JPH0617915B2 - Method for measuring antigen-antibody reaction - Google Patents

Method for measuring antigen-antibody reaction

Info

Publication number
JPH0617915B2
JPH0617915B2 JP58187944A JP18794483A JPH0617915B2 JP H0617915 B2 JPH0617915 B2 JP H0617915B2 JP 58187944 A JP58187944 A JP 58187944A JP 18794483 A JP18794483 A JP 18794483A JP H0617915 B2 JPH0617915 B2 JP H0617915B2
Authority
JP
Japan
Prior art keywords
antigen
antibody
concentration
reaction
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58187944A
Other languages
Japanese (ja)
Other versions
JPS6079268A (en
Inventor
興三 村松
日本男 伊藤
孝明 宗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58187944A priority Critical patent/JPH0617915B2/en
Publication of JPS6079268A publication Critical patent/JPS6079268A/en
Publication of JPH0617915B2 publication Critical patent/JPH0617915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/557Immunoassay; Biospecific binding assay; Materials therefor using kinetic measurement, i.e. time rate of progress of an antigen-antibody interaction

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、抗原抗体反応の測定法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring an antigen-antibody reaction.

抗原抗体反応を利用した免疫測定法(イムノアセイ)
は、近時、急速な進展をみている。この免疫測定法は、
標識法と非標識法とに大別される。
Immunoassay method using antigen-antibody reaction (ImmunoAsei)
Have recently made rapid progress. This immunoassay is
It is roughly classified into a labeling method and a non-labeling method.

標識法における標識としては、放射性同位元素をはじ
め、酵素、螢光物質、電子スピン共鳴物質、発光物質、
金属、バクテリオファージ、電気化学活性物質等があ
り、標識抗原又は抗体の測定には、放射活性、吸光・螢
光・発光等の光学分析、電子スピン共鳴、ポーラログラ
フィー等が用いられている。
Labels in the labeling method include radioactive isotopes, enzymes, fluorescent substances, electron spin resonance substances, luminescent substances,
There are metals, bacteriophages, electrochemically active substances, etc., and for the measurement of labeled antigens or antibodies, radioactivity, optical analysis of absorption / fluorescence / luminescence, electron spin resonance, polarography, etc. are used.

一方、非標識法においては、たとえば、抗原をあらかじ
め結合させた不溶性粒子(ラテックスなど)を用いて凝
集反応に伴う濁度の変化を光学的にとらえる方法、不溶
性粒子を使用しない免疫比濁法、レーザーネフェロメト
リー法等が知られている。
On the other hand, in the non-labeling method, for example, an insoluble particle preliminarily bound with an antigen (such as latex) is used to optically detect a change in turbidity associated with an agglutination reaction, an immunoturbidimetric method using no insoluble particle, The laser nephelometry method and the like are known.

これらの免疫測定法は、いずれも抗原と抗体が反応して
生じる結合物の量を直接又は間接的に測定する点におい
ては軌を一にする。
All of these immunoassays are consistent in that they directly or indirectly measure the amount of a binding substance formed by a reaction between an antigen and an antibody.

ところが、このような免疫測定法においては、ある濃度
以上に抗原が存在するいわゆる“抗原過剰域”の場合に
おける測定が問題となる。
However, in such an immunoassay, there is a problem in the measurement in the so-called "antigen excess region" in which the antigen is present at a certain concentration or more.

すなわち、上記非標識法の一例の場合について説明す
る。
That is, a case of an example of the non-labeling method will be described.

たとえば、不溶性担体粒子に担持させた抗体又は抗原
と、抗原又は抗体とを液体媒体中で反応させ、その反応
の進行に伴う反応混合物の透過率の減少(すなわち吸光
度の増加)からその抗原抗体反応の速度を測定し、さら
にその速度から被検体中の抗原又は抗体の濃度を測定す
る方法が知られている。そして、この方法によれば、抗
原又は抗体の濃度を高い精度で、迅速に定量しうる。
For example, an antibody or an antigen supported on insoluble carrier particles is reacted with an antigen or an antibody in a liquid medium, and the decrease in the transmittance of the reaction mixture (that is, the increase in the absorbance) accompanying the progress of the reaction causes the antigen-antibody reaction. Is known, and the concentration of the antigen or antibody in the sample is measured from the measured speed. Then, according to this method, the concentration of the antigen or the antibody can be quantified rapidly with high accuracy.

しかしながら、たとえば、抗体を感作した不溶性担体の
場合、抗原分子数が抗体分子数に比して過剰な領域で
は、過剰な抗原が本来ならば粒子の凝集に寄与しうる抗
体をブロックしてしまい、みかけ上、抗原抗体反応の進
行が阻害される、いわゆる抗原過剰域として知られて現
象がみられ、このような場合には、一つの反応速度に対
応して被数の濃度が存在することになる。
However, for example, in the case of an antibody-sensitized insoluble carrier, in the region where the number of antigen molecules is excessive compared to the number of antibody molecules, the excess antigen blocks antibodies that would otherwise contribute to particle aggregation. Apparently, there is a phenomenon known as so-called antigen excess region in which the progress of antigen-antibody reaction is inhibited, and in such a case, there is a concentration of the mandrel corresponding to one reaction rate. become.

臨床検査においては、上記の非標識法に限らず、上記抗
原過剰域を程するような抗体の出現頻度は小さく、また
そういう場合には、他の臨床知見から注意書きが添えら
れるので、予め検体を希釈して検査に供するのが一般で
あった。
In clinical tests, not only the above-mentioned non-labeling method, but the frequency of appearance of antibodies that go through the above-mentioned antigen excess region is small, and in such cases, precautionary statements are added from other clinical findings, It was common to dilute and use for inspection.

しかるに、自動機械の出現により、短時間に大量の検体
を処理するときには、出現頻度はきわめて小さいとはい
え、臨床的に重要なこの種の抗原過剰検体を発見する技
術が必要とされる。
However, due to the advent of automatic machines, when a large number of specimens are processed in a short time, although the appearance frequency is extremely low, a technique for discovering this kind of antigen-excess specimen that is clinically important is required.

たとえば、このような場合に正確な測定を行なうために
は、同一検体に対して希釈率を変えて2度以上の測定を
行なう2回希釈法等をいつも行なう必要がある。
For example, in order to perform accurate measurement in such a case, it is necessary to always perform a double dilution method or the like in which the dilution rate is changed for the same sample twice or more.

そこで本発明者らは、自動化による多数検体の迅速処理
にさらに好適な測定法を見出すべく種々検討した結果、
本発明に到達した。
Therefore, the present inventors have variously studied to find a more suitable measurement method for rapid processing of a large number of samples by automation,
The present invention has been reached.

すなわち、本発明の要旨は、 不溶性担体粒子に抗体又は抗原を支持させ、この支持さ
れた抗体又は抗原に、抗原又は抗体あるいはその混合物
を液体媒体中で反応させて、この反応混合物に反応開始
後2以上の時点で光を照射し、一定時間内におけるその
反応混合物の透過率の減少を測定する方法において、 抗原又は抗体の濃度が既知である試料を用いて得られる
反応結合物の産生量又は速度の測定値と濃度との対応曲
線において、一つの測定値に複数の濃度が対応する場合
に、この対応曲線から未知試料中の抗原又は抗体の濃度
を決定するにあたり、 (i)抗原又は抗体の濃度が未知の試料を、それに対応す
る抗体又は抗原と反応させて得られる反応結合物の産生
速度の時間変化を測定し、産生速度の極大値(Vmax
が存在するか否かにより濃度を一義的に決定しうる濃度
測定可能領域の判定基準を設定し、 (ii)上記極大値(Vmax)が存在するとき、濃度測定可
能領域に属すると判定し、上記対応曲線から未知試料中
の抗原又は抗体の濃度を決定する、 ことよりなる抗原抗体反応の測定方法にある。
That is, the gist of the present invention is to make an insoluble carrier particle support an antibody or an antigen, and to cause the supported antibody or antigen to react with the antigen or the antibody or a mixture thereof in a liquid medium, and after starting the reaction with the reaction mixture. In the method of irradiating with light at two or more time points and measuring the decrease in the transmittance of the reaction mixture within a certain period of time, the amount of the reaction conjugate produced or obtained by using a sample with a known concentration of the antigen or antibody In the corresponding curve of the measured value of the velocity and the concentration, when a plurality of concentrations correspond to one measured value, in determining the concentration of the antigen or antibody in the unknown sample from this corresponding curve, (i) the antigen or antibody Of a reaction conjugate obtained by reacting a sample of unknown concentration with the corresponding antibody or antigen to measure the maximum value of the production rate (V max ).
The determination criterion of the concentration measurable region that can uniquely determine the concentration depending on whether or not exists, and (ii) when the maximum value (V max ) exists, it is determined that the concentration belongs to the concentration measurable region. Determining the concentration of the antigen or the antibody in the unknown sample from the above-mentioned corresponding curve.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

まず本発明が適用される免疫測定法は、ラテックス凝集
反応、免疫比濁法等が挙げられる。
First, examples of immunoassays to which the present invention is applied include latex agglutination reaction and immunoturbidimetric method.

以下、本発明の実施の態様として、不溶性担体粒子に抗
体又は抗原を支持させ、この支持された抗体又は抗原
に、抗原又は抗体を液体媒体中で反応させて、この反応
混合物に反応開始後2以上の時点で光を照射し、一定時
間内におけるその反応混合物の透過率の減少を測定する
方法(ラテックス凝集反応を含む)において適用する場
合について説明する。
In the following, as an embodiment of the present invention, an insoluble carrier particle is supported with an antibody or an antigen, the supported antibody or antigen is reacted with the antigen or the antibody in a liquid medium, and the reaction mixture is reacted with 2 The case where the method is applied to the method (including the latex agglutination reaction) of irradiating light at the above-mentioned time point and measuring the decrease in the transmittance of the reaction mixture within a certain time will be described.

まず、この方法においては、平均粒径が1.6μ程度以
下、好ましくは0.1〜1.0μの不溶性担体粒子を用い、
これに抗体又は抗原を担持させ(感作し)、これに被検
体中の抗原又は抗体を反応させ、その反応混合物の透過
率を、通常0.3〜2.4μ、好ましくは0.6〜1.4μの範
囲の波長の光線で測定してその反応速度を求めることに
より、被検体中の抗原又は抗体の濃度を測定する。
First, in this method, insoluble carrier particles having an average particle size of about 1.6 μ or less, preferably 0.1 to 1.0 μ are used,
An antibody or an antigen is carried (sensitized) on this, and the antigen or the antibody in the subject is reacted therewith, and the transmittance of the reaction mixture is usually 0.3 to 2.4 μ, preferably 0.6 to The concentration of the antigen or antibody in the test sample is measured by measuring with a light beam having a wavelength in the range of 1.4μ and determining the reaction rate.

不溶性担体粒子としては、測定を行なう時に用いられる
液体媒体に実質的に不溶性で前記平均粒径を有する有機
高分子、たとえばポリスチレン、スチレン−ブタジエン
共重合体のような乳化重合により得られるラテックス、
あるいはアルミナ等の無機酸化物等が用いられる。
As the insoluble carrier particles, an organic polymer substantially insoluble in the liquid medium used when performing the measurement and having the average particle size, for example, polystyrene, a latex obtained by emulsion polymerization such as styrene-butadiene copolymer,
Alternatively, an inorganic oxide such as alumina is used.

このような不溶性担体粒子(好ましくはラテックス粒
子)に、測定しようとする被検体中の抗原又は抗体と反
応しうる抗体又は抗原を常法により担持させる(感作す
る)。
Such insoluble carrier particles (preferably latex particles) are loaded (sensitized) with an antibody or an antigen capable of reacting with the antigen or the antibody in the analyte to be measured by a conventional method.

抗体又は抗原を感作した不溶性担体粒子の濃度が通常0.
01重量%以上、好ましくは0.1−1重量%程度の懸濁
液として用いられる。
The concentration of insoluble carrier particles sensitized with antibody or antigen is usually 0.
It is used as a suspension of 01 wt% or more, preferably about 0.1-1 wt%.

この感作担体を液体媒体中において、抗原又は抗体と一
定条件下で反応させ、反応開始後の一定時間後の反応混
合物の単位時間当りの透過率の減少量を測定することに
より抗原抗体反応を定量的に測定しうる。この減少率の
測定は、反応混合物の構成成分である感作担体と被検液
中の抗原又は抗体との反応開始後抗原抗体反応の進行が
少なくとも安定した時点以後に行なうのが望ましい。
This sensitized carrier is allowed to react with an antigen or an antibody in a liquid medium under a certain condition, and the amount of decrease in the permeation rate of the reaction mixture after a lapse of a certain time after the initiation of the reaction is measured to measure the antigen-antibody reaction It can be measured quantitatively. It is desirable to measure this reduction rate after the start of the reaction between the sensitized carrier, which is a constituent of the reaction mixture, and the antigen or antibody in the test solution, at least after the progress of the antigen-antibody reaction is stabilized.

このためには、感作担体と被検液とを好ましくは攪拌下
に混合し、好ましくは混合後たとえば2〜3秒以後の時
点で、その透過率を測定するのが好適である。
For this purpose, it is preferable to mix the sensitized carrier and the test liquid, preferably with stirring, and to measure the transmittance thereof, preferably at a time after, for example, 2 to 3 seconds after mixing.

このような抗原抗体反応の測定は、たとえば以下のよう
にして実施される。
Such an antigen-antibody reaction is measured, for example, as follows.

まず、ある一定の平均粒径を有する不溶性担体粒子にあ
る一定の抗体又は抗原を感作して感作担体を調製する。
他方、実際に測定しようとする被検液(試料)中に含有
される抗原又は抗体と同一の抗原又は抗体を用いて、そ
れを種々の既知濃度で被検液の媒体と実質的に同一の液
体媒体中に含有する種々の濃度の標準被検液を調製す
る。
First, a sensitized carrier is prepared by sensitizing a certain antibody or antigen to insoluble carrier particles having a certain average particle diameter.
On the other hand, using the same antigen or antibody as the antigen or antibody contained in the test liquid (sample) to be actually measured, it is used at substantially the same concentration as the medium of the test liquid at various known concentrations. Standard test solutions with various concentrations contained in the liquid medium are prepared.

次に、上記感作担体と上記標準被検液とを用いて、両者
を混合させ、抗原抗体反応の進行状態が安定した段階
で、経時的に上記反応混合物の透過率を測定する。たと
えば、透過率が定常的に減少する段階において、前記各
種濃度の被検液について、その各反応混合物の透過率の
単位時間当りの減少率を測定する。
Next, the sensitized carrier and the standard test solution are mixed together, and the transmittance of the reaction mixture is measured over time when the progress of the antigen-antibody reaction is stable. For example, at the stage where the transmittance is constantly decreased, the decrease rate of the transmittance of each reaction mixture per unit time is measured for each of the test solutions having various concentrations.

次に、この減少率を、たとえば、標準被検液中の抗原又
は抗体の濃度を横軸とし、たとえば減少率を縦軸とした
グラフにプロットすると、標準被検液中の抗原又は抗体
濃度と、反応混合物の透過率の単位時間当りの減少率
(反応速度)との対応曲線が得られる。
Next, this reduction rate is plotted, for example, in a graph with the concentration of the antigen or antibody in the standard test solution as the abscissa and the reduction rate as the ordinate, and is plotted as the antigen or antibody concentration in the standard test solution. A corresponding curve with the rate of decrease of the transmittance of the reaction mixture per unit time (reaction rate) is obtained.

そこで、特定の抗原又は抗体について、予め上記のよう
な対応曲線を作成しておき、それと同一の抗原又は抗体
を含有する濃度未知の被検液について、前記と同様の反
応速度を測定し、これを前記対応曲線と対比することに
より、被検液中に含有させる抗原又は抗体の濃度を定量
的に測定しうる。
Therefore, for a specific antigen or antibody, a corresponding curve as described above is prepared in advance, and for a test liquid of unknown concentration containing the same antigen or antibody, a reaction rate similar to the above is measured, and By comparing with the corresponding curve, the concentration of the antigen or antibody contained in the test solution can be quantitatively measured.

本発明は、上記の測定法において、濃度既知の試料を用
いて得られる反応速度と濃度の対応曲線において、一つ
の反応速度に複数の濃度が対応する場合に、この対応曲
線から未知試料の濃度を測定するのに有用である。
The present invention, in the above-mentioned measuring method, in the reaction rate-concentration correspondence curve obtained using a sample of known concentration, when a plurality of concentrations correspond to one reaction rate, the concentration of the unknown sample from this correspondence curve Is useful for measuring.

すなわち、たとえば抗原の濃度が未知の試料の反応速度
を測定して、濃度を決定するためには、 (1)予め、濃度既知の試料の測定によって、抗原濃度と
反応速度の対応曲線が求められていること、 (2)未知試料の反応速度とこの対応曲線から、濃度が一
義的に決定しうること、 が必要であるが、(2)は、一般的には成立しない。すな
わち、抗原濃度の増加とともに、はじめは反応速度も増
加するが、途中から反応速度の増加の度合が低下する領
域が出現し、さらに抗原濃度が増加すると、むしろ反応
速度が減少する領域が現われたり、また、減少した後、
再度増加、減少する場合もある。
That is, for example, in order to determine the concentration by measuring the reaction rate of a sample in which the concentration of the antigen is unknown, (1) the corresponding curve of the antigen concentration and the reaction rate is obtained in advance by measuring the sample in which the concentration is known. It is necessary that (2) the concentration be uniquely determined from the reaction rate of the unknown sample and this correspondence curve, but (2) does not generally hold. That is, as the antigen concentration increases, the reaction rate also increases at first, but a region where the degree of increase in the reaction rate decreases appears in the middle, and when the antigen concentration further increases, a region where the reaction rate decreases rather appears. , Also after the decrease
It may increase or decrease again.

このような場合には、一つの反応速度に複数の濃度が対
応するため、未知試料の濃度が一義的に定まらない。こ
のような現象がおこる抗原過剰域においては、存在する
抗原量に見合う凝集反応、透過率変化が期待できないの
で、未知試料の濃度測定には不適当な領域といえる。し
たがって、未知試料の濃度測定に際しては、その抗原濃
度が濃度測定可能領域であるかどうかを、まず測定する
必要がある。
In such a case, the concentration of the unknown sample cannot be uniquely determined because a plurality of concentrations correspond to one reaction rate. In the antigen excess region where such a phenomenon occurs, it cannot be expected that an agglutination reaction and a change in transmittance commensurate with the amount of existing antigen can be expected, and thus it can be said that the region is unsuitable for measuring the concentration of an unknown sample. Therefore, when measuring the concentration of an unknown sample, it is first necessary to measure whether or not the antigen concentration is in the concentration measurable region.

判定の結果、その領域内であることがわかれば、反応速
度と対応曲線から濃度を一義的に定めることができる。
濃度測定不能の領域であることがわかれば、試料を希釈
して測定可能領域になるようにして測定することができ
る。
As a result of the determination, if it is known that the concentration is within that region, the concentration can be uniquely determined from the reaction rate and the corresponding curve.
If it is known that the concentration cannot be measured, it is possible to dilute the sample so that the sample becomes a measurable region for measurement.

そこで、上記ラテックス凝集反応における本発明の測定
方法についてさらに説明する。
Therefore, the measuring method of the present invention in the above latex agglutination reaction will be further described.

まず、抗原又は抗体の濃度が未知の試料を、それに対応
する抗体又は抗原を感作したラテックス試薬を反応させ
て得られる反応結合物の産生速度の時間変化を測定す
る。たとえば、反応の初期の時点(たとえば反応開始後
30秒程度)から、ある一定の時間までの透過率を1〜
40秒程度から選ばれた間隔で測定し、一次近似してそ
の傾きの大きさを初期透過率で除する平均反応速度が好
適に測定され、又はある時点の近傍での平均反応速度、
等が測定される。
First, the time change of the production rate of a reaction conjugate obtained by reacting a sample of unknown antigen or antibody concentration with a latex reagent sensitized with the corresponding antibody or antigen is measured. For example, the transmittance from the initial point of time of the reaction (for example, about 30 seconds after the start of the reaction) to a certain time is 1 to
Measured at intervals selected from about 40 seconds, the average reaction rate obtained by dividing the magnitude of the slope by the first-order approximation by the initial transmittance is preferably measured, or the average reaction rate in the vicinity of a certain time point,
Etc. are measured.

本発明は、この産生速度の極大値(Vmax)の存在の有無
と、未知試料の抗原又は抗体の濃度を一義的に決定しう
る濃度測定可能領域に属するか否かが、よく対応するこ
とを見出し、本発明に到達したものである。
The present invention responds well to the presence or absence of the maximum value (V max ) of the production rate and whether or not it belongs to the concentration measurable region capable of uniquely determining the concentration of the antigen or antibody of the unknown sample. And has arrived at the present invention.

この極大値(Vmax)が存在する濃度範囲は、ラテックス
の濃度粒径、温度、測定波長、速度の取込み間隔等によ
り異なるが、臨床的に必要な濃度範囲を得るために、こ
れらの条件を適宜選定することができる。
The concentration range in which this maximum value (V max ) exists varies depending on the concentration particle size of latex, temperature, measurement wavelength, capture interval of velocity, etc., but in order to obtain the clinically necessary concentration range, these conditions must be met. It can be appropriately selected.

上記Vmaxが存在し、濃度測定可能範囲内に属すると判定
できるときは、上記対応曲線から未知試料中の抗原又は
抗体の濃度を決定しうる。この場合、対応曲線として、
抗原又は抗体の濃度が既知の試料について作成された極
大値Vmaxと濃度との対応曲線を用いると、さらに高濃度
の範囲について、濃度を決定することができる。
When V max is present and it can be determined that it belongs to the concentration measurable range, the concentration of the antigen or antibody in the unknown sample can be determined from the corresponding curve. In this case, as the corresponding curve,
The concentration can be determined in a higher concentration range by using the corresponding curve of the maximum value V max and the concentration prepared for the sample in which the concentration of the antigen or the antibody is known.

一方、極大値Vmaxが存在しないときは、濃度測定可能範
囲内に属しないと判定され、試料を希釈してさらに濃度
測定に供することができる。
On the other hand, when the maximum value V max does not exist, it is determined that the sample does not belong to the concentration measurable range, and the sample can be diluted for further concentration measurement.

本発明に係る抗原抗体反応の測定方法は、上記のように
短時間に大量の検体を処理する場合に特に有用である。
The method for measuring an antigen-antibody reaction according to the present invention is particularly useful when a large amount of sample is treated in a short time as described above.

以下、本発明を実施例によりさらに詳しく説明する。Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 〔AFP(α−フェトプロテイン)の測定〕 測定条件(ラテックス凝集反応) (イ)ラテックス(LTX):粒径0.24μm 濃度1% AFP感作 (ロ)測定系 標準物質(Std.) 20μ 希釈安定化液及びバッファー 500μ 感作ラテックス 20μ 波長 0.94μm (ハ)速度の測定 初期時点として反応開始後9秒を選び、8秒間隔で透過
率を測定し、これより極大値Vmaxの有無をしらべた。
Example 1 [Measurement of AFP (α-fetoprotein)] Measurement conditions (latex agglutination reaction) (a) Latex (LTX): Particle size 0.24 μm Concentration 1% AFP sensitization (b) Measurement system standard substance (Std.) 20μ diluent stabilizing solution and select 9 seconds after the start of the reaction as a measurement initial point of the buffer 500μ sensitized latex 20μ wavelength 0.94 .mu.m (c) speed, and measuring the transmittance at 8-second intervals, than this maximum value V max I checked the existence.

結果は図1〜7に示した。約4000ng/mの濃度まで
はVmaxが得られた(図6)。
The results are shown in FIGS. V max was obtained up to a concentration of about 4000 ng / m (Fig. 6).

すなわち4,000ng/mの濃度までは濃度測定可能領域と
判定される。
That is, up to a concentration of 4,000 ng / m, it is determined that the concentration can be measured.

実施例2 ラテックスの粒径を0.24μm、濃度を0.73%とした
以外は実施例1と同様にして、CRP(C反応性蛋白)
について、極大値Vmaxの有無をしらべたところ5,000ng/
mまでVmaxが得られた。
Example 2 CRP (C-reactive protein) was prepared in the same manner as in Example 1 except that the latex particle size was 0.24 μm and the concentration was 0.73%.
About the maximum value V max of 5,000 ng /
V max was obtained up to m.

【図面の簡単な説明】[Brief description of drawings]

図1〜7はAFPについて、透過率(T)、反応結合物の
産生速度(V)と時間との関係を示す図である。
1 to 7 are diagrams showing the relationship between the transmittance (T), the production rate (V) of the reaction conjugate and the time for AFP.

フロントページの続き (56)参考文献 特開 昭53−13492(JP,A) 臨床病理 臨時増刊 特集第53号 臨床 検査のためのイムノアッセイ−技術と応用 −(1983.2.28) 日本臨床病理学会 P.71−81 CLINICAL CHEMISTR Y,Vol.23,No.8(1977)P. 1456−1464Front Page Continuation (56) References Japanese Patent Laid-Open No. 53-13492 (JP, A) Extraordinary Special Issue on Clinical Pathology No. 53 Immunoassay for Clinical Testing-Technology and Applications- (February 28, 1983) Japanese Society for Clinical Pathology P. 71-81 CLINICAL CHEMISTRY, Vol. 23, No. 8 (1977) P. 1456-1464

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】不溶性担体粒子に抗体又は抗原を支持さ
せ、この支持された抗体又は抗原に、抗原又は抗体ある
いはその混合物を液体媒体中で反応させて、この反応混
合物に反応開始後2以上の時点で光を照射し、一定時間
内におけるその反応混合物の透過率の減少を測定する方
法において、 抗原又は抗体の濃度が既知である試料を用いて得られる
反応結合物の産生量又は速度の測定値と濃度との対応曲
線において、一つの測定値に複数の濃度が対応する場合
に、この対応曲線から未知試料中の抗原又は抗体の濃度
を決定するにあたり、 (i)抗原又は抗体の濃度が未知の試料を、それに対応
する抗体又は抗原と反応させて得られる反応結合物の産
生速度の時間変化を測定し、産生速度の極大値
(Vmax)が存在するか否かにより濃度を一義的に決定
しうる濃度測定可能領域の判定基準を設定し、 (ii)上記極大値(Vmax)が存在するとき、濃度測定
可能領域に属すると判定し、 上記対応曲線から未知試料中の抗原又は抗体の濃度を決
定する、 ことよりなる抗原抗体反応の測定方法。
1. An insoluble carrier particle is supported with an antibody or an antigen, and the supported antibody or antigen is allowed to react with the antigen or the antibody or a mixture thereof in a liquid medium, and the reaction mixture is reacted with two or more after initiation of the reaction. A method for measuring the decrease in the transmittance of the reaction mixture within a certain period of time by irradiating with light, and measuring the production amount or rate of the reaction conjugate obtained by using a sample with a known concentration of the antigen or antibody. When a plurality of concentrations correspond to one measured value in the curve of correspondence between value and concentration, in determining the concentration of the antigen or antibody in the unknown sample from this correspondence curve, (i) the concentration of the antigen or antibody is An unknown sample is reacted with the corresponding antibody or antigen to measure the time change of the production rate of a reaction conjugate, and the concentration is determined depending on whether or not the maximum value (V max ) of the production rate exists. And (ii) when the maximum value (V max ) is present, it is determined to belong to the concentration measurable region, and the antigen in the unknown sample or A method for measuring an antigen-antibody reaction, which comprises determining an antibody concentration.
JP58187944A 1983-10-07 1983-10-07 Method for measuring antigen-antibody reaction Expired - Lifetime JPH0617915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187944A JPH0617915B2 (en) 1983-10-07 1983-10-07 Method for measuring antigen-antibody reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187944A JPH0617915B2 (en) 1983-10-07 1983-10-07 Method for measuring antigen-antibody reaction

Publications (2)

Publication Number Publication Date
JPS6079268A JPS6079268A (en) 1985-05-07
JPH0617915B2 true JPH0617915B2 (en) 1994-03-09

Family

ID=16214902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187944A Expired - Lifetime JPH0617915B2 (en) 1983-10-07 1983-10-07 Method for measuring antigen-antibody reaction

Country Status (1)

Country Link
JP (1) JPH0617915B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1081497A (en) * 1976-06-02 1980-07-15 Robert J. Anderson System for rate immunonephelometric analysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLINICALCHEMISTRY,Vol.23,No.8(1977)P.1456−1464
臨床病理臨時増刊特集第53号臨床検査のためのイムノアッセイ−技術と応用−(1983.2.28)日本臨床病理学会P.71−81

Also Published As

Publication number Publication date
JPS6079268A (en) 1985-05-07

Similar Documents

Publication Publication Date Title
JP5539958B2 (en) Methods for serological agglutination immunoassays and other immunoassays performed on thin film body fluid samples
Bock The new era of automated immunoassay
NO164622B (en) BINAER IMMUNOMETRIC PARTICLE-BASED METHOD FOR MEASURING SPECIFIC SERUM ANTIGENS USING LIQUID FLOW MICROPHOTOMETRY AND A PREPARED TARGET SET UP THEREOF.
JPH09509248A (en) Test method
US6551788B1 (en) Particle-based ligand assay with extended dynamic range
JP3384805B2 (en) Test method using two distinct types of particles
EP0222341B1 (en) A method for immunoassay and reagents therefor
EP1416277B1 (en) Carrier particle latex for assay reagent and assay reagent
JP2588174B2 (en) Measuring method of antigen-antibody reaction
US5043289A (en) Method and device for assaying immunologically reactive substances of clinical interest
US5093271A (en) Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths
JPS61128168A (en) Immunological analysis
JP4095888B2 (en) Immunological analysis reagent and immunological analysis method
JPH0617914B2 (en) Method for measuring antigen-antibody reaction
JPH0617915B2 (en) Method for measuring antigen-antibody reaction
WO1998054578A1 (en) Chemiluminescent hemoglobin assay
JPH0617916B2 (en) Assay method for antigen-antibody reaction
JPS61128169A (en) Immunological analysis
JP3644704B2 (en) Immunoassay
JPH076985B2 (en) Method for measuring antigen-antibody reaction
JP3458251B2 (en) Chemiluminescence method using fibrous material for solid phase
JPH0814581B2 (en) Antigen or antibody quantification method
JP2813894B2 (en) Method and apparatus for measuring immunologically active substances
CN116068181A (en) Immunoassay kit, immunoassay method and immunoassay system
JPH1138005A (en) Production of immunological measuring reagent