JPH061780A - Production of glycidyl methacrylate - Google Patents

Production of glycidyl methacrylate

Info

Publication number
JPH061780A
JPH061780A JP15678892A JP15678892A JPH061780A JP H061780 A JPH061780 A JP H061780A JP 15678892 A JP15678892 A JP 15678892A JP 15678892 A JP15678892 A JP 15678892A JP H061780 A JPH061780 A JP H061780A
Authority
JP
Japan
Prior art keywords
reaction
methanol
boiling point
gma
mma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15678892A
Other languages
Japanese (ja)
Other versions
JP3081707B2 (en
Inventor
Hiroshi Koyama
弘 小山
Etsuo Takemoto
悦夫 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP04156788A priority Critical patent/JP3081707B2/en
Publication of JPH061780A publication Critical patent/JPH061780A/en
Application granted granted Critical
Publication of JP3081707B2 publication Critical patent/JP3081707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To produce high-quality glycidyl methacrylate having excellent reaction result by subjecting glycidol and methyl methacrylate to ester exchange reaction. CONSTITUTION:In production of glycidyl methacrylate by subjecting glycidol and methyl methacrylate to ester exchange reaction, the reaction is carried out in the presence of (A) an azeotropic agent with methanol, having a boiling point T2 and (B) a tertiary amine having a boiling point T3, satisfying the following correlation T1<T2<T3<T4 when the boiling point of methanol is T1 and the boiling point of methyl methacrylate is T4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、グリシド−ル(以下、
GDと略)とメタクリル酸メチル(以下、MMAと略)
とのエステル交換反応によってメタクリル酸グリシジル
(以下、GMAと略)を製造する方法に関する。GMA
は分子中に反応性の高い二重結合およびエポキシ基を有
しており、塗料用樹脂原料などに使用される。
BACKGROUND OF THE INVENTION The present invention relates to glycidyl (hereinafter,
GD) and methyl methacrylate (hereinafter abbreviated as MMA)
The present invention relates to a method for producing glycidyl methacrylate (hereinafter abbreviated as GMA) by transesterification reaction with. GMA
Has a highly reactive double bond and an epoxy group in the molecule and is used as a resin material for paints.

【0002】[0002]

【従来の技術】GDとMMAとのエステル交換反応によ
ってGMAを製造する方法はこれまでに多く知られてお
り、一般的には、塩基性触媒の存在下、副生するメタノ
−ルを蒸留によって系外に除去しながら反応を行う。
2. Description of the Related Art Many methods for producing GMA by transesterification of GD and MMA have been known so far, and generally, by-product methanol is distilled by distillation in the presence of a basic catalyst. The reaction is performed while removing it outside the system.

【0003】触媒としてはアルカリ金属化合物(例え
ば、特公昭53−6133/デグッサ)、アルカリ土類
金属化合物(例えば特公昭55−102575/三井東
圧化学)、アミン類(特開昭55−94379/ダイセ
ル化学工業)、ホスフィン類(特公昭47−38421
/日本合成化学工業)などが知られている。
As the catalyst, an alkali metal compound (for example, Japanese Patent Publication No. 53-6133 / Degussa), an alkaline earth metal compound (for example, Japanese Patent Publication No. 55-102575 / Mitsui Toatsu Chemical), amines (JP-A-55-94379 /). Daicel Chemical Industries, phosphines (Japanese Patent Publication No. 47-38421)
/ Japan Synthetic Chemical Industry) etc. are known.

【0004】また、本発明の触媒成分である、メタノ−
ルとMMAとの中間沸点を有する第3級アミンとして、
例えばトリエチルアミンが特開昭55−94379/ダ
イセル化学工業、2頁、第5欄、下から1行目にpkb
3〜8の脂肪族第3級アミンの1例として開示されてい
る。
Further, the catalyst component of the present invention, methano-
As a tertiary amine having an intermediate boiling point of
For example, triethylamine is disclosed in JP-A-55-94379 / Daicel Chemical Industry, page 2, column 5, line 1 from the bottom, pkb.
It is disclosed as an example of 3-8 aliphatic tertiary amines.

【0005】一方、本発明のもう一つの成分である、メ
タノ−ルとMMAとの中間沸点を有するメタノ−ルとの
共沸剤として、例えば、n−ヘキサンが特開昭55−1
02575/三井東圧化学、3頁、第7欄、9行目に、
不活性な溶媒の1例として開示されている。しかしなが
ら、本発明において、メタノ−ルの沸点をT1、メタク
リル酸メチルの沸点をT4とした時に、下記の関係式
(1) T1<T2<T3<T4 関係式(1) を満足する、(A)沸点T2を有する、メタノ−ルとの
共沸剤、および、(B)沸点T3を有する、第3級アミ
ンを共存させないで反応させる場合には以下のような欠
点があることがわかった。上記(A)の沸点T2を有す
るメタノ−ルとの共沸剤が存在し、(B)の沸点T3を
有する第3級アミンが存在しない場合(したがって、他
の沸点領域の触媒を使用)には、後の比較例3で示すよ
うに触媒の沸点がMMAよりも高い場合にはGMAの精
製工程でGDが再発生し、製品中に混入し、製品品質を
悪化させるといった欠点がある。
On the other hand, as an azeotroping agent for another component of the present invention, methanol and methanol having an intermediate boiling point of MMA, for example, n-hexane is disclosed in JP-A-55-1.
02575 / Mitsui Toatsu Chemicals, page 3, column 7, line 9,
It is disclosed as an example of an inert solvent. However, in the present invention, when the boiling point of methanol is T1 and the boiling point of methyl methacrylate is T4, the following relational expression (1) T1 <T2 <T3 <T4 relational expression (1) is satisfied, (A It has been found that the following drawbacks occur when the reaction is carried out in the absence of the azeotropic agent with methanol having a boiling point T2 and the tertiary amine (B) having a boiling point T3. In the case where the azeotropic agent with the methanol having the boiling point T2 in the above (A) is present and the tertiary amine having the boiling point T3 in the (B) is not present (therefore, a catalyst in another boiling range is used). However, as shown in Comparative Example 3 below, when the boiling point of the catalyst is higher than that of MMA, GD is regenerated in the purification step of GMA and is mixed in the product, which deteriorates the product quality.

【0006】また、触媒の沸点がメタノ−ルよりも低い
場合には、反応領域である反応液中に存在しないため、
反応が進行しないものと推定される。一方、上記(B)
の沸点T3を有する第3級アミンが存在し、(A)の沸
点T2を有するメタノ−ルとの共沸剤が存在しない場合
には、後の比較例1および比較例2で示すように、触媒
である第3級アミンを反応領域である反応液(缶液)中
に存在させるように(該第3級アミンを留出させないよ
うに)反応を行うと反応は進行するが、GMAとの分離
が困難なMMAへのメタノ−ル付加物が増加(以下LB
1と略、このLB1がGMAの品質を悪化させることは
特開昭55−127381/三井東圧化学、2頁、第6
欄、上から3行目〜10行目に記載されている)し(比
較例1)、また、副生するメタノ−ルを反応領域である
反応液(缶液)から速やかに留出させるように(メタノ
−ルを積極的に留出させ、反応液中に存在させないよう
に)反応を行うと反応が進行しにくい(比較例2)とい
った欠点がある。
Further, when the boiling point of the catalyst is lower than that of methanol, it does not exist in the reaction solution which is the reaction region.
It is presumed that the reaction does not proceed. On the other hand, the above (B)
When a tertiary amine having a boiling point T3 of (A) is present and an azeotropic agent with the methanol having a boiling point T2 of (A) is not present, as shown in Comparative Examples 1 and 2 below, When the reaction is carried out so that the tertiary amine which is the catalyst is present in the reaction liquid (can liquid) which is the reaction region (not to distill the tertiary amine), the reaction proceeds, but with the reaction with GMA. MMA addition to MMA, which is difficult to separate, increases (hereinafter LB
1), this LB1 deteriorates the quality of GMA. JP-A-55-127381 / Mitsui Toatsu Chemicals, page 2, page 6
Column, 3rd to 10th lines from the top) (Comparative Example 1), and so that the by-produced methanol is rapidly distilled from the reaction solution (can solution) in the reaction region. However, there is a drawback that the reaction is difficult to proceed (Comparative Example 2) when the reaction is carried out (so that the methanol is positively distilled out so as not to exist in the reaction solution).

【0007】[0007]

【発明が解決しようとする課題】このように、それぞ
れ、独立して従来技術に開示された上記(A)の沸点T
2を有するメタノ−ルとの共沸剤、または、上記(B)
の沸点T3を有する第3級アミンの単独使用はGDとM
MAとのエステル交換反応によってGMAを製造する際
に欠点があった。
As described above, the boiling point T of (A) disclosed in the prior art is independently disclosed.
An azeotropic agent with a methanol having 2 or the above (B)
Use of a tertiary amine having a boiling point T3 of GD and M
There were drawbacks in producing GMA by transesterification with MA.

【0008】[0008]

【発明の目的】本発明の目的は、GDとMMAとのエス
テル交換反応によってGMAを製造する方法に於いて、
前記従来技術の有する欠点を克服し、高い反応速度でG
MAが得られ、GMAとの分離が困難なLB1の副生が
少なく、GMAの精製工程でもGDの再発生によるGM
A品質の低下(発生したGDのGMAへの混入による)
のないGMAの製造方法を開発することにある。
An object of the present invention is to provide a method for producing GMA by transesterification reaction between GD and MMA,
It overcomes the drawbacks of the prior art and has a high reaction rate.
MA is obtained, there are few LB1 by-products that are difficult to separate from GMA, and GM is generated by GD regeneration even in the GMA purification step.
A Quality degradation (due to mixing of generated GD with GMA)
It is to develop a manufacturing method of GMA that does not have any.

【0009】[0009]

【発明を解決するための手段】すなわち、本発明は、
「グリシド−ルとメタクリル酸メチルとのエステル交換
反応によって、メタクリル酸グリシジルを製造する方法
に於いて、メタノ−ルの沸点をT1、メタクリル酸メチ
ルの沸点をT4とした時に、下記の関係式(1) T1<T2<T3<T4 関係式(1) を満足する、(A)沸点T2を有する、メタノ−ルとの
共沸剤、および(B)沸点T3を有する、第3級アミン
の存在下に反応を行うことを特徴とするメタクリル酸グ
リシジルの製造方法」である。
That is, the present invention is
"In the method for producing glycidyl methacrylate by transesterification of glycidyl and methyl methacrylate, when the boiling point of methanol is T1 and the boiling point of methyl methacrylate is T4, the following relational expression ( 1) T1 <T2 <T3 <T4 The presence of (A) an azeotropic agent with methanol having a boiling point T2, and (B) a tertiary amine having a boiling point T3, which satisfies the relational expression (1). The method for producing glycidyl methacrylate is characterized in that the reaction is performed below. "

【0010】本発明は、以下の考察、および実験結果か
ら生み出された。
The present invention was created from the following considerations and experimental results.

【0011】(ア)反応の際、ポイントとなることは反
応によって副生するメタノ−ルを速やかに留出させ、反
応領域である反応液(缶液)中のメタノ−ル濃度を低く
保つことである。反応液(缶液)中に存在するメタノ−
ルはエステル交換触媒である塩基性物質の触媒作用でメ
トキシアニオンを生じ、GMAやMMAのメアクリル二
重結合に付加してしまい、GMAやMMAのメタノ−ル
付加物を副生してしまう。
(A) In the reaction, the point is to promptly distill off the methanol by-produced by the reaction and keep the concentration of methanol in the reaction solution (can solution) in the reaction region low. Is. Methanol contained in the reaction solution (can solution)
Is a transesterification catalyst, which produces a methoxy anion by the catalytic action of a basic substance, and adds to the methacrylic double bond of GMA or MMA, thereby producing a methanol adduct of GMA or MMA as a by-product.

【0012】このことは、GMAの収率の悪化や、MM
Aの使用率の悪化の原因となるばかりか、MMAへのメ
タノ−ル付加物(LB1)はGMAと沸点が近いためG
MAの精製を困難にする。さらに、エステル交換反応は
平衡反応であり、生成系の一成分であるメタノ−ルが、
いつまでも高い濃度で反応領域に残存することは特に反
応の後半に於いて、反応の進行を阻害する。
This means that the yield of GMA is deteriorated and MM
Not only does it cause the deterioration of the usage rate of A, but the methanol adduct (LB1) to MMA has a boiling point close to that of GMA.
Makes purification of MA difficult. Furthermore, the transesterification reaction is an equilibrium reaction, and methanol, which is one component of the production system,
Remaining in the reaction region at a high concentration forever hinders the progress of the reaction, especially in the latter half of the reaction.

【0013】このことは、従来技術でも指摘され、ま
た、このような観点からメタノ−ルとの共沸剤の使用が
開示されている(例えば、特開昭55−127381/
三井東圧化学、2頁、第5欄、下から3行目〜第6欄下
から2行目)。
This is pointed out in the prior art, and from this point of view, the use of an azeotropic agent with methanol is disclosed (for example, JP-A-55-127381 /).
Mitsui Toatsu Chemicals, page 2, column 5, line 3 from bottom to column 6 line 2 from bottom).

【0014】(イ)一方、エステル交換触媒は、これま
でに多くの種類が知られていることを先に述べた。MM
Aよりも高沸点を有する触媒を使用した場合には次のこ
とが推定される。反応中はこの触媒が反応領域である反
応液(缶液)中に確実に存在するために触媒として有効
に作用する。しかし、MMAよりも高沸点を有する触媒
は反応終了後の蒸留精製工程でMMAよりも沸点が高い
という性質のため反応液からMMAを蒸留除去し、さら
に、GMAを製品として留出させる段階でも、まだ、反
応液(缶液)中に少量かも知れないが残存する。
(A) On the other hand, it has been described above that many kinds of transesterification catalysts have been known so far. MM
When a catalyst having a boiling point higher than A is used, the following is presumed. During the reaction, since this catalyst is surely present in the reaction liquid (can liquid) which is the reaction region, it effectively acts as a catalyst. However, since the catalyst having a higher boiling point than MMA has a higher boiling point than MMA in the distillation and purification step after completion of the reaction, MMA is distilled off from the reaction solution, and further, at the stage of distilling GMA as a product, A small amount may still remain in the reaction solution (can solution).

【0015】この時の反応液(缶液)の状態は低いMM
A濃度と高いGMA濃度、ある程度の濃度の高沸点アル
コ−ル(例えば、GMAのエポキシ基にメタノ−ルや、
GDが開環付加した水酸基含有物質)、およびある程度
の濃度のMMAよりも高沸点を有する触媒が存在するこ
とになる。
At this time, the state of the reaction liquid (can liquid) is low MM
A concentration and high GMA concentration, high-boiling alcohol of a certain concentration (for example, methanol or epoxy group of GMA,
A hydroxyl group-containing substance obtained by ring-opening addition of GD), and a catalyst having a higher boiling point than MMA at a certain concentration are present.

【0016】したがって、GMAと前記高沸点アルコ−
ルとがMMAよりも高沸点を有する触媒によりエステル
交換反応を起こし、高沸点アルコ−ルとメタクリル酸と
のエステルが生成するのと同時にGDが発生し、このG
Dが留出したGMAに混入して製品の品質を悪化させる
(このことは比較例3で確認された)。
Therefore, GMA and the high boiling alcohol
With a catalyst having a boiling point higher than that of MMA, a transesterification reaction occurs, and at the same time as an ester of a high boiling point alcohol and methacrylic acid is produced, GD is generated.
D mixes with the distilled GMA and deteriorates the quality of the product (this was confirmed in Comparative Example 3).

【0017】特公昭57−42073/日本油脂、2
頁、第3欄、19行目〜22行目には、MMAよりも高
沸点を有する触媒を蒸留精製工程に持ち込まれることの
ないように、析出した触媒を濾過によって除去し、GM
Aを製品化蒸留する方法が開示されている。しかしなが
ら、この特許公報には蒸留生成工程でのGDの再発生に
ついて何等記載がなく、また、後の比較例3で示したよ
うにGDの再発生が認められ、濾過操作では触媒の除去
が完全でないことを示唆している。
Japanese Patent Publication No. 57-42073 / NOF, 2
On page 3, column 3, lines 19 to 22, the precipitated catalyst is removed by filtration so that the catalyst having a boiling point higher than that of MMA is not introduced into the distillation purification step.
A method of commercializing A is disclosed. However, in this patent publication, there is no description about the re-generation of GD in the distillation production step, and the re-generation of GD was observed as shown in Comparative Example 3 below, and the catalyst was completely removed by the filtration operation. Suggests that it is not.

【0018】塩基性物質の除去という観点からイオン交
換樹脂の使用、抽出、中和など、これまでに知られた方
法が利用可能と思われるが操作が繁雑になり好ましくな
いことは言うまでもない。
From the viewpoint of removing the basic substance, it is considered that the conventionally known methods such as the use, extraction and neutralization of the ion exchange resin can be used, but it is needless to say that the operation becomes complicated.

【0019】一方、蒸留生成工程での触媒成分の残留に
基づく前記の欠点を回避するためにはMMAよりも沸点
の低い触媒(例えば、トリエチルアミン)の使用が好ま
しいが、トリエチルアミンは、やはり、前述したように
従来技術に開示されている。しかしながら、MMAより
も沸点の低い触媒の場合、当然、その沸点は反応時に副
生するメタノ−ルの沸点と近くなり、両者の蒸留分離性
は十分でない。
On the other hand, it is preferable to use a catalyst having a lower boiling point than MMA (for example, triethylamine) in order to avoid the above-mentioned drawbacks due to the residual catalyst components in the distillation production step, but triethylamine is also mentioned above. As disclosed in the prior art. However, in the case of a catalyst having a lower boiling point than MMA, naturally, the boiling point is close to the boiling point of methanol by-produced during the reaction, and the distillative separability between the two is not sufficient.

【0020】したがって、触媒を、反応領域である反応
液(缶液)中に存在させるように(該触媒を留出させな
いように)反応を行った場合には反応は進行するが、副
生するメタノ−ルの反応液(缶液)からの留出除去が不
十分となり、メタノ−ルのMMAやGMAへの付加物が
多量に副生してしまうことになる(後の比較例1で確認
された)。
Therefore, when the reaction is carried out so that the catalyst is present in the reaction liquid (container liquid) which is the reaction region (so as not to distill the catalyst), the reaction proceeds, but it is a by-product. Distillation and removal of the methanol from the reaction solution (can solution) will be insufficient, and a large amount of an adduct of methanol to MMA and GMA will be by-produced (confirmed in Comparative Example 1 below). Was done).

【0021】また、副生するメタノ−ルを速やかに系外
に留出させる(加熱気味に蒸留する)ように反応を行う
ことによってGMAとの分離が困難なLB1(MMAへ
のメタノ−ル付加物)の副生はある程度抑制することが
できるが、触媒も同時に反応領域である反応液(缶液)
から留出してしまい、反応そのものが進行しなくなる
(後の比較例2で確認された)。
LB1 (methanol addition to MMA), which is difficult to separate from GMA, is carried out by carrying out the reaction so that the by-produced methanol is rapidly distilled out of the system (distillation with heating). Can be suppressed to a certain extent, but the catalyst is also in the reaction region at the same time as the reaction liquid (can liquid).
Then, the reaction itself does not proceed (confirmed in Comparative Example 2 below).

【0022】(ハ)以上から、従来技術でそれぞれ、別
々に開示されたメタノ−ルとMMAとの中間の沸点を有
するメタノ−ルの共沸剤とメタノ−ルとMMAとの中間
の沸点を有する第3級アミン触媒とをメタノ−ルの沸点
をT1、メタクリル酸メチルの沸点をT4とした時に下
記の関係式(1) T1<T2<T3<T4 関係式(1) を満足するような特別な沸点関係の(A)沸点T2を有
するメタノ−ルとの共沸剤、および(B)沸点T3を有
する第3級アミンとして、共存させて反応することによ
って前述した問題点を解決できると結論した。このよう
な系では、反応中は蒸留塔内でメタノ−ルとの共沸剤が
メタノ−ルと第3級アミンとの中間に存在し、両者を効
率良く分離、すなわち、メタノ−ルは塔頂へ、第3級ア
ミンは反応液(缶液)へと分離する。
(C) From the above, the azeotropic agent of methanol having a boiling point intermediate between methanol and MMA, which are separately disclosed in the prior art, and the boiling point intermediate between methanol and MMA, respectively, are described. When the boiling point of methanol is T1 and the boiling point of methyl methacrylate is T4, the following relational expression (1) T1 <T2 <T3 <T4 relational expression (1) is satisfied. The above problems can be solved by coexisting and reacting as an azeotropic agent with (A) a boiling point T2 having a special boiling point relationship and (B) a tertiary amine having a boiling point T3. I concluded. In such a system, an azeotroping agent with methanol is present in the distillation column between the methanol and the tertiary amine during the reaction, and both are efficiently separated, that is, the methanol is a column. At the top, the tertiary amine is separated into a reaction liquid (can liquid).

【0023】その結果、反応も十分進行する(触媒は反
応液中に存在する)し、同時に反応液(缶液)中でのメ
タノ−ルのMMAやGMAへの付加反応も抑制され(反
応液中にはメタノ−ル濃度が低い)る。さらに、蒸留精
製工程では反応液(缶液)からMMAを留出除去する際
には、該第3級アミンはMMAよりも沸点が低いため反
応液(缶液)からより早く留出除去されており、後のG
MA留出時に残留触媒によるGDの再発生もない(後の
実施例で確認された)。
As a result, the reaction proceeds sufficiently (the catalyst exists in the reaction solution), and at the same time, the addition reaction of methanol to MMA or GMA in the reaction solution (can solution) is suppressed (the reaction solution). Among them, the concentration of methanol is low). Further, when distilling and removing MMA from the reaction solution (can solution) in the distillation purification step, the tertiary amine has a lower boiling point than MMA, so that the tertiary amine is distilled and removed earlier from the reaction solution (can solution). Cage and later G
There was also no re-generation of GD due to residual catalyst during MA distillation (confirmed in later examples).

【0024】以下に本発明のメタクリル酸グリシジルの
製造方法について詳細に説明する。 <メタノ−ルとの共沸剤>メタノ−ルとMMAとの中間
沸点を有するメタノ−ルとの共沸剤としてはn−ヘキサ
ン、c−ヘキサンおよびベンゼンなどがあげられる。価
格、安全性を考慮するとn−ヘキサンが好ましい。しか
し、これらの共沸剤を混合使用しても構わない。また、
他の沸点領域を有する溶媒、共沸剤を使用しても構わな
い。
The method for producing glycidyl methacrylate of the present invention will be described in detail below. <Azeotropic agent with methanol> Examples of the azeotropic agent with methanol having an intermediate boiling point between methanol and MMA include n-hexane, c-hexane and benzene. Considering price and safety, n-hexane is preferable. However, these azeotropic agents may be mixed and used. Also,
You may use the solvent and azeotropic agent which have another boiling point region.

【0025】本発明のメタノ−ルとMMAとの中間沸点
を有するメタノ−ルとの共沸剤の濃度は反応液中の濃度
で0.1〜80重量%、好ましくは5〜50%である。
The concentration of the azeotropic agent of the methanol of the present invention and the methanol having an intermediate boiling point of MMA is 0.1 to 80% by weight, preferably 5 to 50% by weight in the reaction solution. .

【0026】<第3級アミン>上記のメタノ−ルとの共
沸剤とMMAとの中間沸点を有する第3級アミンはエス
テル交換反応の触媒に相当する。このようなアミンとし
てはトリエチルアミン、メチルエチルプロピルアミン、
ジメチルブチルアミン、N−メチルピペリジンおよびN
−エチルピロリジンなどがあるが、工業的な入手のし易
さからトリエチルアミンが好ましい。しかし、これらの
第3級アミンを混合使用しても構わない 。<反応形式>反応は、反応して副生するメタノ−ルを
共沸剤との共沸で反応液(缶液)から直ちに、留出させ
ながら除去していくようにする。蒸留塔を具備した反応
蒸留装置が使用され、連続式でもバッチ式でも良い。蒸
留塔は棚段塔でも充填塔でも、どちらでも良く、メタノ
−ルと第3級アミンとの分離に必要な高さ(或いは理論
段数)が有ればよい。
<Tertiary Amine> The tertiary amine having an intermediate boiling point between MMA and the azeotropic agent with the above-mentioned methanol corresponds to a catalyst for transesterification reaction. Examples of such amines include triethylamine, methylethylpropylamine,
Dimethylbutylamine, N-methylpiperidine and N
-Ethylpyrrolidine and the like are included, but triethylamine is preferable from the viewpoint of industrial availability. However, these tertiary amines may be mixed and used. <Reaction type> In the reaction, the by-produced methanol is azeotropically distilled with the azeotropic agent from the reaction solution (can solution) immediately while distilling it off. A reactive distillation apparatus equipped with a distillation column is used and may be a continuous type or a batch type. The distillation column may be either a plate column or a packed column, and may have a height (or theoretical plate number) necessary for separating methanol and tertiary amine.

【0027】<重合禁止および防止>本反応はラジカル
重合に対する重合禁止剤の少なくとも1種の存在下に行
われる。この方面で一般に知られているヒドロキノン、
p−メトキシフェノ−ル、3,5−ジ−t−ブチル−4
−ヒドロキシトルエンおよびフェノチアジンなどが使用
される。重合禁止剤の使用量は反応系全体の0.01〜
0.5重量%の範囲である。付加的に空気、酸素、また
は不活性ガス稀釈酸素を系に導入することは重合防止の
観点から好ましい。
<Polymerization Inhibition and Prevention> This reaction is carried out in the presence of at least one polymerization inhibitor for radical polymerization. Hydroquinone, which is generally known in this direction,
p-methoxyphenol, 3,5-di-t-butyl-4
-Hydroxytoluene and phenothiazine are used. The amount of the polymerization inhibitor used is 0.01 to the entire reaction system.
It is in the range of 0.5% by weight. Introducing air, oxygen, or oxygen diluted with an inert gas into the system is preferable from the viewpoint of preventing polymerization.

【0028】<仕込み比率>原料であるMMAとGDと
のモル比率(MMA/GD)は1.1〜10、好ましく
は、1.5〜5の範囲である。10より大きい場合はG
MAの収率は良いが、装置が大きくなり、過剰のMMA
の回収コストが高くなる。1.1より小さい場合はGM
Aの収率が悪化する。
<Preparation Ratio> The molar ratio of the raw materials MMA and GD (MMA / GD) is 1.1 to 10, preferably 1.5 to 5. G if greater than 10
MA yield is good, but the equipment is large and the excess MMA
Will increase the cost of recovery. GM if less than 1.1
The yield of A deteriorates.

【0029】触媒である、第3アミンとGDとのモル比
率(アミン/GD)は0.0001〜0.1、好ましく
は、0.01〜0.05の範囲である。
The molar ratio of the tertiary amine and GD (amine / GD), which is the catalyst, is 0.0001 to 0.1, preferably 0.01 to 0.05.

【0030】メタノ−ルとの共沸剤の濃度は反応液中の
1〜80、好ましくは、10〜50重量t%の範囲であ
る。
The concentration of the azeotropic agent with methanol is in the range of 1 to 80, preferably 10 to 50% by weight in the reaction solution.

【0031】<反応温度>反応温度は30〜120、好
ましくは、40〜100℃の範囲で行われる。
<Reaction temperature> The reaction temperature is 30 to 120, preferably 40 to 100 ° C.

【0032】<反応圧力>反応圧力は反応温度で反応液
が沸騰するように設定する。通常50〜500Tor
r、好ましくは、100〜300Torrである。
<Reaction pressure> The reaction pressure is set so that the reaction solution boils at the reaction temperature. Usually 50-500 Tor
r, preferably 100 to 300 Torr.

【0033】以下に比較例および実施例を挙げて本発明
を説明するが、本発明はこれらの実施例によって何ら限
定されるものではない。
The present invention will be described below with reference to comparative examples and examples, but the present invention is not limited to these examples.

【0034】比較例1 実段10段のオ−ルダ−ショ−蒸留塔(内径4cm、ガ
ラス製)を具備する3リットルの丸底フラスコに、MM
A2000g(20.0モル)、メタノ−ルとMMAと
の中間沸点を有する触媒としてトリエチルアミン4.0
4g(0.040モル)および重合禁止剤としてp−メ
トキシフェノ−ルおよび3,5−ジ−t−ブチル−4−
ヒドロキシトルエンを各2.5gづつフラスコに張り込
んだ。
Comparative Example 1 MM was placed in a 3 liter round bottom flask equipped with a 10-stage Oldershaw distillation column (internal diameter 4 cm, made of glass).
A 2000 g (20.0 mol), triethylamine 4.0 as a catalyst having an intermediate boiling point between methanol and MMA
4 g (0.040 mol) and p-methoxyphenol and 3,5-di-t-butyl-4- as polymerization inhibitors
Hydroxytoluene was charged into the flask by 2.5 g each.

【0035】塔頂を200Torrの減圧とし、反応液
中にキャピラリ−チュ−ブを通じて空気を0.1リット
ル/Hの速度でバブリングさせた。
The pressure was reduced to 200 Torr at the top of the column, and air was bubbled through the reaction solution at a rate of 0.1 l / H through a capillary tube.

【0036】フラスコをオイルバスで加熱し、反応液を
沸騰させ、全還流とした(MMAが還流しており、塔頂
温度は72〜74℃になる)。次いで、GD296g
(4.0モル)をフラスコに接続された滴下ロ−トから
2時間かけて沸騰を続ける反応液に滴下した(触媒/G
D/MMAのモル比率=1/100/500)。
The flask was heated in an oil bath and the reaction solution was boiled to bring it to a total reflux (MMA is refluxing, the column top temperature is 72 to 74 ° C.). Then, GD296g
(4.0 mol) was added dropwise from a dropping funnel connected to the flask to the reaction solution which continued boiling over 2 hours (catalyst / G).
D / MMA molar ratio = 1/100/500).

【0037】GDの滴下開始後、しばらくして塔頂部に
メタノ−ルが溜まってくる(少量のMMAを含むメタノ
−ル[メタノ−ル/MMAの共沸混合物]が還流するた
め、塔頂温度が42〜44℃に下がることでわかる)。
After the start of the addition of GD, methanol was accumulated at the top of the tower for a while (the methanol containing a small amount of MMA [methanole / MMA azeotrope] is refluxed, so the tower top temperature Is found to fall to 42 to 44 ° C).

【0038】その後、反応液中のトリエチルアミンが留
出しないように、すなわち、蒸留塔の中段の温度が42
℃から50℃となるように管理し、塔頂よりメタノ−ル
を少量のMMAと共に留出させた。GD滴下開始後6時
間目にはメタノ−ルの発生は殆どなくなった。次いで、
200Torrの減圧のまま全留出に切り替え、約60
0g留出させることにより蒸留塔内に溜まったメタノ−
ルを系外へ追い出した。再び、全還流に切り替え、冷却
を行い、反応液を分析した結果、以下の成績を得た。な
お、成績の指標は下記の計算式によった。
Thereafter, so that triethylamine in the reaction solution would not be distilled, that is, the temperature in the middle stage of the distillation column would be 42%.
The temperature was controlled to be 50 ° C to 50 ° C, and methanol was distilled out together with a small amount of MMA from the top of the column. Generation of methanol almost disappeared 6 hours after the start of GD dropping. Then
Switch to total distillation with a reduced pressure of 200 Torr, about 60
By distilling out 0 g of methano-
I pushed Le out of the system. Again, switching to total reflux, cooling, and analysis of the reaction liquid gave the following results. In addition, the index of performance was based on the following formula.

【0039】GD転化率=反応したGD/仕込んだGD
[モル%] GMA収率=生成したGMA/仕込んだGD[モル%] LB1副生率=生成したLB1/生成したGMA[モル
%] GD転化率=98.2% GMA収率=90.8% LB1副生率=3.36% この例は、前記(B)の沸点T3を有する第3級アミン
だけを使用し、(A)の沸点T2を有するメタノ−ルと
の共沸剤を使用しない場合に相当し、第3級アミンを反
応領域である反応液(缶液)中に存在させるように(該
第3アミンを留出させないように)反応を行うことによ
って反応は進行するが、GMAの収率が悪化したりGM
Aとの分離が困難なLB1(MMAへのメタノ−ル付加
物)が多量に副生してしまうことを示している。
GD conversion = GD reacted / GD charged
[Mol%] GMA yield = GMA produced / GD charged [mol%] LB1 by-product rate = LB1 produced / GMA produced [mol%] GD conversion = 98.2% GMA yield = 90.8 % LB1 byproduct rate = 3.36% In this example, only the tertiary amine having the boiling point T3 of (B) above is used, and the azeotropic agent with the methanol having the boiling point T2 of (A) is used. When the reaction is carried out so that the tertiary amine is allowed to exist in the reaction liquid (can liquid) which is the reaction region (not to distill the tertiary amine), the reaction proceeds. Yield of GMA deteriorates and GM
This indicates that a large amount of LB1 (a methanol adduct to MMA), which is difficult to separate from A, is by-produced.

【0040】比較例2 反応によって副生するメタノ−ルを反応液から速やかに
留出させるために、反応中の蒸留塔中段の温度が60℃
以下とならないように管理し、塔頂に溜まったメタノ−
ルを速やかに留出させ(その結果、塔頂温度は、60〜
70℃となり、メタノ−ルと共に多量のMMAが留出し
た)、留出液と同容積のMMAをフラスコに接続された
滴下ロ−トから反応液に補充した以外は比較例1と同じ
実験を繰り返した。その結果、GD滴下開始後6時間の
反応では以下の成績を得た。
Comparative Example 2 In order to promptly distill methanol by-produced by the reaction from the reaction solution, the temperature in the middle stage of the distillation column during the reaction was 60 ° C.
The methano accumulated at the top of the tower was managed so that it would not be below.
Promptly distill off (as a result, the overhead temperature is 60 to
At 70 ° C., a large amount of MMA was distilled out together with methanol), and the same experiment as in Comparative Example 1 was performed except that the reaction liquid was replenished with MMA of the same volume as the distillate from a dropping funnel connected to the flask. I repeated. As a result, the following results were obtained in the reaction 6 hours after the start of GD dropping.

【0041】GD転化率=52.2% GMA収率=39.8% LB1副生率=0.93% この例は前記(B)の沸点T3を有する第3級アミンだ
けを使用し、(A)の沸点T2を有するメタノ−ルとの
共沸剤を使用しない場合に相当し、副生するメタノ−ル
を速やかに系外に留出させるように反応を行うことによ
ってGMAとの分離が困難なLB1(MMAへのメタノ
−ル付加物)の副生はある程度抑制することができる
が、反応が進行しにくいことを示している。
GD conversion = 52.2% GMA yield = 39.8% LB1 by-product rate = 0.93% This example uses only the tertiary amine having the boiling point T3 of (B) above ( Corresponding to the case where the azeotropic agent with the methanol having the boiling point T2 of A) is not used, separation from GMA can be achieved by carrying out a reaction so that the by-produced methanol is rapidly distilled out of the system. Although difficult LB1 (a methanol adduct to MMA) by-product can be suppressed to some extent, it shows that the reaction is difficult to proceed.

【0042】この反応では、反応後の反応液中のトリエ
チルアミン量が仕込み量の約1/20に減少しており、
反応中にトリエチルアミンの大部分がMMAを主成分と
する留出液と共に系外へ留出してしまつた。
In this reaction, the amount of triethylamine in the reaction solution after the reaction was reduced to about 1/20 of the charged amount,
During the reaction, most of the triethylamine was distilled out of the system together with the distillate containing MMA as a main component.

【0043】比較例3 触媒のトリエチルアミンを、酢酸カリウム3.92g
(0.04モル)に変え、n−ヘキサンを新たに、75
0gを仕込み、留出液を80mリットルのデカンタ−に
導き、デカンタ−で分液した上相(n−ヘキサン相)を
塔頂へ還流させた以外は比較例1と同じ実験を繰り返し
た。また、GD滴下前の全還流時はn−ヘキサンが還流
するため、塔頂温度は40〜42℃であり、反応中は副
生したメタノ−ルが塔頂へ上がるため塔頂温度が最低3
1℃まで低下した点も異なる。
Comparative Example 3 Triethylamine as a catalyst was added to potassium acetate (3.92 g).
(0.04 mol), n-hexane was newly added to 75
The same experiment as in Comparative Example 1 was repeated except that 0 g was charged, the distillate was introduced into an 80 ml decanter, and the upper phase (n-hexane phase) separated by the decanter was refluxed to the top of the column. In addition, since the n-hexane is refluxed at the time of total reflux before GD dropping, the column top temperature is 40 to 42 ° C, and the by-produced methanol rises to the column top during the reaction, so the column top temperature is at least 3
The difference is that the temperature has dropped to 1 ° C.

【0044】なお、反応後、反応液を冷却した際に固形
物(メタクリル酸カリウムと推定される)が析出したの
で、濾過によって固形物を除去した。
After the reaction, when the reaction solution was cooled, a solid substance (presumed to be potassium methacrylate) was deposited, so the solid substance was removed by filtration.

【0045】その結果、GD滴下開始後6時間の反応で
は以下の成績を得た。
As a result, the following results were obtained in the reaction 6 hours after the start of GD dropping.

【0046】GD転化率=98.5% GMA収率=93.5% LB1副生率=0.31% またこの時の反応液組成は以下の通りであった。GD conversion rate = 98.5% GMA yield = 93.5% LB1 byproduct rate = 0.31% The reaction solution composition at this time was as follows.

【0047】MMA=62.1重量% GD = 0.28重量% LB1= 0.10重量% GMA=33.4重量% このようにして得られたGMA粗液を用い、以下のよう
に製品化蒸留を行った。 実段3段のオ−ルダ−ショ−
蒸留塔(内径4cm、ガラス製)を具備する1リットル
の丸底フラスコに前記のGMA粗液1000g(内、G
D=2.8g、GMA=334gを含む)を仕込み、塔
頂圧力2Torr、還流比率1〜2でGMAを留出させ
た。その結果、GMA純度94.9%の製品留分が25
0g(回収率=71%)得られたが、この中には4.1
重量%のGD(10.2gに相当)が含まれていた。
MMA = 62.1% by weight GD = 0.28% by weight LB1 = 0.10% by weight GMA = 33.4% by weight Using the GMA crude liquid thus obtained, the following commercialization was carried out. Distillation was performed. Three-stage orderer show
In a 1 liter round bottom flask equipped with a distillation column (inner diameter 4 cm, made of glass), 1000 g of the GMA crude liquid (inside, G
(Including D = 2.8 g and GMA = 334 g) was charged, and GMA was distilled at a column top pressure of 2 Torr and a reflux ratio of 1 to 2. As a result, the product fraction having a GMA purity of 94.9% was 25
0 g (recovery rate = 71%) was obtained, of which 4.1
It contained GD by weight (corresponding to 10.2 g).

【0048】これは、製品蒸留中にGDが約3.6倍に
増加して、製品中に混入したこと、製品中の不純物5.
1重量%の内殆どがGD(4.1重量%)であることを
示す。 この例は、前記(A)の沸点T2を有するメタ
ノ−ルとの共沸剤を使用し、(B)の沸点T3を有する
第3級アミンを使用しない場合(本例では、MMAより
も高沸点を有する酢酸カリウムを使用)に相当し、反応
時の成績(GMA収率、LB1副生率)は問題ないが、
GMAの精製工程でGDが再発生し、製品中に混入して
製品の品質を悪化させる欠点があることを示している。
This is because the GD increased about 3.6 times during the product distillation and was mixed in the product, and the impurities in the product 5.
It shows that most of 1% by weight is GD (4.1% by weight). In this example, the azeotropic agent with the methanol having the boiling point T2 of (A) is used, and the tertiary amine having the boiling point T3 of (B) is not used (in this example, higher than MMA). (Use potassium acetate having a boiling point), the reaction results (GMA yield, LB1 byproduct rate) are not a problem,
It is indicated that GD is generated again in the GMA refining process and is mixed in the product to deteriorate the quality of the product.

【0049】実施例1 触媒の酢酸カリウムを、トリエチルアミン4.04g
(0.04モル)に変えた以外は比較例1と同じ実験を
繰り返した。なお、反応後、反応液を冷却した際に固形
物は析出しなかった。
Example 1 4.04 g of triethylamine was used as the catalyst potassium acetate.
The same experiment as in Comparative Example 1 was repeated except that the amount was changed to (0.04 mol). After the reaction, no solid matter was deposited when the reaction solution was cooled.

【0050】その結果、GD滴下開始後6時間の反応で
は以下の成績を得た。
As a result, the following results were obtained in the reaction 6 hours after the start of GD dropping.

【0051】GD転化率=97.6% GMA収率=94.9% LB1副生率=0.30% またこの時の反応液組成は、以下の通りであった。GD conversion rate = 97.6% GMA yield = 94.9% LB1 byproduct rate = 0.30% The composition of the reaction solution at this time was as follows.

【0052】MMA=61.9重量% GD =0.45重量% LB1=0.10重量% GMA=34.1重量% このようにして得られたGMA粗液を用い、比較例3と
同様にGMAの製品化蒸留を行った。
MMA = 61.9 wt% GD = 0.45 wt% LB1 = 0.10 wt% GMA = 34.1 wt% The GMA crude liquid thus obtained was used in the same manner as in Comparative Example 3. Productive distillation of GMA was performed.

【0053】その結果、GMA純度98.9%の製品留
分が272g(回収率=79%)得られた。この中に
は、0.11重量%(0.30gに相当)のGDが含ま
れていた。この例は前記(A)の沸点T2を有するメタ
ノ−ルとの共沸剤および(B)の沸点T3を有する第3
級アミンの両方を使用することによって反応時の成績
(GMA収率、LB1副生率)も問題なく、かつ、GM
Aの精製工程に於けるGDの再発生による製品の品質を
悪化もないことを示している。
As a result, 272 g of a product fraction having a GMA purity of 98.9% (recovery rate = 79%) was obtained. In this, 0.11% by weight (corresponding to 0.30 g) of GD was contained. This example is an azeotropic agent with a methanol having a boiling point T2 of (A) and a third azeotropic agent having a boiling point T3 of (B).
By using both primary amines, the reaction results (GMA yield, LB1 by-product ratio) are not problematic and GM
It shows that the quality of the product is not deteriorated by the re-generation of GD in the refining process of A.

【0054】実施例2 n−ヘキサンの代わりにc−ヘキサン300gを使用
し、GDを一括添加した以外は実施例1と同じ実験を繰
り返した。但し、塔頂圧力を160Torrとした点が
異なる。また、GD滴下前の全還流時はc−ヘキサンが
還流するため、塔頂温度は33〜37であり、反応中は
副生したメタノ−ルが塔頂へ上がるため、塔頂温度が最
低29℃まで低下した点も異なる。
Example 2 The same experiment as in Example 1 was repeated except that 300 g of c-hexane was used instead of n-hexane and GD was added all at once. However, the difference is that the column top pressure is 160 Torr. In addition, since the c-hexane is refluxed at the time of total reflux before GD dropping, the column top temperature is 33 to 37, and the by-produced methanol rises to the column top during the reaction, so the column top temperature is at least 29. The difference is that the temperature has dropped to ℃.

【0055】その結果、GD添加後6時間の反応では以
下の成績を得た。
As a result, the following results were obtained in the reaction 6 hours after the addition of GD.

【0056】GD転化率=99.0% GMA収率=94.2% LB1副生率=0.14% 表1に上記の比較例および実施例の結果をまとめる。GD conversion rate = 99.0% GMA yield = 94.2% LB1 byproduct rate = 0.14% Table 1 summarizes the results of the above Comparative Examples and Examples.

【0057】 表1 比較例1 比較例2 比較例3 実施例1 実施例2 触媒 TEA TEA KOAc TEA TEA 共沸剤 なし なし n−H n−H c−H GD転化率 98.2 52.2 98.5 97.6 99.0 GMA収率 90.8 39.8 93.5 94.9 94.2 LB1副生率 3.36 0.93 0.31 0.30 0.14 蒸留精製時の GD再発生 − − 有り なし − 但し、第1表中の略号、TEAはトリエチルアミン、K
OAcは酢酸カリウム、n−Hはn−ヘキサン、c−H
はシクロヘキサンを表し、数値の単位はモル%である。
Table 1 Comparative Example 1 Comparative Example 2 Comparative Example 3 Example 1 Example 2 Catalyst TEA TEA KOAc TEA TEA Azeotropic agent None None n-H n-H c-H GD conversion 98.2 52.2 98.5 97.6 99.0 GMA yield Rate 90.8 39.8 93.5 94.9 94.2 LB1 byproduct rate 3.36 0.93 0.31 0.30 0.14 Regeneration of GD during distillation purification − − Yes No − However, the abbreviations in Table 1, TEA is triethylamine, K
OAc is potassium acetate, n-H is n-hexane, c-H
Represents cyclohexane, and the unit of the numerical value is mol%.

【0058】[0058]

【発明の効果】グリシド−ルとメタクリル酸メチルとの
エステル交換反応によって、メタクリル酸グリシジルを
製造する際に、本発明の、特定の沸点範囲にある、
(A)メタノ−ルとの共沸剤、および、(B)3級アミ
ン触媒の両方を使用することによって優れた反応成績が
得られ、また、蒸留精製の際も、高純度の製品が得られ
る。
INDUSTRIAL APPLICABILITY When producing glycidyl methacrylate by the transesterification reaction of glycidyl and methyl methacrylate, the specific boiling point range of the present invention,
By using both (A) an azeotropic agent with methanol and (B) a tertiary amine catalyst, excellent reaction results can be obtained, and a high-purity product can be obtained even during distillation purification. To be

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 グリシド−ルとメタクリル酸メチルとの
エステル交換反応によって、メタクリル酸グリシジルを
製造する方法に於いて、メタノ−ルの沸点をT1、メタ
クリル酸メチルの沸点をT4とした時に、下記の関係式
(1) T1<T2<T3<T4 関係式(1) を満足する、(A)沸点T2を有するメタノ−ルとの共
沸剤、および(B)沸点T3を有する第3級アミンの存
在下に反応を行うことを特徴とするメタクリル酸グリシ
ジルの製造方法。
1. A method for producing glycidyl methacrylate by transesterification of glycidyl and methyl methacrylate, wherein the boiling point of methanol is T1 and the boiling point of methyl methacrylate is T4, (1) T1 <T2 <T3 <T4, and (A) an azeotropic agent with a methanol having a boiling point T2, and (B) a tertiary amine having a boiling point T3. A method for producing glycidyl methacrylate, which comprises performing the reaction in the presence of
【請求項2】 第3級アミンがトリエチルアミンである
請求項1に記載の方法。
2. The method of claim 1, wherein the tertiary amine is triethylamine.
【請求項3】 メタノ−ルとの共沸剤がn−ヘキサンお
よび/またはシクロヘキサンである請求項1または請求
項2に記載の方法。
3. The method according to claim 1 or 2, wherein the azeotropic agent with methanol is n-hexane and / or cyclohexane.
JP04156788A 1992-06-16 1992-06-16 Method for producing glycidyl methacrylate Expired - Fee Related JP3081707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04156788A JP3081707B2 (en) 1992-06-16 1992-06-16 Method for producing glycidyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04156788A JP3081707B2 (en) 1992-06-16 1992-06-16 Method for producing glycidyl methacrylate

Publications (2)

Publication Number Publication Date
JPH061780A true JPH061780A (en) 1994-01-11
JP3081707B2 JP3081707B2 (en) 2000-08-28

Family

ID=15635325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04156788A Expired - Fee Related JP3081707B2 (en) 1992-06-16 1992-06-16 Method for producing glycidyl methacrylate

Country Status (1)

Country Link
JP (1) JP3081707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683163A1 (en) * 1994-05-20 1995-11-22 Mitsubishi Gas Chemical Company, Inc. Process for producing glycidyl acrylate or glycidyl methacrylate
JP2020073555A (en) * 2007-12-19 2020-05-14 レーム・ゲーエムベーハーRoehm GmbH Manufacturing method of (meth)acrylate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683163A1 (en) * 1994-05-20 1995-11-22 Mitsubishi Gas Chemical Company, Inc. Process for producing glycidyl acrylate or glycidyl methacrylate
US5527927A (en) * 1994-05-20 1996-06-18 Mitsubishi Gas Chemical Company, Inc. Process for producing glycidyl acrylate or glycidyl methacrylate
JP2020073555A (en) * 2007-12-19 2020-05-14 レーム・ゲーエムベーハーRoehm GmbH Manufacturing method of (meth)acrylate
JP2022081593A (en) * 2007-12-19 2022-05-31 エボニック オペレーションズ ゲーエムベーハー Manufacturing method of (meth)acrylate

Also Published As

Publication number Publication date
JP3081707B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
KR101928574B1 (en) Method for producing (meth)acrylic acid anhydride, method for storing (meth)acrylic acid anhydride, and method for producing (meth)acrylate ester
CA2692578C (en) Method for producing ethylene glycol dimethacrylate
JP2012527462A (en) Production of N, N-dialkylaminoethyl acrylate (methacrylate) s
KR101539122B1 (en) Method for synthesizing allyl methacrylate
JP5726880B2 (en) Method for producing alkanediol and dialkyl carbonate
JP2003300936A (en) Method for continuously and simultaneously producing dialkyl carbonate and glycol
JP2011511048A (en) Improved process for the production of (meth) acrylic anhydride
JPS5914018B2 (en) Method for producing methacrylic acid ester
CN101663288B (en) Process for preparing an 1,2-alkylene carbonate
JP6006801B2 (en) Method for producing hydroxyalkyl acrylate
WO2004106278A1 (en) Process for the production of n-alkylaminoalkyl (meth)acrylates
KR0184885B1 (en) Method for producing 4-hydroxybutyl(meth)acrylate
JP3081707B2 (en) Method for producing glycidyl methacrylate
JPH04270249A (en) Purification of dimethyl carbonate
JP2003342236A (en) Method for producing dimethyl carbonate
JP4942878B2 (en) (Meth) acrylic acid ester purification method
JPH0940616A (en) Continuous production of aromatic carbonate
US5440004A (en) Method and apparatus for the production of alkylene carbonate
JP2834436B2 (en) Method for producing sec-butyl acrylate by reaction of acrylic acid and butene isomer
JP3209447B2 (en) Acetal production method
TWI843779B (en) Process for preparing dialkyl carbonate and alkanediol
JP4656294B2 (en) Method for producing glycidyl methacrylate
JP2003300918A (en) Method for continuous and simultaneous production of dialkyl carbonate and glycol
JP3150909B2 (en) Purification method of glyoxylates
JP4046021B2 (en) Method for producing and purifying 2-methyladamantan-2-yl (meth) acrylate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees