JPH06178598A - Generation - Google Patents

Generation

Info

Publication number
JPH06178598A
JPH06178598A JP4329351A JP32935192A JPH06178598A JP H06178598 A JPH06178598 A JP H06178598A JP 4329351 A JP4329351 A JP 4329351A JP 32935192 A JP32935192 A JP 32935192A JP H06178598 A JPH06178598 A JP H06178598A
Authority
JP
Japan
Prior art keywords
crude oil
low
gas
fuel
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4329351A
Other languages
Japanese (ja)
Other versions
JP2862118B2 (en
Inventor
Akiyoshi Mizoguchi
明義 溝口
Yubun Inoue
雄文 井上
Masaki Iijima
正樹 飯島
Yoshiaki Ikuta
義明 生田
Michio Nakajima
道雄 中島
Masatoshi Shibata
正俊 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4329351A priority Critical patent/JP2862118B2/en
Publication of JPH06178598A publication Critical patent/JPH06178598A/en
Application granted granted Critical
Publication of JP2862118B2 publication Critical patent/JP2862118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To pick as much fuel as possible that is suitable for a gas turbine from low-sulfur crude oil at low cost and to generate with good heat efficiency by a method wherein gas, whose main ingredient is methane, is simply topped and the obtained low-boiling point fraction is supplied at high temperature to the gas turbine as fuel. CONSTITUTION:Prior to sending low-sulfur crude oil from a crude oil tank 4 to a demineralization process 5, the crude oil is heated in an exhaust heat recovery boiler 2. The demineralized low-sulfur crude oil is supplied to a first simplified topper 6 and the column top gas, together with column top gas of a second simplified topper 8, is gas-liquid separated in a condensation drum 11. Part of it is supplied by a circulating blower 12 to a column bottom of the simplified topper 8 as gas for stripping and the rest is compressed by a gas compresser 13 and is supplied to a gas turbine 1. A condensed fraction in the condensation drum 11 becomes part of fuel for a gas turbine. Out of an intermediate fraction obtained from the column side of the first simplified topper 6, a low boiling point fraction is flown back to the first simplified topper 6 by a first stripper 7 and the rest is used as fuel for a gas turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンバインド・サイクル
発電方法に関する。
FIELD OF THE INVENTION The present invention relates to a combined cycle power generation method.

【0002】[0002]

【従来の技術】現在、日本における火力発電としてはボ
イラにより生じた高温高圧のスチームでタービンを回転
させて発電するスチームタービンによる方法が主なもの
である。そのボイラ用油燃料としては主に重油や原油が
使用されている。それらの内、原油焚きの場合はワック
ス分が多くかつSOxの発生量の少ない低硫黄原油、例
えばミナス産原油や大慶産原油が公害防止の観点から好
んで使用されている。そのほか、最近では良質燃料であ
るLNGを用いたコンバインド・サイクル発電方法も採
用されている。
2. Description of the Related Art At present, as a thermal power generation in Japan, a method using a steam turbine, in which a turbine is rotated by steam of high temperature and high pressure generated by a boiler to generate electric power, is mainly used. Heavy oil and crude oil are mainly used as the oil fuel for the boiler. Among them, in the case of burning crude oil, low-sulfur crude oil containing a large amount of wax and a small amount of SOx, such as crude oil from Minas and crude oil from Daqing, is preferably used from the viewpoint of pollution prevention. In addition, recently, a combined cycle power generation method using LNG, which is a good fuel, has been adopted.

【0003】前記原油や重油のボイラ焚きおよびスチー
ムタービンによる発電では熱効率が約40%/HHV基
準(HHV:高位発熱量)と比較的低い。これに対し、
LNG焚きで採用されているコンバインド・サイクル発
電では圧縮機で圧縮した空気で燃料を燃焼させるか、あ
るいは該圧縮空気を燃焼熱で加熱させ、その高温高圧ガ
スでタービンを回転させて発電させ、さらにその排ガス
の熱エネルギをボイラで回収し、スチームタービンを運
転して再度発電する方法であり、熱効率が約48%/H
HV基準と高いことが特徴である。
The thermal efficiency in the boiler burning of crude oil or heavy oil and the power generation by the steam turbine is relatively low at about 40% / HHV standard (HHV: high heating value). In contrast,
In combined cycle power generation adopted in LNG-fired combustion, fuel is burned by air compressed by a compressor, or the compressed air is heated by combustion heat, and a turbine is rotated by the high temperature and high pressure gas to generate electricity. This is a method of recovering the heat energy of the exhaust gas with a boiler, operating a steam turbine, and generating electricity again, with a thermal efficiency of about 48% / H.
It is characterized by high HV standard.

【0004】[0004]

【発明が解決しようとする課題】石油の埋蔵量には限界
があり石油の消費量増大を抑制する見地から、発電に使
用する石油類の使用が国際的に制限されるようになっ
た。すなわち、発電に使用する石油消費量を現状で凍結
しなければならなくなっている。従って発電設備の老朽
化などにより設備を新設する際には、燃料使用量の増加
によらないで今後の電力需要増に対処するように熱効率
の高い発電方法への転換に迫られている。
Since the reserves of petroleum are limited and the increase in petroleum consumption is suppressed, the use of petroleum for power generation has come to be restricted internationally. In other words, the amount of oil used for power generation must be frozen at present. Therefore, when new equipment is installed due to deterioration of power generation equipment, it is necessary to switch to a power generation method with high thermal efficiency so as to cope with future increase in power demand without depending on increase in fuel consumption.

【0005】また前記LNGによるコンバインド・サイ
クル発電では既に高熱効率による発電が行われている
が、LNGは貯蔵にコストがかかる関係上、原油に比べ
安定供給に不安を残している。
Further, in the combined cycle power generation by LNG, power generation with high thermal efficiency has already been performed, but LNG has a concern about stable supply as compared with crude oil because storage costs high.

【0006】欧米では既に原油や残渣油をガスタービン
の燃料に使用している実績があるが、それらに含まれる
不純物のためトラブルが多く発生し、軽油やLNGを使
用する場合に比べ保守費用がかさむ問題点が指摘されて
いる。そしてガスタービンに使用する油燃料の不純物含
有量として、塩分を0.5ppm以下、硫黄分を0.0
5重量%以下、バナジウムを0.5ppm以下に制限す
ることが望ましいとされている。特に塩分とバナジウム
は相互に影響してガスタービンのブレード金属の溶融点
を低下させたり、灰分のブレードへの粘着の原因とな
る。硫黄分含量も同様にブレードの保護の観点から設定
されている。ボイラ焚き燃料として使用されている前記
ミナス産原油や大慶産原油のような低硫黄原油でも、こ
れらの基準を満足できず、発電装置をスクラップ・アン
ド・ビルドにより従来のボイラからより熱効率に優れる
コンバインド・サイクル発電に切り替えても、低硫黄原
油をガスタービン燃料としてそのまま転用できないとい
う問題がある。
In Europe and the United States, crude oil and residual oil have already been used as fuels for gas turbines, but impurities contained in them often cause troubles, and maintenance costs are higher than when diesel oil or LNG is used. Crowding problems have been pointed out. And as the impurity content of the oil fuel used for the gas turbine, the salt content is 0.5 ppm or less and the sulfur content is 0.0
It is desirable to limit the amount of vanadium to 5 wt% or less and vanadium to 0.5 ppm or less. In particular, salinity and vanadium interact with each other to lower the melting point of the blade metal of the gas turbine and cause ash to stick to the blade. The sulfur content is also set from the viewpoint of blade protection. Even low-sulfur crude oil such as the above-mentioned Minas crude oil and Daqing crude oil used as boiler-fired fuel cannot satisfy these standards, and the power generator is combined with a more efficient thermal efficiency from the conventional boiler by scraping and building. -There is a problem that low-sulfur crude oil cannot be used as it is as gas turbine fuel even if it is switched to cycle power generation.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、低硫黄原油を熱効率のよいコンバインド・サイク
ル発電の燃料に使用する方法について鋭意検討した結
果、低硫黄原油中の硫黄分は比較的高沸点留分に多く、
また重金属分は蒸留残油に高濃度に濃縮されること、従
って低硫黄原油を単に高沸点留分と低沸点留分の二留分
に分離する簡易トッピングによりガスタービンの燃料に
適合する低沸点留分が容易に得られること、簡易トッピ
ングとコンバインド・サイクル発電を結合することによ
り、コンバインド・サイクル発電の排熱回収ボイラにお
ける発電には有効利用されにくい低位の熱エネルギを前
記簡易トッピングのための低硫黄原油の加熱に有効活用
でき、コンバインド・サイクル発電の省エネルギが一層
達成できること、さらに簡易トッピングのストリッピン
グ用ガスとしてトッピングする低硫黄原油から分離され
るメタン含有ガスを用いることにより、スチームストリ
ッピングに比べ排水処理の負荷が小さくなるなど有利で
あり、しかも低硫黄原油からガスタービン燃料を多く採
取できるとの知見を得て、本発明を完成することができ
た。
In view of the above problems, the inventors of the present invention have earnestly studied a method of using low-sulfur crude oil as a fuel for combined cycle power generation with high thermal efficiency, and as a result, the sulfur content in low-sulfur crude oil has been found to be high. A lot of relatively high boiling fractions,
In addition, the heavy metal content is concentrated in the distillation bottom oil to a high concentration, and therefore, the low boiling point oil compatible with the gas turbine fuel is obtained by simple topping that simply separates the low-sulfur crude oil into the high boiling point fraction and the low boiling point fraction. Distillate can be easily obtained, and by combining simple topping and combined cycle power generation, low heat energy that is difficult to be effectively used for power generation in an exhaust heat recovery boiler for combined cycle power generation can be used for the simple topping. It can be effectively used for heating low-sulfur crude oil, can further achieve energy saving in combined cycle power generation, and uses a methane-containing gas that is separated from the low-sulfur crude oil topping as a stripping gas for simple topping It has advantages such as smaller wastewater treatment load than ripping, and low sulfur To obtain a knowledge that can often collected gas turbine fuel from crude oil, it was possible to complete the present invention.

【0008】すなわち、本発明の第一は低硫黄原油をコ
ンバインド・サイクル発電の排熱回収ボイラで加熱し、
次いでストリッピング用ガスとして前記低硫黄原油から
分離されるメタン含有ガスを使用する簡易トッピングに
より低沸点留分と高沸点留分に分離し、得られた低沸点
留分を前記コンバインド・サイクル発電のガスタービン
の燃料に用いることを特徴とする発電方法であり、本発
明の第二は簡易トッピングに先立ち脱塩処理する場合、
脱塩処理に必要な低硫黄原油の加熱源として同じく前記
排熱回収ボイラの低位熱エネルギを利用することを特徴
とする発電方法に関するものである。
That is, the first aspect of the present invention is to heat low-sulfur crude oil with an exhaust heat recovery boiler for combined cycle power generation,
Then, a low boiling fraction and a high boiling fraction are separated by simple topping using a methane-containing gas separated from the low sulfur crude oil as a stripping gas, and the obtained low boiling fraction is used in the combined cycle power generation. A power generation method characterized in that it is used as a fuel for a gas turbine, and the second aspect of the present invention is to perform desalination treatment prior to simple topping,
The present invention also relates to a power generation method characterized in that low heat energy of the exhaust heat recovery boiler is utilized as a heat source for low-sulfur crude oil necessary for desalination treatment.

【0009】[0009]

【実施例】以下、本発明のコンバインド・サイクルによ
る発電方法を図1に示す典型的な実施態様例によってそ
の作用を説明する。図1では主要設備のみ示し付属設備
は省略してある。本発明においては、前記の脱塩処理工
程は必ずしも必須ではないが、設けることが好ましく、
その場合は脱塩処理に必要な熱エネルギをコンバインド
・サイクル発電の排熱回収ボイラから得ることができる
ので、省エネルギの観点から特に好ましい。図1はこの
ような脱塩処理工程5を設けた場合を示し、さらに図2
には脱塩処理工程5の詳細を示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the combined cycle power generation method of the present invention will be described below with reference to a typical embodiment shown in FIG. In FIG. 1, only main equipment is shown and auxiliary equipment is omitted. In the present invention, the desalting step is not always essential, but it is preferable to provide it.
In that case, the heat energy required for the desalination treatment can be obtained from the exhaust heat recovery boiler of the combined cycle power generation, which is particularly preferable from the viewpoint of energy saving. FIG. 1 shows a case where such a desalting treatment step 5 is provided, and further, FIG.
The details of the desalting treatment step 5 are shown in FIG.

【0010】本発明で用いられる低硫黄原油としては燃
焼排ガスの脱硫工程を簡略化できることから、できるだ
け硫黄含量の少ないものが好ましいことはいうまでもな
いが、通常硫黄含有量が1重量%以下、さらに好ましく
は0.5重量%以下の原油が用いられる。このような原
油としては前記のワックス分の多いミナス産原油や大慶
産原油等をあげることができる。このような原油に含ま
れるバナジウム量は通常0.4〜0.5ppmである。
これらの低硫黄原油としてミナス産原油は硫黄含有量が
約0.1重量%以下と少なく特に好ましい。
It is needless to say that the low-sulfur crude oil used in the present invention is preferably as low in sulfur content as possible, since it can simplify the desulfurization process of combustion exhaust gas, but usually, the sulfur content is 1% by weight or less, More preferably, 0.5% by weight or less of crude oil is used. Examples of such crude oil include the crude oil produced in Minas and the crude oil produced in Daqing, which are rich in wax as described above. The amount of vanadium contained in such crude oil is usually 0.4 to 0.5 ppm.
Minas crude oil is particularly preferable as the low-sulfur crude oil because it has a sulfur content of about 0.1% by weight or less.

【0011】このような低硫黄原油を低硫黄原油タンク
4から脱塩処理工程5に送る前に排熱回収ボイラ2で加
熱する。加熱温度は脱塩処理工程5により静電式脱塩に
適する温度、例えば80〜150℃の範囲、さらに用い
る原油の粘度、比重において好ましい温度に加熱する。
加熱された低硫黄原油は図2に示す脱塩処理工程5の複
数のディソルータ51により淡水を用いて脱塩処理され
る。ディソルータは通常2〜3段で行われる。図2では
3段の場合を示している。ディソルータは加熱された原
油と淡水を混合し、例えば2万ボルト程度の静電圧を印
加して水滴を凝集させて分離するものであり、原油の粘
度を下げ、また水と原油の比重差による分離を容易にす
るため前記のように加熱する。このような原油の脱塩処
理技術自体は公知である。脱塩処理原油中の塩分含有量
はガスタービンのブレードの溶融点を低下させないよう
にできるだけ低い方が好ましいが、通常0.5ppm以
下、特に好ましくは0.3ppm以下に調整する。塩分
を含んだ排水は排水処理設備で処理され、脱塩処理原油
は次の簡易トッピングによる処理を受ける。
Such low sulfur crude oil is heated in the exhaust heat recovery boiler 2 before being sent from the low sulfur crude oil tank 4 to the desalination treatment step 5. The heating temperature in the desalting treatment step 5 is a temperature suitable for electrostatic desalting, for example, a range of 80 to 150 ° C., and a temperature preferable for the viscosity and specific gravity of the crude oil used.
The heated low-sulfur crude oil is desalted using fresh water by the plurality of disorouters 51 in the desalination processing step 5 shown in FIG. The diso router is usually performed in 2-3 stages. FIG. 2 shows the case of three stages. The diso router mixes heated crude oil and fresh water and applies a static voltage of, for example, about 20,000 volts to agglomerate and separate water droplets to reduce the viscosity of crude oil and to separate water and crude oil due to the difference in specific gravity. To facilitate heating as described above. Such a crude oil desalting treatment technique itself is known. The salt content in the desalted crude oil is preferably as low as possible so as not to lower the melting point of the blade of the gas turbine, but is usually adjusted to 0.5 ppm or less, particularly preferably 0.3 ppm or less. Wastewater containing salt is treated in wastewater treatment equipment, and desalted crude oil is treated by the following simple topping.

【0012】脱塩処理された低硫黄原油は図1の排熱回
収ボイラ2で第1簡易トッパ6の操業に必要な温度30
0〜350℃に加熱される。第1簡易トッパ6は基本的
には常圧で操業され、塔頂からガス留分が塔底からは塔
底油が得られる。また塔側からは重質ナフサ、灯油、軽
質軽油、重質軽油などに相当する留分を含む中間留分が
得られる。塔頂ガスは後記第2簡易トッパ8の塔頂ガス
と共に熱交換器10で冷却され、凝縮ドラム11で気液
分離される。分離されたガス分はメタンを主成分とする
炭素数1〜3の炭化水素類からなる。この一部は循環ブ
ロア12により後記第2簡易トッパ8の塔底にストリッ
ピング用ガスとして供給され、残りはガスコンプレッサ
13で圧縮されてガスタービン1に供給される。また凝
縮ドラム11に凝縮した留分は軽質ナフサに相当し、ガ
スタービン用燃料の一部に加えられる。第1簡易トッパ
6の塔側から得られる前記中間留分は第1ストリッパ7
により低沸点留分を第1簡易トッパ6に還流し、残りは
ガスタービン燃料とされる。第1簡易トッパ6の塔底油
は第2簡易トッパ8の塔底に供給され、同じく塔底に供
給される前記ストリッピング用ガスによりトッピングさ
れる。第2簡易トッパ8は前記メタンを主成分とするス
トリッピング用ガスにより常圧で運転され、また加熱源
は通常特に必要としない。第2簡易トッパ8の温度は通
常300〜360℃である。第2簡易トッパ8で高度に
濃縮された塔底油は沸点が約900〜950°Fであ
り、比較的硫黄含有量が多く、またバナジウムをはじめ
とする重金属を濃縮して含み、さらに脱塩処理工程5を
経ていない場合は塩分も濃縮されて含むので、ガスター
ビンのブレードの保護等の観点からガスタービン燃料と
しては使用されず、ボイラの燃料などに用いる。
The desulfurized low-sulfur crude oil has a temperature of 30 required for the operation of the first simple topper 6 in the exhaust heat recovery boiler 2 shown in FIG.
Heat to 0-350 ° C. The first simple topper 6 is basically operated under normal pressure, and a gas fraction is obtained from the top of the tower and a bottom oil is obtained from the bottom of the tower. In addition, an intermediate fraction containing fractions corresponding to heavy naphtha, kerosene, light gas oil, heavy gas oil, etc. can be obtained from the tower side. The overhead gas is cooled in a heat exchanger 10 together with the overhead gas of a second simple topper 8 which will be described later, and is gas-liquid separated in a condensing drum 11. The separated gas component is composed of hydrocarbons containing methane as a main component and having 1 to 3 carbon atoms. A part of this is supplied to the tower bottom of the second simple topper 8 described later as a stripping gas by the circulation blower 12, and the rest is compressed by the gas compressor 13 and supplied to the gas turbine 1. The fraction condensed on the condensation drum 11 corresponds to light naphtha and is added to a part of the gas turbine fuel. The middle distillate obtained from the tower side of the first simple topper 6 is the first stripper 7
Thus, the low boiling point fraction is returned to the first simple topper 6, and the rest is used as gas turbine fuel. The bottom oil of the first simple topper 6 is supplied to the bottom of the second simple topper 8 and topped by the stripping gas which is also supplied to the bottom of the tower. The second simple topper 8 is operated at normal pressure by the stripping gas containing methane as a main component, and a heating source is not usually required. The temperature of the second simple topper 8 is usually 300 to 360 ° C. The bottom oil highly concentrated in the second simple topper 8 has a boiling point of about 900 to 950 ° F, has a relatively high sulfur content, and contains heavy metals such as vanadium in a concentrated manner, and further desalted. When the treatment step 5 has not been carried out, the salt content is also contained in a concentrated form, so from the viewpoint of protecting the blades of the gas turbine, etc., it is not used as a gas turbine fuel, but is used as a boiler fuel or the like.

【0013】第2簡易トッパ8の塔側から得られる留分
は第2ストリッパ9で還流ガス分を分離され、それを除
いた重油相当留分はガスタービン1用燃料に加えられ
る。
The distillate obtained from the tower side of the second simple topper 8 is separated into the reflux gas by the second stripper 9, and the heavy oil-equivalent fraction excluding it is added to the fuel for the gas turbine 1.

【0014】低硫黄原油から図1の2段の簡易トッピン
グによりガスタービン1の燃料として前記のような基準
を満たす低沸点留分の得られる割合は使用原油の種類、
簡易トッパの操業条件、ストリッピングガスの使用条件
などにより異なるが、典型的な大慶原油を例にとると約
30〜40VOL%の範囲であり、沸点範囲では約80
0〜900°F以下の留分である。ガスタービンに使用
されない高沸点留分(等底油)は前記のように従来の発
電用ボイラ燃料としては支障ないものであり、スチーム
タービンによる発電に従来どおり寄与する。
The ratio of the low boiling point fraction satisfying the above-mentioned criteria as the fuel of the gas turbine 1 from the low sulfur crude oil by the simple two-step topping in FIG. 1 is the kind of the crude oil used.
Although it depends on the operating conditions of the simple topper, the use conditions of stripping gas, etc., in the case of typical Daqing crude oil as an example, it is in the range of about 30 to 40 VOL%, and in the boiling point range about 80.
It is a fraction of 0 to 900 ° F or less. As described above, the high boiling point fraction (iso-bottom oil) that is not used in the gas turbine does not hinder the conventional boiler fuel for power generation, and contributes to the power generation by the steam turbine as usual.

【0015】また本発明においては、前記により得られ
る第2簡易トッパ8の塔底油を除く各低沸点留分は積極
的には冷却されることなく、高温度のままガスタービン
1に供給されることが好ましい。これにより、本発明と
は異なり別の工程で得られた常温の燃料を用いる場合に
比べ、燃料を前記温度まで加熱するのに必要な熱量だけ
ガスタービン1の発電効率(熱効率)を向上させること
ができる。しかもその燃料の加熱に必要な熱エネルギは
本発明によればもともと同じガスタービンの排熱回収ボ
イラより得るものであり、通常では発電に寄与し得ない
比較的低位の(低温の)熱エネルギを活用できることか
ら省エネルギの観点より大きな利点である。低硫黄原油
より別工程で製造されたガスタービン燃料を用いる場合
は分留された燃料は一旦冷却してタンクに貯蔵され、あ
るいは貯蔵中に冷却され、その後発電設備に運ばれるた
め、分留に必要な熱エネルギをガスタービン1で生かす
ことができない。
Further, in the present invention, each of the low boiling fractions excluding the bottom oil of the second simple topper 8 obtained as described above is supplied to the gas turbine 1 at a high temperature without being actively cooled. Preferably. As a result, unlike the present invention, the power generation efficiency (thermal efficiency) of the gas turbine 1 is improved by the amount of heat required to heat the fuel to the temperature as compared with the case of using the fuel at room temperature obtained in another step. You can Moreover, the heat energy necessary for heating the fuel is originally obtained from the same exhaust heat recovery boiler of the gas turbine according to the present invention, and a relatively low (low temperature) heat energy that cannot normally contribute to power generation is obtained. This is a great advantage from the viewpoint of energy saving because it can be utilized. When using a gas turbine fuel that is produced in a separate process from low-sulfur crude oil, the fractionated fuel is once cooled and stored in a tank, or is cooled during storage and then transported to a power generation facility for fractionation. The required heat energy cannot be utilized in the gas turbine 1.

【0016】また図1のように脱塩処理と簡易トッピン
グをコンバインド・サイクル発電と組み合わせることに
より、これらを別々の工程で行う場合に比べ、各々の工
程に必要な熱エネルギが無駄なく次の工程に利用される
ので、全体的には一定燃料当たりの発電量の向上により
大きく寄与する。
Further, as shown in FIG. 1, by combining desalination treatment and simple topping with combined cycle power generation, heat energy required for each process is not wasted in the next process as compared with the case where these processes are performed in separate processes. As a result, it will greatly contribute to the improvement of the amount of power generation per constant fuel.

【0017】本発明による発電熱効率として第2簡易ト
ッパ8の塔底油を従来のボイラで用いる場合の総合熱効
率でみると、簡易トッピングの分留割合にもよるが、全
量をボイラで焚いた場合の熱効率約40%/HHV基準
と全量のコンバインド・サイクル発電に用いた場合の熱
効率約48%/HHV基準の中間にあり、例えば前記大
慶原油の場合は約44〜46/HHV基準にまで向上で
きる。しかも、ガスタービン1の燃料としての好ましい
品質を有する留分を用いるので、ガスタービンの保守・
点検、ブレードの交換頻度などの観点からも極めて有利
である。
The total heat efficiency of the bottom oil of the second simple topper 8 used in the conventional boiler as the heat generation efficiency according to the present invention depends on the fractional distillation ratio of the simple topping, but when the whole amount is heated by the boiler. The thermal efficiency is about 40% / HHV standard and the thermal efficiency when used for combined cycle power generation of all amount is about 48% / HHV standard. For example, in the case of Daqing crude oil, it can be improved to about 44-46 / HHV standard. . Moreover, since the distillate having a preferable quality as the fuel of the gas turbine 1 is used, maintenance of the gas turbine
It is also extremely advantageous in terms of inspection and blade replacement frequency.

【0018】前記簡易トッピングに用いるストリッピン
グガスとしては、通常スチームが用いられる。しかし、
スチームを用いるスチームストリッピングではその熱エ
ネルギが凝縮により失われるため、省エネルギの観点か
ら不利であるばかりでなく、凝縮水に原油成分が混入
し、多量の排水に対し困難な水処理が必要になる。また
簡易トッピングを減圧下で行う方法も採用されている。
しかし、減圧には通常スチームが使用され、スチームス
トリッピングと同様の不利な点があるほか、減圧のため
に装置の建設費がかさむ。これらに比べ、本発明により
メタンを含有するストリッピングガスを使用することに
より、もともと原油中に含まれるそれらのガス成分を使
用でき、しかも熱ロスが殆どなく、前記循環ブロア12
に必要な程度の動力で運転でき、さらに排水処理の点も
大幅に軽減されることとなり、工程も大幅に簡略化され
る利点がある。なお、メタン含有ガスを用いて原油など
の油を分留する方法は公知である(特開昭61−133
289号公報)。
As the stripping gas used for the simple topping, steam is usually used. But,
In steam stripping using steam, the heat energy is lost due to condensation, which is not only disadvantageous from the viewpoint of energy saving, but also the crude oil component is mixed in the condensed water, which makes difficult water treatment necessary for a large amount of wastewater. Become. A method of performing simple topping under reduced pressure is also adopted.
However, steam is usually used for depressurization, and it has the same disadvantages as steam stripping, and the depressurization adds cost to the construction of the device. In comparison with these, by using the stripping gas containing methane according to the present invention, those gas components originally contained in crude oil can be used, and there is almost no heat loss.
It has the advantage that it can be operated with the power required to achieve this, and that the wastewater treatment points are also greatly reduced, greatly simplifying the process. A method of fractionating oil such as crude oil using a methane-containing gas is known (Japanese Patent Laid-Open No. 61-133).
No. 289).

【0019】[0019]

【発明の効果】以上詳細に述べたように、低硫黄原油を
ガスタービンに供給するに際し、本発明により排熱回収
ボイラの低位の熱エネルギで低硫黄原油を加熱し、また
メタンを主成分とするガスをストリッピングガスとして
簡易トッピングし、得られる低沸点留分を高温のままガ
スタービンの燃料として供給することにより、低コスト
で低硫黄原油からガスタービンに適した燃料をより多く
採取でき、熱効率よく発電することができる。これは省
エネルギのみならず、発電に伴う発生するCO2による
地球温暖化防止やSOxなどの有害物質の発生抑制の観
点からも極めて有利である。本発明にいて脱塩処理工程
を結合させることにより、上記効果はさらに向上する。
As described above in detail, when supplying low-sulfur crude oil to the gas turbine, the present invention heats the low-sulfur crude oil with low heat energy of the exhaust heat recovery boiler, and uses methane as a main component. By simply topping the gas as a stripping gas and supplying the resulting low boiling fraction as a high temperature gas turbine fuel, more fuel suitable for a gas turbine can be collected from low sulfur crude oil at low cost, Power can be generated with good thermal efficiency. This is extremely advantageous from the viewpoint of not only energy saving but also prevention of global warming by CO 2 generated by power generation and suppression of generation of harmful substances such as SOx. By combining the desalting treatment step in the present invention, the above effect is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用されるプロセスの説明図。FIG. 1 is an explanatory diagram of a process to which the present invention is applied.

【図2】本発明が適用される脱塩処理工程の説明図。FIG. 2 is an explanatory diagram of a desalination process step to which the present invention is applied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生田 義明 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 中島 道雄 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 柴田 正俊 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshiaki Ikuta Inventor Yoshiaki Ikuta 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Ltd. (72) Inventor Michio Nakajima 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Masatoshi Shibata 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低硫黄原油をコンバインド・サイクル発
電の排熱回収ボイラで加熱し、次いでストリッピング用
ガスとして前記低硫黄原油から分離されるメタン含有ガ
スを使用する簡易トッピングにより低沸点留分と高沸点
留分に分離し、得られた低沸点留分を前記コンバインド
・サイクル発電のガスタービンの燃料に用いることを特
徴とする発電方法。
1. A low-boiling fraction is obtained by heating low-sulfur crude oil in an exhaust heat recovery boiler for combined cycle power generation, and then by simple topping using a methane-containing gas separated from the low-sulfur crude oil as a stripping gas. A power generation method, characterized in that a low boiling fraction obtained by separating into a high boiling fraction is used as a fuel for a gas turbine of the combined cycle power generation.
【請求項2】 低硫黄原油をコンバインド・サイクル発
電の排熱回収ボイラで加熱して静電式脱塩処理により塩
分含有量を低下させ、得られた高温度の低硫黄原油をさ
らに排熱回収ボイラで加熱して簡易トッピングにより低
沸点留分と高沸点留分に分離することを特徴とする請求
項1記載の発電方法。
2. The low-sulfur crude oil is heated in an exhaust heat recovery boiler for combined cycle power generation to reduce the salt content by electrostatic desalination treatment, and the obtained high-temperature low-sulfur crude oil is further exhaust heat recovered. The power generation method according to claim 1, wherein the boiler is heated in a boiler and separated into a low boiling fraction and a high boiling fraction by simple topping.
JP4329351A 1992-12-09 1992-12-09 Power generation method Expired - Lifetime JP2862118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4329351A JP2862118B2 (en) 1992-12-09 1992-12-09 Power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4329351A JP2862118B2 (en) 1992-12-09 1992-12-09 Power generation method

Publications (2)

Publication Number Publication Date
JPH06178598A true JPH06178598A (en) 1994-06-24
JP2862118B2 JP2862118B2 (en) 1999-02-24

Family

ID=18220490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4329351A Expired - Lifetime JP2862118B2 (en) 1992-12-09 1992-12-09 Power generation method

Country Status (1)

Country Link
JP (1) JP2862118B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228475A (en) * 2008-03-19 2009-10-08 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
JP2013503239A (en) * 2009-08-31 2013-01-31 ルドルフ ダブリュー. ガンナーマン Non-fractionation method for the production of low boiling fuels from crude oil or fractions thereof
JP2013174249A (en) * 2013-05-29 2013-09-05 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
CN111662740A (en) * 2020-06-16 2020-09-15 敏云信息科技有限公司 Method and system for processing oil products on ship

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228475A (en) * 2008-03-19 2009-10-08 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
JP2013503239A (en) * 2009-08-31 2013-01-31 ルドルフ ダブリュー. ガンナーマン Non-fractionation method for the production of low boiling fuels from crude oil or fractions thereof
JP2013174249A (en) * 2013-05-29 2013-09-05 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
CN111662740A (en) * 2020-06-16 2020-09-15 敏云信息科技有限公司 Method and system for processing oil products on ship
CN111662740B (en) * 2020-06-16 2021-08-27 敏云信息科技有限公司 Method and system for processing oil products on ship

Also Published As

Publication number Publication date
JP2862118B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
RU2418841C2 (en) Procedure and unit improving fluidity characteristics of crude oil
JP6643769B2 (en) Cogeneration of delayed coking plant
JP6905056B2 (en) Fuel and its manufacturing method
JP4495791B2 (en) Combined cycle power generation system
KR100440845B1 (en) System and method for oil fuel burning integrated combined cycle power generation
US20180148655A1 (en) Method and device for separating asphaltenes from an asphaltene-containing fuel
CN102438726A (en) Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation
KR20200136885A (en) Method for recovering LPG and condensate from refined fuel gas stream
JPH06178598A (en) Generation
JP2554229B2 (en) Combined cycle power generation method
US5911875A (en) Method and system for generating power from residual fuel oil
JP2511227B2 (en) Method for producing power generation fuel and power generation method
JP2865961B2 (en) Gas turbine fuel and its production method, and power generation method and its device
JP2554230B2 (en) Combined cycle power generation method
JP2735991B2 (en) Power generation method
JP2576006B2 (en) Power generation method
JP2554228B2 (en) Combined cycle power generation method
JP3322594B2 (en) Crude oil fractionation method
JPH09189206A (en) Combined cycle power generation facilities
JP2000282060A (en) Gas turbine fuel oil, its production and power generation method
JP2000282069A (en) Production of gas turbine fuel oil and gas turbine fuel oil
Penrose et al. Enhancing refinery profitability by gasification, hydroprocessing & power generation
JPH09194852A (en) Production of fuel for combined-cycle power generation
CN1484683A (en) Process for the production of thermally converted light products and eletricity
WO1998000477A1 (en) Method and system for producing fuel from a heavy hydrocarbon feedstock

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 14

EXPY Cancellation because of completion of term