フレキシス製、商品名「SANTOGARDPVI・PDR・D」
・加硫促進剤:N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業株式会社製、商品名「ノクセラーCZ」
・酸化亜鉛:ハクスイテック株式会社製、酸化亜鉛2種(BET比表面積6m/g)
[Compounding ingredients of rubber composition]
The components to be blended in the rubber compositions of each Example and Comparative Example are as follows.
・ Natural rubber: TSR20
-SBR: Emulsion-polymerized styrene-butadiene copolymer rubber, manufactured by JSR Corporation, trade name "JSR 1500"
-BR: Polybutadiene rubber, manufactured by JSR Corporation, product name "BR01"
-Carbon black: N234, manufactured by Tokai Carbon Co., Ltd., product name "Seast 7HM"
-Recycled rubber: Reclaim rubber, manufactured by Muraoka Rubber Industry Co., Ltd.-Powdered rubber: manufactured by Shinsei Rubber Co., Ltd., using the product name "P-50", further sieve 60 mesh (ASTM D5603-01 (2008)). Passed powder rubber / vulcanization retarder: N-cyclohexylthiophthalimide, made by Flexis, trade name "SANTOGARDPVI / PDR / D"
-Vulcanization accelerator: N-cyclohexyl-2-benzothiazolyl sulfeneamide, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Noxeller CZ"
-Zinc oxide: 2 types of zinc oxide manufactured by HakusuiTech Co., Ltd. (BET specific surface area 6 m 2 / g)

[評価]
以下の実施例及び比較例における評価は、以下のように行った。
(1)耐摩耗性
各加硫ゴム組成物のサンプルについて、ランボーン摩耗試験を行った。JIS K 6264−2:2005に規定されるランボーン摩耗試験の標準試験条件により、室温(23℃)にて耐摩耗性を評価した。
なお、評価については、比較例1−1、比較例2−1、比較例3−1、比較例4−1、又は比較例5−1の加硫ゴム組成物のサンプルの摩耗量の逆数を100とした場合の各摩耗量の逆数を指数として示し、数値が大きいほど、耐摩耗性が良好であることを示す。
[Evaluation]
The evaluations in the following examples and comparative examples were performed as follows.
(1) Abrasion resistance A lambourn abrasion test was conducted on each sample of the vulcanized rubber composition. The wear resistance was evaluated at room temperature (23 ° C.) according to the standard test conditions of the lambourn wear test specified in JIS K 6264-2: 2005.
Regarding the evaluation, the reciprocal of the amount of wear of the sample of the vulcanized rubber composition of Comparative Example 1-1, Comparative Example 2-1, Comparative Example 3-1 and Comparative Example 4-1 or Comparative Example 5-1 was used. The reciprocal of each wear amount when set to 100 is shown as an index, and the larger the value, the better the wear resistance.

(2)耐発熱性
各加硫ゴム組成物のサンプルに対し、スペクトロ粘弾性測定装置を使用し、引張粘弾性を測定した。温度23℃、初期歪(静歪)5%、動歪1%、周波数52Hzにて、損失正接(tanδ)を測定した
評価については、比較例1−1、比較例2−1、比較例3−1、比較例4−1、又は比較例5−1の加硫ゴム組成物のサンプルのtanδの逆数を100とした場合の、各加硫ゴム組成物のサンプルのtanδの逆数を指数として示し、指数値が大きいほど、耐発熱性が良好であることを示す。
(2) Heat resistance For each sample of the vulcanized rubber composition, the tensile viscoelasticity was measured using a spectro viscoelasticity measuring device. Regarding the evaluation of measuring the loss tangent (tan δ) at a temperature of 23 ° C., an initial strain (static strain) of 5%, a dynamic strain of 1%, and a frequency of 52 Hz, Comparative Example 1-1, Comparative Example 2-1 and Comparative Example 3 -1, The reciprocal of tan δ of each vulcanized rubber composition sample is shown as an index when the reciprocal of tan δ of the vulcanized rubber composition sample of Comparative Example 4-1 or Comparative Example 5-1 is 100. , The larger the index value, the better the heat resistance.

(3)耐テアー性
各ゴム組成物をトレッドゴムに適用した。サイズ:11R22.5の重荷重用タイヤを常法に従って試作し、耐テアー性を下記の方法で評価した。
得られたタイヤをトラックに装着し、10万km走行した後のタイヤに生じたテアーの総長さを測定し、比較例1−1、比較例2−1、比較例3−1、比較例4−1、又は比較例5−1のテアーの総長さを100としたときの指数で表した。指数の値が高いほど耐テアー性が良好であることを示す。具体的には、実施例1−1〜実施例1−4における耐テアー指数は、以下の通りであり、他の実施例についても比較の対照を比較例2−1〜比較例5−1に変更する以外は同様である。
耐テアー指数={(比較例1−1のテアー総長さ)/(各実施例のテアー総長さ)}×100
(3) Tear resistance Each rubber composition was applied to tread rubber. A heavy-duty tire of size: 11R22.5 was prototyped according to a conventional method, and the tear resistance was evaluated by the following method.
The obtained tire was mounted on a truck, and the total length of the tear generated in the tire after traveling 100,000 km was measured, and Comparative Example 1-1, Comparative Example 2-1 and Comparative Example 3-1 and Comparative Example 4 It was expressed as an index when the total length of the tires of -1 or Comparative Example 5-1 was 100. The higher the index value, the better the tear resistance. Specifically, the tear resistance index in Examples 1-1 to 1-4 is as follows, and the control of comparison for other Examples is changed to Comparative Examples 2-1 to 5-1. The same is true except for the change.
Tear resistance index = {(total length of tears in Comparative Example 1-1) / (total length of tears in each example)} × 100

(4)密着性
バンバリーミキサー下部での、未加硫ゴム組成物とローターとの密着性を以下の基準により評価した。評価点がA〜Cの順で、工場作業性(低ローター密着性)が良好である。
A:ローター密着は全く発生せず、未加硫ゴム組成物の工場作業性は非常に良好であった。
B:軽度のローター密着が発生したが、未加硫ゴム組成物の工場作業性はほとんど低下しなかった。
C:重度のローター密着が発生し、未加硫ゴム組成物の工場作業性が大幅に低下した。
(4) Adhesion Adhesion between the unvulcanized rubber composition and the rotor at the lower part of the Banbury mixer was evaluated according to the following criteria. The evaluation points are in the order of A to C, and the factory workability (low rotor adhesion) is good.
A: No rotor adhesion occurred, and the factory workability of the unvulcanized rubber composition was very good.
B: Mild rotor adhesion occurred, but the factory workability of the unvulcanized rubber composition was hardly reduced.
C: Severe rotor adhesion occurred, and the factory workability of the unvulcanized rubber composition was significantly reduced.

(実施例1−1〜1−4及び比較例1−1)
表1に示す配合処方にて、バンバリーミキサーを用いて、上述したゴム組成物の配合成分を混練し、サンプルとなるゴム組成物を調製した。なお、混練の最終段階において、加硫剤である硫黄、加硫促進剤、及び加硫遅延剤を配合した。
得られたゴム組成物を、145℃にて30分間加硫し、加硫ゴム組成物を作製し、該加硫ゴム組成物を用いて、耐摩耗性、及び耐発熱性を評価した。なお、比較例1−1の評価を100として評価した。
また、得られたゴム組成物を用いて重荷重用タイヤを作製し、比較例1−1を比較対照として耐テアー性を評価した。
(Examples 1-1 to 1-4 and Comparative Example 1-1)
With the formulation shown in Table 1, the compounding components of the above-mentioned rubber composition were kneaded using a Bunbury mixer to prepare a sample rubber composition. In the final stage of kneading, sulfur as a vulcanizing agent, a vulcanization accelerator, and a vulcanization delaying agent were blended.
The obtained rubber composition was vulcanized at 145 ° C. for 30 minutes to prepare a vulcanized rubber composition, and the wear resistance and heat generation resistance were evaluated using the vulcanized rubber composition. The evaluation of Comparative Example 1-1 was evaluated as 100.
Further, a heavy-duty tire was produced using the obtained rubber composition, and the tear resistance was evaluated using Comparative Example 1-1 as a comparative control.

Figure 0006844889
Figure 0006844889

(実施例2−1〜2−16及び比較例2−1)
表2、表3に示す配合処方にて、バンバリーミキサーを用いて、上述したゴム組成物の配合成分を混練し、サンプルとなるゴム組成物を調製した。
また、実施例1−1と同様にして、比較例2−1の評価を100として、耐摩耗性、及び耐発熱性を評価した。また、実施例1−1と同様にして、比較例2−1を比較対照として、耐テアー性を評価した。更に、密着性を評価した。
(Examples 2-1 to 2-16 and Comparative Example 2-1)
With the compounding formulations shown in Tables 2 and 3, the compounding components of the above-mentioned rubber composition were kneaded using a Bunbury mixer to prepare a sample rubber composition.
Further, in the same manner as in Example 1-1, the wear resistance and heat resistance were evaluated with the evaluation of Comparative Example 2-1 as 100. Further, in the same manner as in Example 1-1, the tear resistance was evaluated using Comparative Example 2-1 as a comparative control. Furthermore, the adhesion was evaluated.

Figure 0006844889
Figure 0006844889

Figure 0006844889
Figure 0006844889

(実施例3−1〜3−4、並びに比較例3−1及び3−2)
表4に示す配合処方にて、バンバリーミキサーを用いて、上述したゴム組成物の配合成分を混練し、サンプルとなるゴム組成物を調製した。
また、実施例1−1と同様にして、比較例3−1の評価を100として、耐摩耗性及び耐発熱性を評価した。また、実施例1−1と同様にして、比較例3−1を比較対照として、耐テアー性を評価した。
(Examples 3-1 to 3-4, and Comparative Examples 3-1 and 3-2)
With the formulation shown in Table 4, the compounding components of the above-mentioned rubber composition were kneaded using a Bunbury mixer to prepare a sample rubber composition.
Further, in the same manner as in Example 1-1, the wear resistance and heat resistance were evaluated with the evaluation of Comparative Example 3-1 as 100. Further, in the same manner as in Example 1-1, the tear resistance was evaluated using Comparative Example 3-1 as a comparative control.

Figure 0006844889
Figure 0006844889

(実施例4−1〜4−2、及び比較例4−1)
ゴム成分を表5に記載のように変更した以外は実施例2−1と同様にして、耐摩耗性、耐発熱性、耐テアー性、及び密着性を評価した。なお、比較対照は比較例4−1とした。
(Examples 4-1 to 4-2 and Comparative Example 4-1)
Abrasion resistance, heat generation resistance, tear resistance, and adhesion were evaluated in the same manner as in Example 2-1 except that the rubber component was changed as shown in Table 5. The comparative control was Comparative Example 4-1.

Figure 0006844889
Figure 0006844889

(実施例5−1〜5−2、及び比較例5−1)
ゴム成分を表6に記載のように変更した以外は実施例2−1と同様にして、耐摩耗性、耐発熱性、耐テアー性、及び密着性を評価した。なお、比較対照は比較例5−1とした。
(Examples 5-1 to 5-2 and Comparative Example 5-1)
Abrasion resistance, heat generation resistance, tear resistance, and adhesion were evaluated in the same manner as in Example 2-1 except that the rubber component was changed as shown in Table 6. The comparative control was Comparative Example 5-1.

Figure 0006844889
Figure 0006844889

表1〜6の結果から、実施例の各サンプルは、耐摩耗性に優れることが示された。
一方、比較例のゴム組成物は、耐摩耗性に劣るものであった。
また、実施例2−2、2−5〜2−9の結果から、粉末ゴムを添加することにより、ゴム組成物の密着性が低減し、より作業性が向上することが分かった。
また、表5及び表6の結果から、ゴム成分として天然ゴムを使用した場合に、耐摩耗性、耐発熱性及び耐テアー性のいずれにも優れるゴム組成物が得られることが分かった。
更に、実施例2−2、2−10〜2−16の結果から、特定量の加硫遅延剤と加硫促進剤とを併用することによって、耐摩耗性、耐発熱性、耐テアー性により優れたゴム組成物が得られることが分かった。
From the results in Tables 1 to 6, it was shown that each sample of the example had excellent wear resistance.
On the other hand, the rubber composition of the comparative example was inferior in wear resistance.
Further, from the results of Examples 2-2 and 2-5 to 2-9, it was found that the addition of powdered rubber reduced the adhesiveness of the rubber composition and further improved the workability.
Further, from the results of Tables 5 and 6, it was found that when natural rubber is used as the rubber component, a rubber composition having excellent wear resistance, heat generation resistance and tear resistance can be obtained.
Furthermore, from the results of Examples 2-2 and 2-10-2-16, by using a specific amount of the vulcanization retarder and the vulcanization accelerator in combination, the wear resistance, heat generation resistance, and tear resistance can be improved. It has been found that an excellent rubber composition can be obtained.

本発明によれば、環境負荷の小さい再生ゴム等の材料を配合してなる場合であっても、耐摩耗性に優れるゴム組成物を提供することができ、更に、本発明よれば、優れた耐摩耗性を有するタイヤを提供することができる。
According to the present invention, it is possible to provide a rubber composition having excellent wear resistance even when a material such as recycled rubber having a small environmental load is blended, and further, according to the present invention, it is excellent. A tire having wear resistance can be provided.

Claims (6)

天然ゴム及び合成ジエン系ゴムよりなる群から選択される少なくとも1つからなるゴム成分100質量部に対し、
タイヤ再生ゴムを45〜60質量部、及び
酸化亜鉛を3.5質量部以上
更に、加硫遅延剤を0.1〜1.0質量部配合してなることを特徴とする、
タイヤトレッド用ゴム組成物。
With respect to 100 parts by mass of a rubber component consisting of at least one selected from the group consisting of natural rubber and synthetic diene rubber.
45-60 parts by mass of recycled tire rubber, 3.5 parts by mass or more of zinc oxide ,
Further, the vulcanization retarder is blended in an amount of 0.1 to 1.0 parts by mass.
Rubber composition for tire tread.
更に、ゴム成分100質量部に対して、粉末ゴムを10〜20質量部配合してなる、請求項1に記載のタイヤトレッド用ゴム組成物。 The rubber composition for a tire tread according to claim 1, further comprising 10 to 20 parts by mass of powdered rubber in an amount of 100 parts by mass of the rubber component. 更に、ゴム成分100質量部に対して、加硫促進剤を1.0〜3.0質量部配合してなる、請求項1又は2に記載のタイヤトレッド用ゴム組成物。 The rubber composition for tire tread according to claim 1 or 2 , further comprising 1.0 to 3.0 parts by mass of a vulcanization accelerator blended with 100 parts by mass of the rubber component. 前記ゴム成分が、天然ゴム又はイソプレンゴムからなる、請求項1〜のいずれか1項に記載のタイヤトレッド用ゴム組成物。 The rubber composition for a tire tread according to any one of claims 1 to 3 , wherein the rubber component is a natural rubber or an isoprene rubber. 前記ゴム組成物が、加硫促進剤及び加硫遅延剤を配合してなり、ゴム組成物中の加硫促進剤と加硫遅延剤との配合量の比(加硫促進剤/加硫遅延剤)が1〜5である、請求項1〜のいずれか1項に記載のタイヤトレッド用ゴム組成物。 The rubber composition is formed by blending a vulcanization accelerator and a vulcanization retarder, and the ratio of the blending amount of the vulcanization accelerator and the vulcanization retarder in the rubber composition (vulcanization accelerator / vulcanization delay). The rubber composition for a tire tread according to any one of claims 1 to 4 , wherein the agent) is 1 to 5. 請求項1〜のいずれか1項に記載のゴム組成物を用いたタイヤ。 A tire using the rubber composition according to any one of claims 1 to 5.
JP2017544513A 2015-10-09 2016-10-04 Rubber composition for tire tread and tire Active JP6844889B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015201453 2015-10-09
JP2015201453 2015-10-09
JP2016135145 2016-07-07
JP2016135145 2016-07-07
PCT/JP2016/079535 WO2017061441A1 (en) 2015-10-09 2016-10-04 Rubber composition for tire tread, and tire

Publications (2)

Publication Number Publication Date
JPWO2017061441A1 JPWO2017061441A1 (en) 2018-08-02
JP6844889B2 true JP6844889B2 (en) 2021-03-17

Family

ID=58487665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544513A Active JP6844889B2 (en) 2015-10-09 2016-10-04 Rubber composition for tire tread and tire

Country Status (3)

Country Link
JP (1) JP6844889B2 (en)
CN (1) CN108137865A (en)
WO (1) WO2017061441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220235204A1 (en) * 2021-01-25 2022-07-28 Li Jia Reinforced rubber composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3636706A4 (en) * 2017-06-09 2021-01-27 Bridgestone Corporation Rubber composition, rubber product, and tire
FR3090651A3 (en) * 2018-12-19 2020-06-26 Michelin & Cie TIRE COMPRISING A RUBBER COMPOSITION COMPRISING A THERMOPLASTIC ELASTOMER AND A RUBBER POWDER
DE112022000091T5 (en) * 2021-08-24 2023-09-14 Xuzhou Industrial Vocational And Technical College PROTECTIVE RUBBER TRACK SHOES FOR EXCAVATORS
US11692084B2 (en) * 2021-08-24 2023-07-04 Xuzhou College of industrial Technology Protective rubber track shoes for excavator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192506A (en) * 2000-01-13 2001-07-17 Yokohama Rubber Co Ltd:The Rubber composition and method for manufacturing the same
JP4819236B2 (en) * 2001-03-22 2011-11-24 住友ゴム工業株式会社 Rubber composition for tire tread and tire using the same
JP2002338743A (en) * 2001-05-22 2002-11-27 Sumitomo Rubber Ind Ltd Tire tread rubber composition, and tire using the same
JP4369162B2 (en) * 2003-06-09 2009-11-18 住友ゴム工業株式会社 Rubber composition for tire tread and method for producing the same
JP5493298B2 (en) * 2008-06-12 2014-05-14 横浜ゴム株式会社 Rubber composition for cap tread
JP5477682B2 (en) * 2008-12-04 2014-04-23 住友ゴム工業株式会社 Process for producing rubber composition for base tread and pneumatic tire
CN101613496B (en) * 2009-07-13 2011-04-13 扬州大学 Method for preparing blended vulcanizate of modified rubber power and rubber
CN101624454B (en) * 2009-07-31 2011-02-16 杭州中策橡胶有限公司 Sizing material utilizing tire tread rubber of reclaimed rubber, mixing method and application thereof
JP5573883B2 (en) * 2011-04-26 2014-08-20 住友化学株式会社 Rubber composition
JP5889017B2 (en) * 2012-02-03 2016-03-22 住友化学株式会社 Method for producing vulcanized rubber
JP5727988B2 (en) * 2012-11-08 2015-06-03 住友ゴム工業株式会社 Bead apex, sidewall packing, base tread or breaker cushion rubber composition and pneumatic tire
US9023928B2 (en) * 2012-11-08 2015-05-05 Sumitomo Rubber Industries, Ltd. Rubber compositions for bead apex, sidewall packing, base tread, breaker cushion, steel cord topping, strip adjacent to steel cords, tie gum, and sidewall, and pneumatic tires
CN104371147A (en) * 2014-09-11 2015-02-25 中海油(福建)深冷精细胶粉有限公司 Tire tread rubber material and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220235204A1 (en) * 2021-01-25 2022-07-28 Li Jia Reinforced rubber composition

Also Published As

Publication number Publication date
WO2017061441A1 (en) 2017-04-13
JPWO2017061441A1 (en) 2018-08-02
CN108137865A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
JP6800869B2 (en) Rubber composition and tires
JP6844889B2 (en) Rubber composition for tire tread and tire
JP2009035603A (en) Rubber composition and pneumatic tire
JP5864830B2 (en) Rubber composition for tread of heavy duty tire
JP6057683B2 (en) Rubber composition for base tread, method for producing the same, and pneumatic tire
JP5704782B2 (en) Rubber composition for tire tread containing liquid recycled rubber and pneumatic tire having tread using the same
JP4722865B2 (en) Rubber composition for clinch and tire having clinch using the same
JP2013199543A (en) Rubber composition and production method thereof
WO2018225564A1 (en) Rubber composition, rubber product, and tire
JP2007126518A (en) Reclaimed rubber-containing rubber composition and pneumatic tire
WO2014129509A1 (en) Rubber composition, method for producing tire using said rubber composition, and rubbery member for tires which is produced using said rubber composition
JP2010270266A (en) Rubber composition and pneumatic tire using the same
JP6107252B2 (en) Method for producing rubber composition for tire
JP2004315746A (en) Rubber composition for tire and pneumatic tire using the composition
JP2004339287A (en) Rubber composition for bead apex and pneumatic tire using the same
JP2004035663A (en) Rubber composition containing reclaimed rubber
JP2012116977A (en) Rubber composition for tire cap tread and pneumatic tire using the same
JP2015093880A (en) Method for producing rubber composition for re-tread-tire tread
JP2005263104A (en) Pneumatic tire
JP5164384B2 (en) Processed powder rubber, rubber composition and pneumatic tire using the same
JP5073271B2 (en) Rubber composition for chafer and tire having chafer using the same
JP4701790B2 (en) Method for producing anti-vibration rubber composition
WO2017119254A1 (en) Rubber composition, rubber composition for crawlers, lug part rubber, and rubber crawler
JP2024049961A (en) Method for producing modified rubber particle
JP2010144110A (en) Method for producing rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210218

R150 Certificate of patent or registration of utility model

Ref document number: 6844889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250