JPH0617830A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH0617830A
JPH0617830A JP4175449A JP17544992A JPH0617830A JP H0617830 A JPH0617830 A JP H0617830A JP 4175449 A JP4175449 A JP 4175449A JP 17544992 A JP17544992 A JP 17544992A JP H0617830 A JPH0617830 A JP H0617830A
Authority
JP
Japan
Prior art keywords
bearing
electromagnet
magnetic
bearing hole
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4175449A
Other languages
Japanese (ja)
Other versions
JP2792350B2 (en
Inventor
Takeshi Hiwada
武史 桧皮
Hiroshi Fuchigami
博 渕上
Hiromichi Ueno
広道 上野
Hiroshi Sugawara
宏 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4175449A priority Critical patent/JP2792350B2/en
Publication of JPH0617830A publication Critical patent/JPH0617830A/en
Application granted granted Critical
Publication of JP2792350B2 publication Critical patent/JP2792350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0487Active magnetic bearings for rotary movement with active support of four degrees of freedom

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To detect a bending mode of a rotation axis by arranging position sensors on both sides of an electromagnet of a bearing part in the axial direction while saving a space of a magnetic bearing device in the axial direction. CONSTITUTION:A plural number of pairs of electromagnets 6, 6,... arranged on the inner periphery of a bearing hole 3 are divided into two groups on a flat surface P passing a center OH of the bearing hole 3 and both groups 7, 7 are slipped in the axial direction, and in a space made by the slipping, position sensors 8, 8 to detect displacement of a rotation axis 1 are respectively arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電磁石で発生した磁
界により回転軸を軸受孔内で浮き上がらせて支持する磁
気軸受装置に関し、特に、電磁石の磁界強度を制御する
ために回転軸の変位量を検出する検出手段の配置構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device for supporting a rotating shaft by floating it in a bearing hole by a magnetic field generated by an electromagnet, and more particularly to a displacement amount of the rotating shaft for controlling the magnetic field strength of the electromagnet. The present invention relates to an arrangement structure of a detection unit that detects

【0002】[0002]

【従来の技術】この種の磁気軸受装置は、回転軸を挿通
させる軸受孔の内面に、磁界を発生させる複数対の電磁
石(電磁コイル)を軸受孔中心に対して対向配置した軸
受部を有し、軸受孔中心に対する回転軸の変位量を渦電
流型等の位置センサで検出し、この位置センサにより検
出された回転軸変位量に応じて電磁石の磁界強度を制御
し、回転軸を軸受孔内で浮上させるようにしたものであ
る。
2. Description of the Related Art A magnetic bearing device of this type has a bearing portion in which a plurality of pairs of electromagnets (electromagnetic coils) for generating a magnetic field are arranged facing each other on the inner surface of a bearing hole through which a rotary shaft is inserted. Then, the amount of displacement of the rotating shaft with respect to the center of the bearing hole is detected by an eddy current type position sensor, and the magnetic field strength of the electromagnet is controlled according to the amount of displacement of the rotating shaft detected by this position sensor. It was made to float inside.

【0003】そして、斯かる磁気軸受装置の一例とし
て、従来、実開平2―91911号公報に開示されるも
のでは、上記位置センサを電磁石の軸方向両側に配置す
ることにより、回転軸の曲げモードを検出するように構
成されている。
As an example of such a magnetic bearing device, in the conventional one disclosed in Japanese Utility Model Laid-Open No. 2-91111, by disposing the position sensors on both sides in the axial direction of the electromagnet, a bending mode of the rotating shaft is obtained. Is configured to detect.

【0004】[0004]

【発明が解決しようとする課題】ところで、磁気軸受で
は、タッチダウンや保護ベアリング等の収容スペースを
確保するために、或いは回転軸の曲げ共振を高い回転数
にシフトする目的で回転軸の軸長を短くするために、軸
方向の省スペースを図ることが望ましい。しかし、上記
従来例では、位置センサを電磁石の両側に配置するの
で、その分、軸受部の軸方向のスペースが大きくなり、
上記要求を満たすことは困難であった。
By the way, in the magnetic bearing, in order to secure a space for accommodating a touchdown, a protective bearing, or the like, or to shift the bending resonance of the rotary shaft to a high rotational speed, the axial length of the rotary shaft is increased. In order to shorten the length, it is desirable to save space in the axial direction. However, in the above-mentioned conventional example, since the position sensors are arranged on both sides of the electromagnet, the axial space of the bearing portion is correspondingly increased,
It was difficult to meet the above requirements.

【0005】本発明は斯かる点に鑑みてなされたもので
あり、その目的とするところは、軸受部の構造を改良す
ることで、軸方向の省スペースを図りながら、位置セン
サを電磁石の軸方向両側に配置できるようにすることに
ある。
The present invention has been made in view of the above problems. An object of the present invention is to improve the structure of the bearing portion so as to save space in the axial direction and to position the position sensor in the shaft of the electromagnet. It is to be able to arrange on both sides in the direction.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成すべ
く、請求項1の発明では、軸受孔内周に配置される電磁
石を軸受孔の中心を通る平面で2群に分けて両群を軸方
向にずらし、そのずらしにより生じたスペースにそれぞ
れ位置センサを配置することとした。
In order to achieve the above object, in the invention of claim 1, the electromagnets arranged on the inner circumference of the bearing hole are divided into two groups on a plane passing through the center of the bearing hole, and both groups are divided into two groups. It was decided to shift in the axial direction, and position sensors were arranged in the spaces created by the shift.

【0007】すなわち、この発明では、図1〜図3に示
すように、回転軸(1)を挿通させる軸受孔(3)を有
する軸受部(2)と、上記軸受孔(3)の内面に軸受孔
(3)の中心(OH )に対して対向配置され、磁界を発
生させる複数対の電磁石(6),(6),…と、軸受孔
(3)の中心(OH )に対する回転軸(1)の変位量を
検出する位置検出手段(8),(8),…とを備え、位
置検出手段(8),(8),…により検出された回転軸
(1)の変位量に応じて各電磁石(6)の磁界強度を制
御し、回転軸(1)を軸受孔(3)内で浮上させて支持
するようにした磁気軸受装置が前提である。
That is, according to the present invention, as shown in FIGS. 1 to 3, a bearing portion (2) having a bearing hole (3) through which the rotary shaft (1) is inserted and an inner surface of the bearing hole (3) are provided. A plurality of pairs of electromagnets (6), (6), ..., Which are arranged to face the center (OH) of the bearing hole (3) and generate a magnetic field, and a rotary shaft () for the center (OH) of the bearing hole (3). 1) is provided with position detecting means (8), (8), ... Detecting the amount of displacement, and according to the amount of displacement of the rotary shaft (1) detected by the position detecting means (8), (8) ,. It is premised on a magnetic bearing device in which the magnetic field strength of each electromagnet (6) is controlled so as to levitate and support the rotating shaft (1) in the bearing hole (3).

【0008】そして、上記電磁石(6),(6),…
を、軸受孔(3)の中心(OH )を通る平面(P)を境
として2つの電磁石群(7),(7)に分けて、両電磁
石群(7),(7)を一方の電磁石群(7)が他方の電
磁石群(7)よりも部分的に突出するように軸受孔
(3)の中心線方向に互いにずらし、各電磁石群(7)
の相手側電磁石群(7)に対するずれ方向と反対側にそ
れぞれ上記位置検出手段(8),(8),…を配設す
る。
The electromagnets (6), (6), ...
Is divided into two electromagnet groups (7) and (7) with a plane (P) passing through the center (OH) of the bearing hole (3) as a boundary, and both electromagnet groups (7) and (7) are divided into one electromagnet. The groups (7) are offset from each other in the direction of the center line of the bearing hole (3) so that the groups (7) partially project from the other electromagnet group (7), and each electromagnet group (7)
The position detecting means (8), (8), ... Are respectively arranged on the opposite side to the direction of displacement with respect to the counterpart electromagnet group (7).

【0009】請求項2の発明では、図2〜図5に示すよ
うに、上記軸受部(2)を1対の半割円筒状の分割部
(2a),(2b)からなし、各分割部(2a),(2
b)にそれぞれ電磁石群(7),(7)を設けた構成と
する。
In the invention of claim 2, as shown in FIGS. 2 to 5, the bearing portion (2) is formed of a pair of half-divided cylindrical divided portions (2a) and (2b), and each divided portion is formed. (2a), (2
b) is provided with electromagnet groups (7) and (7), respectively.

【0010】請求項3の発明では、図1に示す如く、軸
受部(2)を1対として該両軸受部(2),(2)を各
々の軸受孔(3)の中心(OH )が同一線上に位置させ
るように回転軸(1)の軸方向に離れて設け、一方の軸
受部(2)の電磁石群(7),(7)同士の位置ずれ方
向を他方の軸受部(2)に対し逆方向としている。
According to the third aspect of the invention, as shown in FIG. 1, the bearing portion (2) constitutes a pair, and the bearing portions (2) and (2) are arranged such that the center (OH) of each bearing hole (3) is located in the bearing hole (3). The bearings are provided apart from each other in the axial direction of the rotary shaft (1) so as to be located on the same line, and the direction of positional deviation between the electromagnet groups (7) and (7) of one bearing portion (2) is set to the other bearing portion (2). To the opposite direction.

【0011】[0011]

【作用】上記の構成により、請求項1の発明では、軸受
孔(3)の中心(OH )を通る平面(P)を境として分
けられた2つの電磁石群(7),(7)が軸受孔(3)
の中心線方向に互いに位置ずれし、各電磁石群(7)の
相手側電磁石群(7)に対するずれ方向と反対側にそれ
ぞれ位置検出手段(8),(8),…が配設されている
ので、この各位置検出手段(8)が電磁石群(7)の突
出部分の陰に位置し、軸受部(2)自体の軸方向の全長
は若干長くなるものの、その両側に配置される位置検出
手段(8),(8),…を含めた長さは従来例に比べ、
各位置検出手段(8)の軸方向長さ及びその電磁石群
(7)との距離の分だけ短くすることができ、よって軸
方向の省スペースを図ることができる。また、1対の位
置検出手段(8),(8)が軸受部(2)の軸方向両側
に配置されているので、回転軸(1)の曲げモードを検
出することができる。
With the above construction, in the invention of claim 1, the two electromagnet groups (7), (7) separated by the plane (P) passing through the center (OH) of the bearing hole (3) are used as the bearings. Hole (3)
Of the respective electromagnet groups (7) are arranged on opposite sides of the respective electromagnet groups (7) with respect to the opposite electromagnet group (7). Therefore, each of the position detecting means (8) is located behind the projecting portion of the electromagnet group (7), and although the axial total length of the bearing portion (2) itself is slightly long, the position detecting means arranged on both sides of the position detecting means (8) are detected. The length including the means (8), (8), ...
The axial length of each position detecting means (8) and the distance from the electromagnet group (7) can be shortened, so that axial space can be saved. Further, since the pair of position detecting means (8) and (8) are arranged on both sides of the bearing portion (2) in the axial direction, the bending mode of the rotating shaft (1) can be detected.

【0012】請求項2の発明では、軸受部(2)が1対
の半割円筒状分割部(2a),(2b)で構成されてい
るので、通常の磁気軸受の円筒状軸受部を半割してその
分割部(2a),(2b)同士を位置ずれ状態で接合す
ることで軸受部(2)を形成でき、上記電磁石群
(7),(7)を位置ずれさせた軸受部(2)を容易に
製造することができる。
According to the second aspect of the present invention, since the bearing portion (2) is composed of a pair of half-split cylindrical divided portions (2a) and (2b), the cylindrical bearing portion of an ordinary magnetic bearing is divided into half. The bearing part (2) can be formed by joining the divided parts (2a) and (2b) in a misaligned state, and the bearing part (7) in which the electromagnet groups (7) and (7) are misaligned. 2) can be easily manufactured.

【0013】上記のように軸受部(2)での電磁石群
(7),(7)同士が軸方向に位置ずれしていると、各
電磁石群(7)における電磁石(6)の回転軸(1)に
対する磁力の作用位置もずれるので、回転軸(1)に両
電磁石群(7),(7)間の中央位置を中心とするモー
メントが発生する。請求項3の発明では、回転軸(1)
の軸方向に離れて設けられた1対の軸受部(2),
(2)の各々の電磁石群(7),(7)同士の位置ずれ
方向を互いに逆方向となっているので、各軸受部(2)
での上記モーメントを互いに逆方向にして相殺させるこ
とができ、制御系の構成を簡易にすることができる。
As described above, when the electromagnet groups (7), (7) in the bearing portion (2) are axially displaced from each other, the rotating shaft () of the electromagnet (6) in each electromagnet group (7) ( Since the acting position of the magnetic force on 1) is also displaced, a moment about the central position between both electromagnet groups (7) and (7) is generated on the rotating shaft (1). In the invention of claim 3, the rotating shaft (1)
A pair of bearing portions (2) provided apart from each other in the axial direction of
Since the position deviation directions of the electromagnet groups (7) and (7) in (2) are opposite to each other, the bearing portions (2)
The above-mentioned moments can be canceled in the opposite directions, and the structure of the control system can be simplified.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】(実施例1)図1は本発明の実施例1に係
る磁気軸受装置の全体構成を示し、(1)は例えばモー
タの回転軸で、この回転軸(1)は各々軸受孔(3)を
有する左右2つの磁気軸受からなる軸受部(2),
(2)に回転可能に支持されている。上記左右の軸受部
(2),(2)は各軸受孔(3)の中心(OH )を同一
線上に位置させるように回転軸(1)の軸方向に離れて
いる。
(Embodiment 1) FIG. 1 shows the overall structure of a magnetic bearing device according to Embodiment 1 of the present invention. (1) is, for example, a rotating shaft of a motor, and each rotating shaft (1) has a bearing hole ( Bearing part (2) consisting of two left and right magnetic bearings having 3),
It is rotatably supported by (2). The left and right bearing portions (2), (2) are separated from each other in the axial direction of the rotary shaft (1) so that the centers (OH) of the bearing holes (3) are located on the same line.

【0016】上記両軸受部(2),(2)はいずれも同
じ構成であり、図4及び図5に示す如く、多数枚の薄板
鉄板等を軸方向に積層してなる略円筒状のもので、その
内部に回転軸(1)を挿通させるための上記軸受孔
(3)が設けられている。軸受孔(3)の内面には軸受
孔(3)の中心(OH )に向かって突出する4対の突出
部(4),(4),…が各対を軸受孔(3)の中心(O
H )に対し対称に配置して形成され、図2及び図3に示
すように、この各突出部(4)には電磁コイル(5)が
多層に巻き付けられており、この電磁コイル(5)及び
突出部(4)により該突出部(4)を磁心とする4対の
電磁石(6),(6),…が軸受孔(3)の中心(OH
)に対し対向して設けられ、隣り合う電磁石(6),
(6)同士間で磁路(MP )を形成するように電磁コイ
ル(5)に通電することで、各電磁石(6)に回転軸
(1)を吸引するための磁界を発生させるようになって
いる。
Both the bearings (2), (2) have the same structure, and as shown in FIGS. 4 and 5, a substantially cylindrical shape formed by stacking a large number of thin iron plates etc. in the axial direction. The bearing hole (3) for inserting the rotary shaft (1) is provided therein. On the inner surface of the bearing hole (3), there are four pairs of protrusions (4), (4), ... Which protrude toward the center (OH) of the bearing hole (3), each pair being the center of the bearing hole (3) ( O
2). As shown in FIGS. 2 and 3, electromagnetic coils (5) are wound in multiple layers around each protrusion (4). , And the four pairs of electromagnets (6), (6), having the protrusions (4) as magnetic cores by the protrusions (4) are located at the center (OH) of the bearing hole (3).
), The electromagnets (6) adjacent to each other,
(6) By energizing the electromagnetic coil (5) so as to form a magnetic path (MP) between them, a magnetic field for attracting the rotating shaft (1) is generated in each electromagnet (6). ing.

【0017】上記軸受部(2)は、上記磁路(MP )を
形成する電磁石(6)の組を避けた部分で軸受孔(3)
の中心(OH )を通る平面(P)を境として1対の半割
円筒状の分割部(2a),(2b)に分割され、この両
分割部(2a),(2b)は軸受孔(3)の中心線方向
に所定寸法だけ互いにずれて分割面で一体に接合されて
いる。このことで、軸受孔(3)内の8つの電磁石
(6),(6),…は上記軸受孔(3)の中心(OH )
を通る平面(P)を境として4つの電磁石(6),
(6),…ずつの2つの電磁石群(7),(7)に分け
られていて、各分割部(2a),(2b)にそれぞれ電
磁石群(7),(7)が設けられ、両電磁石群(7),
(7)は一方の電磁石群(7)が他方の電磁石群(7)
よりも部分的に突出するように軸受孔(3)の中心線方
向に互いにずれている。
The bearing portion (2) is a portion of the bearing hole (3) where the electromagnet (6) forming the magnetic path (MP) is avoided.
Is divided into a pair of half-divided cylindrical divisions (2a) and (2b) with a plane (P) passing through the center (OH) of each of them as a boundary, and these divisions (2a) and (2b) are formed into bearing holes ( 3) The parts are joined to each other at the dividing surfaces while being displaced from each other by a predetermined dimension in the direction of the center line. As a result, the eight electromagnets (6), (6), ... Inside the bearing hole (3) are located at the center (OH) of the bearing hole (3).
4 electromagnets (6) with a plane (P) passing through as a boundary,
(6), are divided into two electromagnet groups (7) and (7), respectively, and the electromagnet groups (7) and (7) are respectively provided in the divided portions (2a) and (2b). Electromagnet group (7),
In (7), one electromagnet group (7) is the other electromagnet group (7)
They are offset from each other in the direction of the center line of the bearing hole (3) so as to partially project.

【0018】そして、図1に示す如く、左側軸受部
(2)における電磁石群(7),(7)同士の位置ずれ
方向が右側軸受部(2)における電磁石群(7),
(7)同士の位置ずれ方向に対し逆方向となっている。
As shown in FIG. 1, the electromagnet groups (7) in the left bearing portion (2) are displaced from each other by the electromagnet group (7) in the right bearing portion (2).
(7) The direction is opposite to the direction of positional displacement between the two.

【0019】さらに、図2及び図3に示すように、上記
各軸受部(2)の軸方向両側で各電磁石群(7)の相手
側電磁石群(7)に対するずれ方向と反対側にはそれぞ
れ2つずつの位置センサ(8),(8)が、磁路(MP
)を形成する2つの電磁石(6),(6)間の位置に
対応して配設されている。この各位置センサ(8)は、
例えば高周波信号の供給により回転軸(1)との距離を
計測して軸受孔(3)の中心(OH )に対する回転軸
(1)の変位量を検出する渦電流型のもので、軸受部
(2)全体として8つ設けられている。図1に示すよう
に、これら8つの位置センサ(8),(8),…の出力
信号は上記各電磁石群(7)の電磁石(6)の出力を制
御するための制御装置(10)に入力されており、制御
装置(10)において、位置センサ(8),(8),…
の各々により検出された回転軸(1)の変位量に応じて
回転軸(1)の軸心(OA )が両軸受部(2),(2)
の軸受孔(3),(3)の中心線と一致するように各電
磁石(6)の磁界強度を制御し、回転軸(1)を各軸受
部(2)の軸受孔(3)内で浮上させて支持するように
構成されている。
Further, as shown in FIGS. 2 and 3, on both sides in the axial direction of the bearings (2), the respective electromagnet groups (7) are arranged on the opposite side to the direction of deviation from the counterpart electromagnet group (7). Two position sensors (8) and (8) are connected to the magnetic path (MP
) Is formed so as to correspond to the position between the two electromagnets (6), (6). Each of these position sensors (8)
For example, an eddy current type of detecting the displacement amount of the rotating shaft (1) with respect to the center (OH) of the bearing hole (3) by measuring the distance from the rotating shaft (1) by supplying a high frequency signal, 2) Eight are provided as a whole. As shown in FIG. 1, the output signals of these eight position sensors (8), (8), ... Are fed to a control device (10) for controlling the output of the electromagnets (6) of the electromagnet groups (7). It is input, and in the control device (10), position sensors (8), (8), ...
According to the amount of displacement of the rotating shaft (1) detected by each of the bearings (2), (2)
The magnetic field strength of each electromagnet (6) is controlled so as to coincide with the center lines of the bearing holes (3) and (3) of the rotary shaft (1) in the bearing hole (3) of each bearing portion (2). It is configured to float and support.

【0020】したがって、上記実施例においては、モー
タの作動により回転軸(1)が両軸受部(2),(2)
の軸受孔(3),(3)内で回転するとき、各位置セン
サ(8)により軸受部(2)の軸受孔(3)の中心(O
H )からの回転軸(1)の変位量が検出され、制御装置
(10)において、この検出された回転軸(1)の変位
量に応じて回転軸(1)の軸心(OA )が両軸受部
(2),(2)の軸受孔(3),(3)の中心線と常に
一致するように各電磁石(6)の磁界強度が制御され、
この制御により回転軸(1)が各軸受部(2)の軸受孔
(3)内で浮上状態に支持される。
Therefore, in the above embodiment, the rotation shaft (1) is moved to the both bearing portions (2) and (2) by the operation of the motor.
When rotating in the bearing holes (3), (3) of the bearing part (2), the position sensor (8) causes the center (O
The amount of displacement of the rotary shaft (1) from H) is detected, and in the control device (10), the axial center (OA) of the rotary shaft (1) is determined according to the detected amount of displacement of the rotary shaft (1). The magnetic field strength of each electromagnet (6) is controlled so as to always coincide with the center lines of the bearing holes (3) and (3) of both bearing portions (2) and (2),
By this control, the rotating shaft (1) is supported in a floating state in the bearing hole (3) of each bearing portion (2).

【0021】この場合、各軸受部(2)においては、軸
受孔(3)の中心(OH )を通る平面(P)を境として
分けられた2つの電磁石群(7),(7)が軸受孔
(3)の中心線方向に互いに位置ずれし、各電磁石群
(7)の相手側電磁石群(7)に対するずれ方向と反対
側にそれぞれ2つずつの位置センサ(8),(8)が配
設されているので、この各位置センサ(8)は電磁石群
(7)の突出部分の陰に位置することとなる。その結
果、軸受部(2)としての軸方向の全長は長くなるもの
の、その両側に配置される位置センサ(8),(8),
…を含めた長さは位置ずれのない場合に比べ、位置セン
サ(8)の軸方向長さ及びその電磁石群(7)との距離
の分だけ短くなり、このことによって磁気軸受装置の軸
方向の省スペースを図ることができる。この省スペース
化により、例えば回転軸(1)の軸長を短くしてその曲
げ共振を高い回転数領域にシフトでき、高回転での制御
が可能となるともに、回転軸(1)の軸方向端部に配置
されるタッチダウンや保護ベアリングの収容に有利とな
る。
In this case, in each bearing portion (2), two electromagnet groups (7), (7) separated by a plane (P) passing through the center (OH) of the bearing hole (3) are used as bearings. There are two position sensors (8) and (8) that are displaced from each other in the direction of the center line of the hole (3) and are on the opposite side of the displacement direction of each electromagnet group (7) with respect to the counterpart electromagnet group (7). Since they are provided, each position sensor (8) is located behind the protruding portion of the electromagnet group (7). As a result, although the overall axial length of the bearing portion (2) becomes long, the position sensors (8), (8), arranged on both sides of the bearing portion (2),
The length including ... becomes shorter by the axial length of the position sensor (8) and its distance to the electromagnet group (7) than in the case where there is no misalignment, whereby the axial direction of the magnetic bearing device is reduced. It is possible to save space. Due to this space saving, for example, the axial length of the rotary shaft (1) can be shortened and its bending resonance can be shifted to a high rotational speed region, which enables control at a high rotational speed and the axial direction of the rotary shaft (1). This is advantageous for accommodating touchdowns and protective bearings placed at the ends.

【0022】また、各軸受部(2)が、軸受孔(3)の
中心(OH )を通る平面(P)を境として分割された1
対の分割部(2a),(2b)からなる構成であるの
で、上記電磁石群(7),(7)を位置ずれさせた軸受
部(2)を作製する場合、通常の磁気軸受で用いられる
円筒状軸受部を半割してその分割部(2a),(2b)
同士を位置ずれ状態で接合すればよく、上記軸受部
(2)の製造が容易となる。
Further, each bearing portion (2) is divided by a plane (P) passing through the center (OH) of the bearing hole (3) as a boundary.
Since it is composed of a pair of divided parts (2a) and (2b), it is used in a normal magnetic bearing when the bearing part (2) in which the electromagnet groups (7) and (7) are displaced is produced. Cylindrical bearing part is divided in half and its divided parts (2a), (2b)
It suffices to bond the two in a positionally displaced state, which facilitates the manufacture of the bearing portion (2).

【0023】上記のように各軸受部(2)での電磁石群
(7),(7)同士が軸方向に位置ずれしていると、各
電磁石群(7)における電磁石(6)の回転軸(1)に
対する磁力の作用位置も軸方向にずれることから、回転
軸(1)に両電磁石群(7),(7)間の中央を中心と
するモーメントが発生する。しかし、図1に示すよう
に、回転軸(1)の軸方向に離れて設けられた1対の軸
受部(2),(2)の各々における電磁石群(7),
(7)同士の位置ずれ方向が互いに逆方向であるので、
回転軸(1)に対し左側の軸受部(2)では図で時計回
り方向のモーメント(M)が、また右側の軸受部(2)
では左側とは逆の反時計回り方向のモーメント(M)が
それぞれ発生して、両モーメント(M),(M)が互い
に打ち消し合うようになり、その分、制御装置(10)
での制御系を簡易にすることができる。
When the electromagnet groups (7) and (7) in each bearing portion (2) are axially displaced as described above, the rotating shaft of the electromagnet (6) in each electromagnet group (7) is displaced. Since the acting position of the magnetic force on (1) is also displaced in the axial direction, a moment is generated on the rotating shaft (1) about the center between both electromagnet groups (7) and (7). However, as shown in FIG. 1, the electromagnet group (7) in each of the pair of bearings (2), (2) provided apart from each other in the axial direction of the rotating shaft (1),
(7) Since the displacement directions of the two are opposite to each other,
In the bearing (2) on the left side of the rotating shaft (1), a moment (M) in the clockwise direction in the figure is generated, and on the right side of the bearing (2)
Then, a counterclockwise moment (M) opposite to that on the left side is generated, and both moments (M) and (M) cancel each other out.
The control system in can be simplified.

【0024】さらに、1対の位置センサ(8),(8)
が各軸受部(2)の軸方向両側に配置されているので、
軸受部(2)の軸方向中央での回転軸(1)の位置を正
確に検出でき、回転軸(1)の曲げモードを検出するこ
とができる。
Further, a pair of position sensors (8), (8)
Are arranged on both sides in the axial direction of each bearing (2),
The position of the rotary shaft (1) at the axial center of the bearing portion (2) can be accurately detected, and the bending mode of the rotary shaft (1) can be detected.

【0025】尚、この実施例1では、円筒状軸受部を半
割してその分割部(2a),(2b)同士を位置ずれ状
態で接合することで、電磁石群(7),(7)を位置ず
れさせた軸受部(2)を作製するようにしているが、こ
の分割型の他、例えば多数枚の薄板鉄板等を軸方向に積
層するときに、薄板鉄板を軸方向中間部では円環状のも
のを積層し、両端部では半割円環状のものをそれぞれ軸
受孔(3)の中心(OH )に対向状態で積層して、一体
型の軸受部(2)を作製するようにしてもよい。
In the first embodiment, the cylindrical bearing portion is divided in half and the divided portions (2a) and (2b) are joined together in a positionally displaced manner, whereby the electromagnet groups (7) and (7) are joined. The bearing part (2) is manufactured by shifting the position of the sheet metal. However, in addition to this split type, when, for example, a large number of thin iron plates are laminated in the axial direction, the thin iron plates are circular at the axial middle part. An annular bearing is laminated at both ends, and half-circular annular ones are laminated at both ends at the center (OH) of the bearing hole (3) so as to face each other to form an integral bearing (2). Good.

【0026】(実施例2)図6及び図7は実施例2を示
している(尚、図2及び図3と同じ部分については同じ
符号を付してその詳細な説明は省略する)。
(Second Embodiment) FIGS. 6 and 7 show a second embodiment (note that the same parts as those in FIGS. 2 and 3 are designated by the same reference numerals and detailed description thereof will be omitted).

【0027】この実施例では、上記各位置センサ(8)
とその軸方向に対向する2つの電磁石(6),(6)と
の間に鉄材等からなる板状の磁性部材(12)が配置さ
れている。この磁性部材(12)は外周側(回転軸
(1)と反対側)の端部で図示しないモータハウジング
に固定支持され、内端部(回転軸(1)側)は電磁石
(6)側に回転軸(1)と平行に折り曲げられている。
In this embodiment, each of the above position sensors (8)
A plate-shaped magnetic member (12) made of an iron material or the like is arranged between the two electromagnets (6) and (6) facing each other in the axial direction. This magnetic member (12) is fixedly supported by a motor housing (not shown) at the end portion on the outer peripheral side (the side opposite to the rotating shaft (1)), and the inner end portion (rotating shaft (1) side) is on the electromagnet (6) side. It is bent parallel to the axis of rotation (1).

【0028】したがって、この実施例においては、各電
磁石(6)の電磁コイル(5)で発生した磁束(図で破
線にて示す)の一部が磁心から洩れても、その洩れ磁束
を透磁率の高い磁性部材(12)に集中させて磁気シー
ルド効果を得ることができ、洩れ磁束が位置センサ
(8)に作用するのを防ぐことができる。その結果、位
置センサ(8)を洩れ磁束が弱まる位置まで電磁石
(6)から遠ざけたり(このことは軸方向のスペースが
大きくなる問題がある)、電磁石(6)への電流低減や
磁気回路のサイズ増大等により磁気回路中の磁束密度を
低下させたり(制御力の低下やサイズ上の問題が生じ
る)することなく、位置センサ(8)の洩れ磁束による
影響を抑えて、回転軸(1)の位置検出不良や制御の不
安定化を有効に防止でき、信頼性の向上を図ることがで
きる利点がある。
Therefore, in this embodiment, even if a part of the magnetic flux (indicated by the broken line in the figure) generated in the electromagnetic coil (5) of each electromagnet (6) leaks from the magnetic core, the leaked magnetic flux has a magnetic permeability. The magnetic shield effect can be obtained by concentrating on the high magnetic member (12), and the leakage magnetic flux can be prevented from acting on the position sensor (8). As a result, the position sensor (8) is moved away from the electromagnet (6) to a position where the magnetic flux is weakened (this causes a problem that the space in the axial direction becomes large), the current to the electromagnet (6) is reduced, and the magnetic circuit Without decreasing the magnetic flux density in the magnetic circuit due to increase in size or the like (reducing control force and size problems), the influence of the leakage magnetic flux of the position sensor (8) is suppressed, and the rotating shaft (1) There is an advantage that it is possible to effectively prevent position detection failure and control instability, and to improve reliability.

【0029】(実施例3)図8及び図9は実施例3を示
し、上記実施例2のような磁性部材(12)に代え、位
置センサ(8)に対し電磁石(6)と反対側に永久磁石
(13)を配置支持し、この磁石(13)からの磁束が
電磁石(6)からの洩れ磁束に位置センサ(8)の位置
で逆向きに作用してその洩れ磁束を打ち消すようにした
ものである。従って、この実施例でも実施例2と同様の
効果が得られる。
(Embodiment 3) FIGS. 8 and 9 show Embodiment 3 in which the magnetic member (12) as in Embodiment 2 is replaced with a position sensor (8) on the side opposite to the electromagnet (6). The permanent magnet (13) is arranged and supported, and the magnetic flux from this magnet (13) acts in the opposite direction to the leakage magnetic flux from the electromagnet (6) at the position of the position sensor (8) to cancel the leakage magnetic flux. It is a thing. Therefore, also in this embodiment, the same effect as that of the second embodiment can be obtained.

【0030】(実施例4)図10は実施例4を示し、上
記実施例2と同じ機能を持つ磁性部材(12)を、回転
軸(1)の軸方向の移動を抑制する磁気ダンパに適用し
たものである。すなわち、回転軸(1)外周の所定位置
には磁気回路形成部材(15)が回転一体に取り付けら
れ、この部材(15)の外周面には溝部(16)が形成
され、この溝部(16)の両側側面にはそれぞれ環状の
永久磁石(17),(18)が回転軸(1)の軸方向に
間隔をあけて対向して取付固定されている。また、上記
両磁石(17),(18)間にはリング板状の導板(1
9)の内周部が磁石(17),(18)との間に間隙を
あけて配置され、この導板(19)は外周部にてハウジ
ング(図示せず)に固定支持されており、両磁石(1
7),(18)からの磁束を磁気回路形成部材(15)
を介して導板(19)に作用させることで、両磁石(1
7),(18)を導板(19)に対し非接触状態に浮上
させて、回転軸(1)の軸方向の移動を規制する。(2
0)はモータのロータである。
(Embodiment 4) FIG. 10 shows Embodiment 4 in which the magnetic member (12) having the same function as that of Embodiment 2 is applied to a magnetic damper for suppressing the axial movement of the rotary shaft (1). It was done. That is, a magnetic circuit forming member (15) is attached to a predetermined position on the outer circumference of the rotary shaft (1) so as to rotate integrally, and a groove portion (16) is formed on the outer peripheral surface of the member (15). On both side surfaces, annular permanent magnets (17) and (18) are attached and fixed so as to face each other at intervals in the axial direction of the rotating shaft (1). A ring-shaped guide plate (1) is provided between the magnets (17) and (18).
The inner peripheral portion of 9) is arranged with a gap between the magnets (17) and (18), and the guide plate (19) is fixedly supported by the housing (not shown) at the outer peripheral portion. Both magnets (1
The magnetic flux from 7) and (18) is applied to the magnetic circuit forming member (15).
By acting on the conducting plate (19) via the
7) and (18) are levitated in a non-contact state with respect to the guide plate (19) to regulate the axial movement of the rotating shaft (1). (2
0) is the rotor of the motor.

【0031】そして、上記磁気回路形成部材(15)と
モータロータ(20)との間には、モータで発生する磁
気を基にモータの運転状態を検出するためのモータ制御
用のホールセンサ(21)がハウジングに取付支持され
ている。この実施例では、上記磁気回路形成部材(1
5)からホールセンサ(21)側に洩れる洩れ磁束をシ
ールドするために、磁気回路形成部材(15)とホール
センサ(21)との間に皿形状の磁性部材(12)が配
置され、この磁性部材(12)は外周縁部にてモータハ
ウジングに固定支持されている。
Between the magnetic circuit forming member (15) and the motor rotor (20), a hall sensor (21) for controlling the motor for detecting the operating state of the motor based on the magnetism generated by the motor. Are mounted and supported on the housing. In this embodiment, the magnetic circuit forming member (1
A dish-shaped magnetic member (12) is arranged between the magnetic circuit forming member (15) and the hall sensor (21) in order to shield a leakage magnetic flux leaking from the hole sensor (21) to the hall sensor (21). The member (12) is fixedly supported on the motor housing at the outer peripheral edge portion.

【0032】したがって、この実施例の場合、磁石(1
7),(18)により形成されて磁気回路形成部材(1
5)を通る磁束の一部がホールセンサ(21)側に洩れ
ても、その洩れ磁束を磁性部材(12)でシールドで
き、洩れ磁束によるホールセンサ(21)への影響を低
減してモータの運転状態を正確に検出でき、モータ制御
の信頼性を高めることができる。
Therefore, in the case of this embodiment, the magnet (1
The magnetic circuit forming member (1) formed by (7) and (18).
Even if part of the magnetic flux passing through 5) leaks to the Hall sensor (21) side, the leak magnetic flux can be shielded by the magnetic member (12), and the influence of the leak magnetic flux on the Hall sensor (21) can be reduced to reduce the motor The operating state can be accurately detected, and the reliability of motor control can be improved.

【0033】(実施例5)図11は実施例5を示し、上
記実施例4における磁気ダンパに対し、上記実施例3と
同様に、ホールセンサ(21)側方に永久磁石(13)
を配置支持し、この永久磁石(13)からの磁束と、磁
気回路形成部材(15)から漏れる洩れ磁束とをホール
センサ(21)で打ち消し合わせるようにしたものであ
る。従って、この実施例でも実施例4と同様の効果が得
られる。
(Fifth Embodiment) FIG. 11 shows a fifth embodiment of the present invention, which is different from the magnetic damper in the fourth embodiment in the same manner as in the third embodiment.
Is arranged and supported, and the magnetic flux from the permanent magnet (13) and the leakage magnetic flux leaking from the magnetic circuit forming member (15) are canceled by the Hall sensor (21). Therefore, also in this embodiment, the same effect as that of the fourth embodiment can be obtained.

【0034】[0034]

【発明の効果】以上の如く、請求項1の発明によると、
磁気軸受の軸受孔内周に配置される複数対の電磁石を軸
受孔の中心を通る平面で2群に分けて両群を軸方向にず
らし、そのずらしにより生じたスペースにそれぞれ回転
軸の変位を検出する位置検出手段を配置したことによ
り、各位置検出手段を電磁石群の突出部分の陰に配置し
て、軸受部とその両側の位置検出手段とを含めた軸方向
長さを短くでき、軸方向の省スペースを図ることができ
る。このため、回転軸の軸長を短くして、その曲げ共振
を高い回転数領域にシフトでき、高回転での制御が可能
となる。また、電磁石の軸方向両側に配置された1対の
位置検出手段による回転軸の変位の検出により回転軸の
曲げモードを検出することができる。
As described above, according to the invention of claim 1,
A plurality of pairs of electromagnets arranged on the inner circumference of the bearing hole of the magnetic bearing are divided into two groups on a plane passing through the center of the bearing hole, and both groups are axially displaced, and the displacement of the rotary shaft is respectively caused in the spaces generated by the displacement. By arranging the position detecting means for detecting, each position detecting means is arranged behind the protruding portion of the electromagnet group, and the axial length including the bearing portion and the position detecting means on both sides thereof can be shortened. It is possible to save space in the direction. Therefore, the axial length of the rotary shaft can be shortened, the bending resonance can be shifted to a high rotational speed region, and control at high rotational speed becomes possible. Further, the bending mode of the rotating shaft can be detected by detecting the displacement of the rotating shaft by the pair of position detecting means arranged on both sides of the electromagnet in the axial direction.

【0035】請求項2の発明によると、軸受部を1対の
半割円筒状の分割部からなし、各分割部にそれぞれ電磁
石群を設けたことにより、通常の磁気軸受の円筒状軸受
部を半割してなる分割部同士を位置ずれ状態で接合する
だけで軸受部を形成でき、電磁石群を位置ずれさせた軸
受部を容易に製造することができる。
According to the second aspect of the present invention, the bearing portion is made up of a pair of half-divided cylindrical divided portions, and each divided portion is provided with an electromagnet group. The bearing part can be formed only by joining the divided parts that are divided in half in a misaligned state, and the bearing part in which the electromagnet group is misaligned can be easily manufactured.

【0036】請求項3の発明によれば、軸受部を1対と
して両軸受部を各々の軸受孔の中心が同一線上に位置さ
せるように回転軸の軸方向に離れて設け、一方の軸受部
の電磁石群同士の位置ずれ方向を他方の軸受部に対し逆
方向としたことにより、軸受部での電磁石群同士の位置
ずれに伴い回転軸に両電磁石群間の中央を中心とするモ
ーメントが発生しても、このモーメントを各軸受部で互
いに逆方向にして相殺させることができ、制御系の構成
を簡易にすることができる。
According to the third aspect of the present invention, the bearing portions are provided as a pair, and both bearing portions are provided apart from each other in the axial direction of the rotary shaft so that the centers of the respective bearing holes are located on the same line. By setting the direction of displacement of the electromagnet groups in the opposite direction to that of the other bearing, a moment around the center between the electromagnet groups is generated on the rotating shaft due to the displacement of the electromagnet groups in the bearing. Even in this case, the moments can be offset in the respective bearing portions in opposite directions to cancel each other, and the configuration of the control system can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a first embodiment of the present invention.

【図2】実施例1における各軸受部の側面図である。FIG. 2 is a side view of each bearing portion in the first embodiment.

【図3】図2のIII ―III 線断面図である。FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】実施例1における各軸受部の磁心の側面図であ
る。
FIG. 4 is a side view of a magnetic core of each bearing portion in the first embodiment.

【図5】図4のV―V線断面図である。5 is a sectional view taken along line VV of FIG.

【図6】実施例2における要部断面図である。FIG. 6 is a cross-sectional view of essential parts in a second embodiment.

【図7】図6のVII ―VII 線矢視展開図である。FIG. 7 is a development view taken along the line VII-VII in FIG.

【図8】実施例3を示す図6相当図である。FIG. 8 is a view corresponding to FIG. 6 showing a third embodiment.

【図9】図8のIX―IX線矢視展開図である。9 is a development view taken along the line IX-IX in FIG.

【図10】実施例4における要部断面図である。FIG. 10 is a cross-sectional view of essential parts in a fourth embodiment.

【図11】実施例5を示す図10相当図である。FIG. 11 is a view corresponding to FIG. 10 showing the fifth embodiment.

【符号の説明】[Explanation of symbols]

(1) 回転軸 (2) 軸受部 (2a),(2b) 分割部 (3) 軸受孔 (OH ) 中心 (6) 電磁石 (7) 電磁石群 (8) 位置センサ(位置検出手段) (10) 制御装置 (1) Rotating shaft (2) Bearing part (2a), (2b) Divided part (3) Bearing hole (OH) Center (6) Electromagnet (7) Electromagnet group (8) Position sensor (position detection means) (10) Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 広道 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 菅原 宏 大阪府堺市築港新町3丁12番地 ダイキン 工業株式会社堺製作所臨海工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiromichi Ueno 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industries, Ltd. Kanaoka Factory, Sakai Manufacturing Co., Ltd. (72) Hiroshi Sugawara, 3-12, Chikko Shinmachi, Sakai City, Osaka Prefecture Daikin Industries Sakai Seisakusho Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転軸(1)を挿通させる軸受孔(3)
を有する軸受部(2)と、上記軸受孔(3)の内面に軸
受孔(3)の中心(OH )に対して対向配置され、磁界
を発生させる複数対の電磁石(6),(6),…と、軸
受孔(3)の中心(OH )に対する回転軸(1)の変位
量を検出する位置検出手段(8),(8),…とを備
え、位置検出手段(8),(8),…により検出された
回転軸(1)の変位量に応じて各電磁石(6)の磁界強
度を制御し、回転軸(1)を軸受孔(3)内で浮上させ
て支持するようにした磁気軸受装置において、 上記電磁石(6),(6),…は軸受孔(3)の中心
(OH )を通る平面(P)を境として2つの電磁石群
(7),(7)に分けられていて、両電磁石群(7),
(7)は一方の電磁石群(7)が他方の電磁石群(7)
よりも部分的に突出するように軸受孔(3)の中心線方
向に互いにずれており、 各電磁石群(7)の相手側電磁石群(7)に対するずれ
方向と反対側にそれぞれ上記位置検出手段(8),
(8),…が配設されていることを特徴とする磁気軸受
装置。
1. A bearing hole (3) through which a rotary shaft (1) is inserted.
And a plurality of pairs of electromagnets (6), (6) arranged to face the center (OH) of the bearing hole (3) on the inner surface of the bearing hole (3) and generating a magnetic field. , And position detecting means (8), (8), for detecting the amount of displacement of the rotating shaft (1) with respect to the center (OH) of the bearing hole (3), and the position detecting means (8), ( 8), ... The magnetic field strength of each electromagnet (6) is controlled according to the displacement amount of the rotating shaft (1) detected so that the rotating shaft (1) is levitated and supported in the bearing hole (3). In the above magnetic bearing device, the electromagnets (6), (6), ... Are divided into two electromagnet groups (7), (7) with a plane (P) passing through the center (OH) of the bearing hole (3) as a boundary. Separated, both electromagnet groups (7),
In (7), one electromagnet group (7) is the other electromagnet group (7)
Are offset from each other in the direction of the center line of the bearing hole (3) so as to project more partially than each other, and the position detection means is provided on the side opposite to the direction in which each electromagnet group (7) is displaced with respect to the mating electromagnet group (7). (8),
(8), ... Are provided in the magnetic bearing device.
【請求項2】 請求項1記載の磁気軸受装置において、 軸受部(2)は1対の半割円筒状の分割部(2a),
(2b)からなり、各分割部(2a),(2b)にそれ
ぞれ電磁石群(7),(7)が設けられていることを特
徴とする磁気軸受装置。
2. The magnetic bearing device according to claim 1, wherein the bearing portion (2) is a pair of half split cylindrical split portions (2a),
A magnetic bearing device comprising (2b), wherein electromagnet groups (7) and (7) are provided in each of the divided portions (2a) and (2b).
【請求項3】 請求項1又は2記載の磁気軸受装置にお
いて、 1対の軸受部(2),(2)が各々の軸受孔(3)の中
心(OH )を同一線上に位置させるように回転軸(1)
の軸方向に離れて設けられており、 一方の軸受部(2)の電磁石群(7),(7)同士の位
置ずれ方向が他方の軸受部(2)に対し逆方向となって
いることを特徴とする磁気軸受装置。
3. The magnetic bearing device according to claim 1 or 2, wherein the pair of bearing portions (2), (2) locate the center (OH) of each bearing hole (3) on the same line. Rotating shaft (1)
Of the electromagnet groups (7), (7) of one bearing portion (2) are opposite to the other bearing portion (2). Magnetic bearing device characterized by.
JP4175449A 1992-07-02 1992-07-02 Magnetic bearing device Expired - Fee Related JP2792350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175449A JP2792350B2 (en) 1992-07-02 1992-07-02 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175449A JP2792350B2 (en) 1992-07-02 1992-07-02 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH0617830A true JPH0617830A (en) 1994-01-25
JP2792350B2 JP2792350B2 (en) 1998-09-03

Family

ID=15996274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175449A Expired - Fee Related JP2792350B2 (en) 1992-07-02 1992-07-02 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP2792350B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041752A1 (en) * 2012-09-12 2014-03-20 ダイキン工業株式会社 Magnetic bearing
KR20180134630A (en) * 2017-06-09 2018-12-19 코웨이 주식회사 Apparatus for detecting separation of auger of auger type ice maker
WO2019008815A1 (en) * 2017-07-04 2019-01-10 株式会社日立製作所 Control device and control method for magnetic bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041752A1 (en) * 2012-09-12 2014-03-20 ダイキン工業株式会社 Magnetic bearing
JP2014074492A (en) * 2012-09-12 2014-04-24 Daikin Ind Ltd Magnetic bearing
CN104603482A (en) * 2012-09-12 2015-05-06 大金工业株式会社 Magnetic bearing
US9964146B2 (en) 2012-09-12 2018-05-08 Daikin Industries, Ltd. Magnetic bearing having reduced leakage magnetic flux
KR20180134630A (en) * 2017-06-09 2018-12-19 코웨이 주식회사 Apparatus for detecting separation of auger of auger type ice maker
WO2019008815A1 (en) * 2017-07-04 2019-01-10 株式会社日立製作所 Control device and control method for magnetic bearing
US11137026B2 (en) 2017-07-04 2021-10-05 Hitachi, Ltd. Control device for magnetic bearing and control method

Also Published As

Publication number Publication date
JP2792350B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP4938468B2 (en) Device for magnetically levitating a rotor
US6563244B1 (en) Composite-type electromagnet and radial magnetic bearing
EP0130541B1 (en) Flywheel apparatus
US8378543B2 (en) Generating electromagnetic forces in large air gaps
EP0364993B1 (en) Magnetic bearing system
US20030001447A1 (en) Magnetic bearing system
JP2007056892A (en) Magnetic bearing
JP2005061578A (en) Magnetic bearing
US9683601B2 (en) Generating radial electromagnetic forces
US6570285B2 (en) Magnetic bearing apparatus having a protective non-magnetic can
JP5192271B2 (en) Magnetic bearing device
JP4466262B2 (en) Rotor structure of axial gap motor
WO2018211913A1 (en) Vacuum pump, magnetic bearing device for use with vacuum pump, and annularly-arranged electromagnets
JP2792350B2 (en) Magnetic bearing device
JPS6146683B2 (en)
JPH0670526A (en) Brushless motor
CN111173838A (en) Radial non-coupling three-degree-of-freedom direct-current hybrid magnetic bearing
CN112983988B (en) Composite magnetic suspension bearing and magnetic suspension bearing system
CN212660011U (en) Stator and servo motor comprising same
JPH11101233A (en) Magnetic bearing device
JP6448354B2 (en) Rotor sensor target for magnetic bearings
CN113783320A (en) Stator and servo motor comprising same
US20070132328A1 (en) Actuator
JP2004316756A (en) Five-axis control magnetic bearing
US4914334A (en) Permanent magnet DC machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees