JPH06177372A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06177372A
JPH06177372A JP32350992A JP32350992A JPH06177372A JP H06177372 A JPH06177372 A JP H06177372A JP 32350992 A JP32350992 A JP 32350992A JP 32350992 A JP32350992 A JP 32350992A JP H06177372 A JPH06177372 A JP H06177372A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline
insulating film
temperature
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32350992A
Other languages
Japanese (ja)
Inventor
Shuji Tabuchi
修司 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32350992A priority Critical patent/JPH06177372A/en
Publication of JPH06177372A publication Critical patent/JPH06177372A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form a low-resistance gate electrode on a thin gate insulating film without deteriorating the dielectric breakdown voltage of a semiconductor device. CONSTITUTION:A method of manufacturing a semiconductor device has a process for forming a gate insulating film (a gate oxide film) 3 on a semiconductor (Si) substrate 1, a process, wherein the substrate 1 formed with the film 3 is exposed to a silane-containing atmosphere and a temperature ranging from a temperature for forming an amorphous silicon layer to a temperature for forming a polycrystalline silicon layer is continuously heated up on the film 3 to form the layers 4 and 5, and a process, wherein the layers 4 and 5 are etched to form a gate electrode 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り,特にゲート電極の形成方法に関する。近年の半導
体装置はますます高集積化,微細化が進み,MOSにお
いてもゲート絶縁膜は電気的特性の要求から,ますます
薄膜化の傾向にある。通常使用される多結晶Siゲート
電極では,ゲート絶縁膜が薄くなると絶縁耐圧を悪化さ
せるため,それに代わる材料や製造方法が必要とされて
いる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a gate electrode. In recent years, semiconductor devices have become more highly integrated and miniaturized, and even in MOS, the gate insulating film tends to be thinner due to the demand for electrical characteristics. In a commonly used polycrystalline Si gate electrode, the withstand voltage is deteriorated when the gate insulating film becomes thin, and therefore, a material and a manufacturing method that replace it are required.

【0002】[0002]

【従来の技術】従来のMOSのゲート電極材料は,ポリ
シリコン単体や低抵抗を目的としたポリシリコンとシリ
サイドの積層構造が主流であったが,64MDRAMレ
ベルからはゲート絶縁膜の厚さが 200Å以下となり,絶
縁耐圧の問題から最近では非晶質(アモルファス)シリ
コンを適用することが検討されている。
2. Description of the Related Art Conventional gate electrode materials for MOS have been mainly composed of polysilicon alone or a laminated structure of polysilicon and silicide for the purpose of low resistance, but the gate insulating film has a thickness of 200Å from 64M DRAM level. In the following, the application of amorphous silicon has been studied recently due to the problem of withstand voltage.

【0003】非晶質Siはゲート絶縁膜との界面の膜面
が平滑に形成できる反面,これをゲート電極とする時,
その上に形成される例えば多結晶Si配線とのコンタク
ト抵抗が高いという問題がある。
Amorphous Si allows the film surface at the interface with the gate insulating film to be formed smoothly, but when this is used as the gate electrode,
There is a problem that the contact resistance with, for example, a polycrystalline Si wiring formed thereon is high.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題に
鑑み,ゲート電極に非晶質Siを適用してゲート絶縁膜
の絶縁耐圧の劣化を避け,しかもゲート電極を引き出す
配線とのコンタクト抵抗も低くできる方法を提供するも
のである。
In view of the above problems, the present invention applies amorphous Si to the gate electrode to prevent the breakdown voltage of the gate insulating film from being deteriorated, and moreover, the contact resistance with the wiring for drawing out the gate electrode. It also provides a way to lower.

【0005】[0005]

【課題を解決するための手段】図1(a) 〜(e) は実施例
を示す工程順断面図, 図2は昇温プログラムの一例を示
す図である。
1 (a) to 1 (e) are sectional views in order of steps showing an embodiment, and FIG. 2 is a view showing an example of a temperature raising program.

【0006】上記課題は,半導体基板1上にゲート絶縁
膜3を形成する工程と, 該ゲート絶縁膜3を形成した半
導体基板1をシランを含む雰囲気に曝して, 該ゲート絶
縁膜3上に非晶質シリコンを形成する温度から多結晶シ
リコンを形成する温度まで連続的に昇温して非晶質シリ
コン層4及び多結晶シリコン層5を形成する工程と,該
非晶質シリコン層4及び該多結晶シリコン層5をエッチ
ングしてゲート電極7を形成する工程とを有する半導体
装置の製造方法によって解決される。
[0006] The above-mentioned problems are as follows: a step of forming the gate insulating film 3 on the semiconductor substrate 1; and a step of exposing the semiconductor substrate 1 having the gate insulating film 3 to an atmosphere containing silane so that the gate insulating film 3 is not exposed. A step of continuously raising the temperature from the temperature of forming crystalline silicon to the temperature of forming polycrystalline silicon to form the amorphous silicon layer 4 and the polycrystalline silicon layer 5, and the amorphous silicon layer 4 and the polycrystalline silicon layer 5. And a step of forming the gate electrode 7 by etching the crystalline silicon layer 5.

【0007】[0007]

【作用】本発明では,ゲート絶縁膜3上にまず非晶質シ
リコン4を成長させるから,ゲート絶縁膜3との界面は
平滑で絶縁耐圧を劣化させることがなくなる。つづいて
非晶質シリコン層4の上に該多結晶シリコン層5を連続
して形成するから,ゲート電極を引き出す際の配線は多
結晶シリコン層5と接触することになり,コンタクト抵
抗を低くできる。
In the present invention, since the amorphous silicon 4 is first grown on the gate insulating film 3, the interface with the gate insulating film 3 is smooth and the withstand voltage does not deteriorate. Subsequently, since the polycrystalline silicon layer 5 is continuously formed on the amorphous silicon layer 4, the wiring for pulling out the gate electrode comes into contact with the polycrystalline silicon layer 5, and the contact resistance can be lowered. .

【0008】さらに,本発明によれば,ゲート絶縁膜3
を形成した半導体基板1をシランを含む雰囲気に曝し
て, シランの圧力,供給量は変えることなく,昇温する
操作のみで非晶質シリコン層4から多結晶シリコン層5
へと連続して移行できるから,ガスの流れる条件は一定
で,塵埃の発生が避けられる。
Further, according to the present invention, the gate insulating film 3
The amorphous silicon layer 4 to the polycrystalline silicon layer 5 are exposed by exposing the semiconductor substrate 1 on which the film has been formed to an atmosphere containing silane to increase the temperature without changing the pressure and supply amount of silane.
Since it can be continuously transferred to, the conditions under which gas flows are constant, and the generation of dust is avoided.

【0009】[0009]

【実施例】図1(a) 〜(e) は実施例を示す工程順断面
図,図2は昇温プログラムの一例を示す図である。以
下,これらの図を参照しながら,実施例について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 (a) to 1 (e) are sectional views in order of steps showing an embodiment, and FIG. 2 is a view showing an example of a temperature raising program. Examples will be described below with reference to these drawings.

【0010】図1(a) 参照 Si基板1に素子を区画するフィールド酸化膜2を形成
する。Si基板1を熱酸化して,例えば厚さ 150Åのゲ
ート酸化膜3を形成する。
Referring to FIG. 1A, a field oxide film 2 for partitioning an element is formed on a Si substrate 1. The Si substrate 1 is thermally oxidized to form a gate oxide film 3 having a thickness of 150 Å, for example.

【0011】図1(b) ,図2参照 ゲート酸化膜3の形成されたSi基板1を反応管内に配
置して真空に引いた後全面に化学的気相成長(CVD)
法によりSi膜を堆積する。その昇温プログラムの一例
を図2に示す。 350℃から 520℃まで例えば60分かけ
て昇温し,その温度に保持し,例えば15分保持した
後,反応管内にシラン(SiH4 )を供給する。その条
件は例えば圧力 0.2Torr, ガス流量 300sccmである。ゲ
ート酸化膜3の上には非晶質(アモルファス)Siが堆
積し,非晶質Si層4が形成される。その状態を例えば
5分間保持した後,シランの供給条件はそのままにし,
例えば10分かけて 620℃まで昇温し,その温度で例え
ば5分間保持する。この段階では非晶質Si層4上に多
結晶Siが堆積し,多結晶Si層5が形成される。その
後,シランの供給を止めるとともにSi基板1を降温す
る。
1 (b) and FIG. 2 The Si substrate 1 having the gate oxide film 3 formed thereon is placed in a reaction tube and evacuated, and then chemical vapor deposition (CVD) is performed on the entire surface.
A Si film is deposited by the method. An example of the temperature raising program is shown in FIG. The temperature is raised from 350 ° C. to 520 ° C. over, for example, 60 minutes, and the temperature is maintained for 15 minutes, and then silane (SiH 4 ) is supplied into the reaction tube. The conditions are, for example, a pressure of 0.2 Torr and a gas flow rate of 300 sccm. Amorphous Si is deposited on the gate oxide film 3 to form an amorphous Si layer 4. After maintaining that state for 5 minutes, for example, leave the silane supply conditions unchanged,
For example, the temperature is raised to 620 ° C. over 10 minutes and the temperature is maintained for 5 minutes. At this stage, polycrystalline Si is deposited on the amorphous Si layer 4 to form a polycrystalline Si layer 5. After that, the supply of silane is stopped and the temperature of the Si substrate 1 is lowered.

【0012】このようにして,非晶質Si層4と多結晶
Si層5の合計の厚さ1000〜1500ÅのSi層が形成され
た。非晶質Si層4と多結晶Si層5の境界は断続的で
はなく,非晶質Si層4から多結晶Si層5へと徐々に
連続的に変化している。
In this way, a Si layer having a total thickness of the amorphous Si layer 4 and the polycrystalline Si layer 5 of 1000 to 1500Å was formed. The boundary between the amorphous Si layer 4 and the polycrystalline Si layer 5 is not intermittent, but gradually changes continuously from the amorphous Si layer 4 to the polycrystalline Si layer 5.

【0013】図1(c) 参照。 次いで,非晶質Si層4及び多結晶Si層5を低抵抗化
するために,例えば,800℃,5TorrのPClO3 ,O
2 の混合雰囲気にSi基板1を例えば50分曝し,多結
晶Si層5及び非晶質Si層4にリン(P)を拡散して
Pドープ多結晶Si層5a, Pドープ非晶質Si層5bを形
成する。
See FIG. 1 (c). Then, an amorphous Si layer 4 and the polycrystalline Si layer 5 in order to reduce the resistance of, for example, 800 ℃, PClO of 5 Torr 3, O
The Si substrate 1 is exposed to a mixed atmosphere of 2 for 50 minutes, for example, and phosphorus (P) is diffused in the polycrystalline Si layer 5 and the amorphous Si layer 4 to form a P-doped polycrystalline Si layer 5a and a P-doped amorphous Si layer. Form 5b.

【0014】図1(d) 参照。 CVD法により,Pドープ多結晶Si層5a上に例えば厚
さ 500ÅのCVD酸化膜6を形成する。
See FIG. 1 (d). A CVD oxide film 6 having a thickness of, for example, 500 Å is formed on the P-doped polycrystalline Si layer 5a by the CVD method.

【0015】図1(e) 参照。 ゲート電極形成用のマスクを用いてCVD酸化膜6とP
ドープ多結晶Si層5aとPドープ非晶質Si層5bをエッ
チングし,Pドープ多結晶Si層5aとPドープ非晶質S
i層5bからなるゲート電極7を形成する。この後は図示
しないが,公知の方法によりソース・ドレインを形成す
る。層間絶縁膜を形成した後,例えば多結晶Siで配線
を行う。
See FIG. 1 (e). The CVD oxide film 6 and P are formed using the mask for forming the gate electrode.
By etching the doped polycrystalline Si layer 5a and the P-doped amorphous Si layer 5b, the P-doped polycrystalline Si layer 5a and the P-doped amorphous S layer 5a are etched.
The gate electrode 7 composed of the i layer 5b is formed. After that, although not shown, the source / drain are formed by a known method. After forming the interlayer insulating film, wiring is performed using, for example, polycrystalline Si.

【0016】ゲート酸化膜3とPドープ非晶質Si層5b
の界面は平滑である。このため,ゲート酸化膜3に絶縁
耐圧の劣化を生じない。ゲート電極は例えば多結晶Si
配線に接続される。多結晶Si配線は低抵抗化のため,
例えば不純物としてリン(P)がドープされている。多
結晶Siからの不純物のアウトデフュージョンは,非晶
質Siからの不純物のアウトデフュージョンに比べて小
さいので,ゲート電極の低抵抗化の点から本発明のよう
に非晶質Siの上に多結晶Siを配置することが望まし
い。
Gate oxide film 3 and P-doped amorphous Si layer 5b
The interface of is smooth. Therefore, the dielectric strength of the gate oxide film 3 does not deteriorate. The gate electrode is, for example, polycrystalline Si
Connected to the wiring. Since the polycrystalline Si wiring has a low resistance,
For example, phosphorus (P) is doped as an impurity. The out-diffusion of impurities from polycrystalline Si is smaller than the out-diffusion of impurities from amorphous Si. It is desirable to place polycrystalline Si.

【0017】また,多結晶Siと多結晶Siの接触は多
結晶Siと非晶質Siの接触よりもコンタクト抵抗が小
さくなるから,この点からもゲート電極の上部を多結晶
Siにしておくことは望ましい。
The contact resistance between polycrystalline Si and polycrystalline Si is smaller than that between polycrystalline Si and amorphous Si. From this point as well, the upper portion of the gate electrode should be polycrystalline Si. Is desirable.

【0018】なお,非晶質Si層4の堆積から多結晶S
i層5の堆積への切り換えは,シランの供給条件は変え
ずに温度を上げることのみで行なえるから,Si基板の
出し入れやガスの切り換え,減圧度の変化などによる炉
壁や配管からの塵埃の舞い上がりがなく,基板表面に塵
埃の堆積することがない。
It should be noted that from the deposition of the amorphous Si layer 4 to the polycrystalline S
The change to the deposition of the i-layer 5 can be performed only by raising the temperature without changing the silane supply condition. There is no soaring, and no dust accumulates on the substrate surface.

【0019】また,工程が簡単化され,工程時間が短縮
する。
Further, the process is simplified and the process time is shortened.

【0020】[0020]

【発明の効果】以上説明したように,本発明によれば,
ゲート絶縁膜とゲート電極との界面が平滑で,絶縁耐圧
の劣化を生じることがない。ゲート電極は低抵抗化さ
れ,ゲート電極とその上の配線とのコンタクト抵抗も小
さくなる。さらに,工程が簡単化され,工程時間が短縮
する。
As described above, according to the present invention,
The interface between the gate insulating film and the gate electrode is smooth, and the breakdown voltage does not deteriorate. The resistance of the gate electrode is reduced, and the contact resistance between the gate electrode and the wiring above it is also reduced. Furthermore, the process is simplified and the process time is shortened.

【0021】本発明は,半導体装置の高集積化,微細化
に寄与するものである。
The present invention contributes to high integration and miniaturization of semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) 〜(e) は実施例を示す工程順断面図であ
る。
1A to 1E are cross-sectional views in order of the processes, showing an embodiment.

【図2】昇温プログラムの一例を示す図である。FIG. 2 is a diagram showing an example of a temperature raising program.

【符号の説明】[Explanation of symbols]

1は半導体基板であってSi基板 2はフィールド絶縁膜であってフィールド酸化膜 3はゲート絶縁膜であってゲート酸化膜 4は非晶質Si層 5は多結晶Si層 4aはPドープ非晶質Si層 5aはPドープ多結晶Si層 6はCVD酸化膜 7はゲート電極 1 is a semiconductor substrate, Si substrate 2 is a field insulating film, field oxide film 3 is a gate insulating film, gate oxide film 4 is an amorphous Si layer 5 is a polycrystalline Si layer 4a is P-doped amorphous Quality Si layer 5a is P-doped polycrystalline Si layer 6 is CVD oxide film 7 is gate electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/62 G 7376−4M 21/336 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 29/62 G 7376-4M 21/336

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板(1) 上にゲート絶縁膜(3) を
形成する工程と, 該ゲート絶縁膜(3) を形成した半導体基板(1) をシラン
を含む雰囲気に曝して, 該ゲート絶縁膜(3) 上に非晶質
シリコンを形成する温度から多結晶シリコンを形成する
温度まで連続的に昇温して非晶質シリコン層(4) 及び多
結晶シリコン層(5) を形成する工程と, 該非晶質シリコン層(4) 及び該多結晶シリコン層(5) を
エッチングしてゲート電極(7) を形成する工程とを有す
ることを特徴とする半導体装置の製造方法。
1. A step of forming a gate insulating film (3) on a semiconductor substrate (1), exposing the semiconductor substrate (1) having the gate insulating film (3) to an atmosphere containing silane, Amorphous silicon layer (4) and polycrystalline silicon layer (5) are formed by continuously raising the temperature from the temperature at which amorphous silicon is formed on the insulating film (3) to the temperature at which polycrystalline silicon is formed. A method for manufacturing a semiconductor device, comprising: a step; and a step of etching the amorphous silicon layer (4) and the polycrystalline silicon layer (5) to form a gate electrode (7).
JP32350992A 1992-12-03 1992-12-03 Manufacture of semiconductor device Withdrawn JPH06177372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32350992A JPH06177372A (en) 1992-12-03 1992-12-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32350992A JPH06177372A (en) 1992-12-03 1992-12-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06177372A true JPH06177372A (en) 1994-06-24

Family

ID=18155487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32350992A Withdrawn JPH06177372A (en) 1992-12-03 1992-12-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06177372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001099199A1 (en) * 2000-06-23 2001-12-27 Nec Corporation Thin-film transistor and method of manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001099199A1 (en) * 2000-06-23 2001-12-27 Nec Corporation Thin-film transistor and method of manufacture thereof
US7052944B2 (en) 2000-06-23 2006-05-30 Nec Corporation Thin-film transistor and method of manufacture thereof

Similar Documents

Publication Publication Date Title
US6326658B1 (en) Semiconductor device including an interface layer containing chlorine
US7923322B2 (en) Method of forming a capacitor
KR100207444B1 (en) Capacitor fabrication method and its device having high dielectronic layer and electrode
JPH0673367B2 (en) Method for manufacturing semiconductor integrated circuit capacitor
JPH05183121A (en) Semiconductor and manufacture thereof
JPH05109637A (en) Method for forming semiconductor thin film and manufacture of semiconductor device
JPH0282575A (en) Semiconductor device and its manufacture
KR100406580B1 (en) Method for forming contact plug of semiconductor device
JP3071302B2 (en) Method for manufacturing semiconductor device
JPH04326766A (en) Thin film transistor for liquid crystal and its method of manufacturing
US20040164364A1 (en) Semiconductor device and its manufacturing method
JPH1022467A (en) Semiconductor device and manufacture thereof
US6218315B1 (en) HTO (high temperature oxide) deposition for capacitor dielectrics
JP3247242B2 (en) Method for manufacturing semiconductor device
JPH06177372A (en) Manufacture of semiconductor device
JP3443909B2 (en) Semiconductor film forming method, semiconductor device manufacturing method, and semiconductor device
US6040236A (en) Method for manufacturing silicon thin film conductive element
JPH03205830A (en) Manufacture of semiconductor device and polycrystalline germanium
JP2671607B2 (en) Semiconductor device and manufacturing method thereof
US6323098B1 (en) Manufacturing method of a semiconductor device
KR100259166B1 (en) Method for manufacturing semiconductor device
JPH0529603A (en) Manufacture of semiconductor device
JP2880892B2 (en) Method for manufacturing semiconductor device
KR100296960B1 (en) Method for forming polysilicon layer of semiconductor device
EP0454055B1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307