JPH06176761A - Plate for lead-acid battery - Google Patents

Plate for lead-acid battery

Info

Publication number
JPH06176761A
JPH06176761A JP5144632A JP14463293A JPH06176761A JP H06176761 A JPH06176761 A JP H06176761A JP 5144632 A JP5144632 A JP 5144632A JP 14463293 A JP14463293 A JP 14463293A JP H06176761 A JPH06176761 A JP H06176761A
Authority
JP
Japan
Prior art keywords
wood powder
active material
battery
lead
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5144632A
Other languages
Japanese (ja)
Other versions
JP3374445B2 (en
Inventor
Kensuke Hironaka
健介 弘中
Katsuyoshi Kawai
勝由 河合
Takaki Hayashiguchi
貴樹 林口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP14463293A priority Critical patent/JP3374445B2/en
Publication of JPH06176761A publication Critical patent/JPH06176761A/en
Application granted granted Critical
Publication of JP3374445B2 publication Critical patent/JP3374445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a plate of high electric discharging capacity, long life, and of low cost by using either/both of a specific porous wood powder or/and porous carbonized wood powder as a liquid retaining material to be contained in an active material at a specific weight percent. CONSTITUTION:Wood powder or carbonized wood powder, in which a plurality of tentative conduits 10 extend in the longitudinal direction, is used as a liquid retaining material at a size of 16-100mesh. This is added to an active material at 0.2-1.0wt.%, which is used as a plate for lead-acid battery. These are easily obtained compared with other liquid retaining materials such as water absorbing high polymer, silica, graphite, glass fiber and the like, and the manufacturing cost of the plate can thus be reduced. Diffusion to the active material is improved at the time of electric discharging of high efficiency by means of an electrolyte in a porous part, and the capacity of the battery and the utilization factor of the active material can thus be improved. The strength of an active material layer is increased for homogeneous diffusion to the entire part of the active materials, and the life characteristic of the battery can thus be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛蓄電池用極板に関す
るものであり、特に活物質中に保液性物質を添加する鉛
蓄電池用極板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead storage battery electrode plate, and more particularly to a lead storage battery electrode plate in which a liquid-retaining substance is added to an active material.

【0002】[0002]

【従来の技術】鉛蓄電池の容量及び活物質利用率は、極
板の活物質中に含まれる電解液量を増やすことによって
高めることができる。特に陽極活物質中に含まれる電解
液量を増やすと電池の高率放電時における容量を大きく
高めることできる。そこで従来から鉛蓄電池の活物質中
に吸水性高分子、シリカ、グラファイト(カーボン)、
ガラス繊維等の保液性物質を添加して活物質中に含まれ
る電解液量を増やすことが提案されている。
2. Description of the Related Art The capacity and the active material utilization rate of a lead storage battery can be increased by increasing the amount of electrolyte contained in the active material of the electrode plate. In particular, when the amount of the electrolytic solution contained in the positive electrode active material is increased, the capacity of the battery during high rate discharge can be greatly increased. Therefore, water-absorbing polymers, silica, graphite (carbon),
It has been proposed to increase the amount of electrolyte contained in the active material by adding a liquid-retaining substance such as glass fiber.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、吸水性
高分子、シリカ、グラファイト等を保液性物質として用
いると、これらの保液性物質は価格が高いため、極板の
製造コストが高くなるという問題がある。また、これら
の保液性物質は活物質と結合し難いため、活物質中に添
加すると極板の活物質の強度が低下して、電池の寿命が
短くなるという問題があった。
However, when a water-absorbing polymer, silica, graphite or the like is used as the liquid-retaining substance, the liquid-retaining substance is expensive and the manufacturing cost of the electrode plate is high. There's a problem. Further, since these liquid-retaining substances are difficult to bond with the active material, there is a problem that when added to the active material, the strength of the active material of the electrode plate is lowered and the life of the battery is shortened.

【0004】本発明の目的は、活物質の多孔度を高めて
電池の放電容量を高めることができ、しかも活物質層の
強度を高めることができる低コストの鉛蓄電池用極板を
提供することにある。
An object of the present invention is to provide a low-cost lead-acid battery electrode plate in which the porosity of the active material can be increased to increase the discharge capacity of the battery and the strength of the active material layer can be increased. It is in.

【0005】[0005]

【課題を解決するための手段】請求項1の発明では、活
物質中に保液性物質を添加する鉛蓄電池用極板を対象に
して、保液性物質として乾燥した多孔質の木粉及び多孔
質の炭化木粉のうちの少なくとも1つを用いる。
According to the invention of claim 1, a lead-acid battery electrode plate in which a liquid-retaining substance is added to an active material is used, and a dried porous wood powder as the liquid-retaining substance and At least one of porous carbonized wood flour is used.

【0006】尚、ここでいう「乾燥した多孔質の木粉」
とは、水分を蒸発させて多孔質にした木粉であり、この
ような木粉には、繊維方向に延びる複数の孔部が形成さ
れている。また「炭化木粉」とは、少なくとも一部が炭
化した木粉を意味する。
Incidentally, the "dry porous wood powder" referred to here
Is wood flour made by evaporating water to make it porous, and such wood flour has a plurality of pores extending in the fiber direction. Further, "carbonized wood powder" means wood powder that is at least partially carbonized.

【0007】請求項2の発明では、請求項1の発明にお
いて、16メッシュから100メッシュのサイズを有し
ている木粉及び炭化木粉を用いる。
According to a second aspect of the invention, in the first aspect of the invention, wood flour and carbonized wood flour having a size of 16 mesh to 100 mesh are used.

【0008】請求項3の発明では、請求項1の発明にお
いて、活物質層を形成するために用いる酸化鉛粉の総重
量に対する保液性物質の重量比を3%未満にする。
According to the invention of claim 3, in the invention of claim 1, the weight ratio of the liquid-retaining substance to the total weight of the lead oxide powder used for forming the active material layer is less than 3%.

【0009】請求項4の発明では、請求項1の発明にお
いて、保液性物質として複数の仮道管が長手方向に延び
た細長い形状の木粉及び炭化木粉を用いる。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the slender wood flour and carbonized wood flour in which a plurality of temporary conduits extend in the longitudinal direction are used as the liquid retaining material.

【0010】尚、ここでいう仮道管とは木材の細胞のう
ち、軸線方向に延びる有縁壁孔を持つ木部の細胞であ
り、便宜的に繊維と呼ばれるものである。この木粉を十
分に乾燥すると、内部に繊維方向に延びる複数の貫通孔
が形成されて、木粉はいわゆる蜂の巣構造になる。
[0010] The term "tracheal tube" as used herein refers to a cell of a wood portion having an edged wall hole extending in the axial direction among cells of wood, and is called a fiber for convenience. When the wood powder is sufficiently dried, a plurality of through holes extending in the fiber direction are formed inside, and the wood powder has a so-called honeycomb structure.

【0011】請求項5の発明では、請求項4の発明にお
いて、保液性物質の活物質に対する重量比を0.2%以
上1.0%以下とする。
According to the invention of claim 5, in the invention of claim 4, the weight ratio of the liquid retaining material to the active material is 0.2% or more and 1.0% or less.

【0012】請求項6の発明では、請求項4または請求
項5の発明において、木粉及び炭化木粉の長手方向の端
面の面積を0.04mm2 以上にする。
According to the invention of claim 6, in the invention of claim 4 or 5, the area of the end faces in the longitudinal direction of the wood powder and the carbonized wood powder is 0.04 mm 2 or more.

【0013】[0013]

【作用】木粉及び炭化木粉(以下、木粉等という)は、
吸水性高分子、シリカ、グラファイト、ガラス繊維等の
保液性物質に比べて簡単に入手することができる。その
ため、請求項1の発明のように保液性物質として乾燥し
た多孔質の木粉等を用いると、極板の製造コストを低く
できる。また、木粉等の多孔部内に電解液を蓄えること
ができるため、高率放電時における活物質内への電解液
の拡散が向上して電池の容量及び活物質利用率を高める
ことができる。しかも、木粉等が活物質全体に分散する
ため、活物質が極板の厚み方向に対して電解液と均一に
反応し、活物質の局部的な反応による応力負担が大きく
ならず電池の寿命特性を向上させることができる。ま
た、木粉等の多孔部内に活物質が入り込むため、従来用
いられていた保液性物質と比べて活物質と保液性物質と
の結合力が高くなり、電池の寿命特性を向上させること
ができる。さらに、多孔質の炭化木粉は、導電性が高い
ので、炭化木粉を保液性物質として有する場合には、含
有量を適宜に選択して活物質内の導電性を高めることが
できる利点がある。
[Function] Wood flour and carbonized wood flour (hereinafter referred to as wood flour, etc.)
It can be easily obtained compared to liquid-retaining substances such as water-absorbing polymers, silica, graphite, and glass fibers. Therefore, when dry porous wood powder or the like is used as the liquid retaining material as in the invention of claim 1, the manufacturing cost of the electrode plate can be reduced. Further, since the electrolytic solution can be stored in the porous portion such as wood powder, the diffusion of the electrolytic solution into the active material at the time of high-rate discharge is improved, and the capacity of the battery and the utilization rate of the active material can be increased. Moreover, since wood powder and the like are dispersed throughout the active material, the active material reacts uniformly with the electrolytic solution in the thickness direction of the electrode plate, and the stress load due to the local reaction of the active material does not increase and the battery life becomes longer. The characteristics can be improved. In addition, since the active material penetrates into the porous part such as wood powder, the binding force between the active material and the liquid-retaining material is higher than that of the conventionally used liquid-retaining material, which improves the life characteristics of the battery. You can Further, since the porous carbonized wood powder has high conductivity, when the carbonized wood powder is used as the liquid-retaining substance, the content can be appropriately selected to increase the conductivity in the active material. There is.

【0014】請求項2の発明のように、16メッシュか
ら100メッシュのサイズの木粉等を用いると、電池の
放電容量を好ましい範囲で高くできる。木粉等のサイズ
が100メッシュを下回って小さくなると、木粉等の電
解液の含有量が低下するため電池の放電容量をあまり高
くできない。また木粉等のサイズが16メッシュを上回
って大きくなると、木粉等の電解液の含有量は多くなる
ものの体積が増加する分、活物質充填量が低下して電池
の放電容量を高くできなくなる。
When wood powder having a size of 16 mesh to 100 mesh is used as in the second aspect of the invention, the discharge capacity of the battery can be increased in a preferable range. When the size of wood powder or the like becomes smaller than 100 mesh, the discharge capacity of the battery cannot be increased so much because the content of the electrolytic solution such as wood powder or the like decreases. Further, when the size of wood powder or the like becomes larger than 16 mesh, the content of the electrolyte solution such as wood powder or the like increases, but the volume increases, so that the active material filling amount decreases and the discharge capacity of the battery cannot be increased. .

【0015】請求項3の発明のように、活物質層を形成
するために用いる鉛粉の総重量に対する保液性物質の重
量比は3%未満であれば、電池の放電容量の向上に大き
く寄与する。しかし保液性物質の重量比が3%以上にな
ると活物質充填量が低下して逆に電池の放電容量は低く
なる。
When the weight ratio of the liquid-retaining substance to the total weight of the lead powder used for forming the active material layer is less than 3%, the discharge capacity of the battery can be greatly improved. Contribute. However, when the weight ratio of the liquid-retaining substance is 3% or more, the amount of the active material filled decreases, and conversely the discharge capacity of the battery decreases.

【0016】請求項4の発明のように複数の仮道管が長
手方向に延びた細長い形状の木粉等を用いると、仮道管
内を電解液が移動するため、活物質内を電解液がスムー
ズに移動する。電池の放電容量は、硫酸イオン、水素イ
オンの移動により支配されるため、活物質内の電解液の
移動がスムーズになると、極板全体にほぼ均一に放電反
応が進行して、活物質の利用率が大きく向上する。その
ため、活物質の単位重量あたりの容量が高くなる。ま
た、仮道管が露出する端面部分の形状は蜂の巣構造のよ
うに複雑な形状を呈しており、端面部分の表面積は中実
のカットファイバー等の一般的な補強材に比べて極めて
大きい。そのため、木粉等の多孔部の入口部分に活物質
が入り込み、活物質と保液性物質との結合力が大幅に増
加する。しかも複数の仮道管は長手方向に延びているた
め、木粉等の曲げ強度が高くなり、細長い木粉等が活物
質層の補強材として機能し、活物質の脱落を防止する。
[0016] When a long and thin wood powder having a plurality of temporary conduits extending in the longitudinal direction is used as in the fourth aspect of the invention, the electrolytic solution moves in the temporary conduit, so that the electrolytic solution is generated in the active material. Move smoothly. Since the discharge capacity of a battery is governed by the movement of sulfate ions and hydrogen ions, when the movement of the electrolyte solution in the active material becomes smooth, the discharge reaction proceeds almost uniformly over the entire electrode plate, and the active material is used. The rate is greatly improved. Therefore, the capacity per unit weight of the active material becomes high. Further, the shape of the end face portion where the temporary duct is exposed has a complicated shape like a honeycomb structure, and the surface area of the end face portion is extremely larger than that of a general reinforcing material such as a solid cut fiber. Therefore, the active material enters the entrance portion of the porous portion such as wood powder, and the binding force between the active material and the liquid-retaining material is significantly increased. Moreover, since the plurality of temporary conduits extend in the longitudinal direction, the bending strength of the wood powder or the like becomes high, and the slender wood powder or the like functions as a reinforcing material for the active material layer to prevent the active material from falling off.

【0017】請求項5の発明のように、細長い木粉等の
活物質に対する重量比を0.2%以上1.0%以下とす
ると活物質の利用率が高くなる。木粉等の重量比が0.
2%を下回ると木粉等が保液性物質として十分に作用し
なくなり、木粉等の重量比が1.0%を超えると活物質
の充填量が減少して活物質の利用率が低下する。
When the weight ratio of the elongated wood powder or the like to the active material is 0.2% or more and 1.0% or less, the utilization rate of the active material is increased. The weight ratio of wood powder is 0.
When it is less than 2%, the wood powder does not act sufficiently as a liquid retaining substance, and when the weight ratio of the wood powder exceeds 1.0%, the filling amount of the active material decreases and the utilization rate of the active material decreases. To do.

【0018】請求項6の発明のように、細長い木粉等の
長手方向の端面の面積を0.04mm2 以上にすると活物
質の利用率が高くなる。面積が0.04mm2 を下回る
と、木粉等中の仮道管の数が減少して、電解液の移動が
十分に行えないため、活物質の利用率が低下する。
When the area of the end face in the longitudinal direction of the slender wood powder or the like is set to 0.04 mm 2 or more as in the invention of claim 6, the utilization factor of the active material becomes high. If the area is less than 0.04 mm 2 , the number of temporary pipes in the wood powder or the like decreases, and the electrolyte cannot be moved sufficiently, so that the utilization rate of the active material decreases.

【0019】[0019]

【実施例】以下、鉛蓄電池用陽極板を例にして本発明の
実施例を詳細に説明する。
EXAMPLES Examples of the present invention will be described in detail below with reference to an anode plate for a lead storage battery.

【0020】[実施例1]本実施例の鉛蓄電池用陽極板
は次のようにして製造した。まず針葉樹であるスギの木
を自動粉砕機を用いて16メッシュから100メッシュ
のサイズに裁断した後に、40℃で24時間乾燥して木
粉を作った。この実施例では裁断する方向を特定しない
で木粉を裁断した。図1はこのようにして作った木粉の
繊維方向または仮道管が延びる方向と直交する面の拡大
図である。図1において黒色の部分が孔部1であり、こ
の孔部を形成する繊維が仮道管である。これらの孔部1
によって乾燥した木粉には繊維方向に延びる多数の孔部
が形成される。次に酸化鉛粉と、該鉛粉に対して3重量
%未満の木粉と希硫酸とを混練して活物質ペーストを作
った。そして、この活物質ペーストを鋳造格子体からな
る集電体に充填した後に、これを熟成、乾燥、化成して
鉛蓄電池用陽極板を完成した。
[Example 1] The positive electrode plate for a lead storage battery of this example was manufactured as follows. First, a Japanese cedar tree, which is a coniferous tree, was cut into a size of 16 mesh to 100 mesh using an automatic pulverizer, and then dried at 40 ° C. for 24 hours to produce wood flour. In this example, the wood powder was cut without specifying the cutting direction. FIG. 1 is an enlarged view of a plane orthogonal to the fiber direction of the wood powder thus produced or the direction in which the temporary conduit extends. In FIG. 1, the black portion is the hole portion 1, and the fiber forming this hole portion is the temporary conduit. These holes 1
Thus, a large number of holes extending in the fiber direction are formed in the dried wood flour. Next, lead oxide powder, wood powder of less than 3% by weight with respect to the lead powder, and dilute sulfuric acid were kneaded to prepare an active material paste. Then, this active material paste was filled in a current collector made of a cast grid, and then this was aged, dried, and formed to complete an anode plate for a lead storage battery.

【0021】次に本実施例の陽極板aと従来の陽極板b
とをそれぞれ同じ陰極板と組み合わせて作った電池を用
いて保液性物質の添加量と電池の容量との関係を調べ
た。◎陽極板aは24メッシュから32メッシュの大き
さの木粉を用いて作った本実施例の陽極板であり、陽極
板bは保液性物質として木粉の代りに20〜30μmの
シリカを活物質ペーストに添加して作った従来の陽極板
である。尚、陰極板は活物質に保液性物質を添加してい
ない公知の陰極板であり、陽極板a,bは保液性物質を
除いては同じ構造を有している。そして鉛粉に対する保
液性物質の重量比が0%から5%の範囲で異なる陽極板
a,bをそれぞれ9枚づつ作り、それぞれの陽極板1枚
を電解液を保持するリテーナを介して陰極板1枚と積層
して極板群を作り、この極板群全体を樹脂製フィルムで
包み込んで鉛蓄電池A,Bをそれぞれ9種類づつ作っ
た。そして各電池を3Aで高率放電して放電時間を測定
した。図2はその測定結果を示している。本図より保液
性物質として木粉を用いた本実施例の陽極板aでは、保
液性物質としてシリカを用いた従来の陽極板bに比べて
電池の高率放電における放電容量を全体で約35%増加
できるのが判る。この容量の増加の原因として、木粉は
シリカと異なり鉛粉の粒径に対して数百倍もの大きさを
有しているために、木粉の多孔部の入口に活物質が入り
込んで活物質の剥離や脱落が防げることや、多孔部に電
解液がプールされて放電に伴う電解液の活物質内の拡散
をスムーズにできることや、木粉の多孔部が充放電に伴
う活物質の応力を吸収すること等が考えられる。また、
本図より活物質層を形成するために用いる鉛粉の総重量
に対する木粉の重量比が3%を超えると電池の放電容量
は低下するのが判る。
Next, the anode plate a of this embodiment and the conventional anode plate b
The relationship between the added amount of the liquid-retaining substance and the capacity of the battery was investigated by using the batteries prepared by combining and with the same cathode plate. ◎ Anode plate a is the anode plate of this embodiment made by using wood powder having a size of 24 mesh to 32 mesh, and anode plate b is 20-30 μm silica instead of wood powder as a liquid-retaining substance. It is a conventional anode plate made by adding it to an active material paste. Incidentally, the cathode plate is a known cathode plate in which a liquid retaining substance is not added to the active material, and the anode plates a and b have the same structure except for the liquid retaining substance. Then, nine different anode plates a and b each having a weight ratio of the liquid-retaining substance to the lead powder in the range of 0% to 5% are made, and one of the anode plates a is used as a cathode via a retainer holding an electrolytic solution. An electrode plate group was formed by laminating one plate, and the entire electrode plate group was wrapped with a resin film to form nine types of lead storage batteries A and B, respectively. Then, each battery was discharged at a high rate of 3 A and the discharge time was measured. FIG. 2 shows the measurement result. As shown in the figure, in the anode plate a of this example using wood powder as the liquid-retaining substance, the discharge capacity at high rate discharge of the battery as a whole is higher than that of the conventional anode plate b using silica as the liquid-retaining substance. It can be seen that it can be increased by about 35%. The cause of this increase in capacity is that, unlike silica, wood flour has a size several hundred times larger than the particle size of lead powder. It is possible to prevent the material from peeling or falling off, to allow the electrolytic solution to be pooled in the porous part so that the electrolytic solution can smoothly diffuse in the active material due to discharge, and the porous part of the wood powder can cause stress in the active material due to charging and discharging. It is possible to absorb Also,
From this figure, it can be seen that the discharge capacity of the battery decreases when the weight ratio of wood powder to the total weight of lead powder used to form the active material layer exceeds 3%.

【0022】次に木粉のサイズと電池の容量との関係を
調べた。まず、10から200メッシュメッシュの範囲
の各サイズの木粉を添加した活物質ペーストを用いて8
種類の陽極板を作った。尚、各極板の鉛粉の総重量に対
する木粉の重量比は0.5%であり、各極板は木粉のサ
イズを除いては本実施例の極板と同じ構造を有してい
る。次に各陽極板1枚を電解液を保持するリテーナを介
して陰極板1枚とそれぞれ積層して極板群を作り、この
極板群全体を樹脂製フィルムで包み込んで8種類の鉛蓄
電池を作った。そして各電池を3Aで高率放電して放電
時間を測定した。図3はその測定結果を示している。本
図より、木粉のサイズが100メッシュのふるいを通過
するほど小さくなったり、16メッシュのふるいを通過
できないほど大きくなったりすると電池の容量が低下す
るのが判る。
Next, the relationship between the size of wood flour and the capacity of the battery was investigated. First, using an active material paste containing wood flour of each size in the range of 10 to 200 mesh, 8
I made different kinds of anode plates. The weight ratio of wood powder to the total weight of lead powder in each electrode plate was 0.5%, and each electrode plate had the same structure as the electrode plate of this example except for the size of the wood powder. There is. Next, one anode plate is laminated with one cathode plate through a retainer that holds an electrolyte to form an electrode group, and the entire electrode group is wrapped with a resin film to form eight types of lead-acid batteries. Had made. Then, each battery was discharged at a high rate of 3 A and the discharge time was measured. FIG. 3 shows the measurement result. From this figure, it can be seen that the capacity of the battery decreases as the size of the wood powder becomes smaller so that it passes through a 100-mesh sieve or becomes too large to pass through a 16-mesh sieve.

【0023】次に図2に示す試験に用いた電池A,Bを
終止電圧1.74Vまで3Aで放電して0.5時間休止
した後に、1.6Aで3.5時間充電(制限電圧2.4
7V/セル)する充放電を繰り返して各電池A,Bの寿
命特性を調べた。尚、各電池A,Bの酸化鉛粉に対する
保液性物質の重量比は0.5%とした。図4はその測定
結果を示している。本図より本実施例の陽極板aを用い
た電池Aは、保液性物質としてシリカを用いた従来の陽
極板bを用いた電池Bとサイクル特性がほぼ同じである
ことがわかる。
Next, the batteries A and B used in the test shown in FIG. 2 were discharged to a final voltage of 1.74 V at 3 A and allowed to rest for 0.5 hour, and then charged at 1.6 A for 3.5 hours (limit voltage 2 .4
Charging / discharging at 7 V / cell was repeated to examine the life characteristics of the batteries A and B. The weight ratio of the liquid retaining material to the lead oxide powder in each of the batteries A and B was 0.5%. FIG. 4 shows the measurement result. From this figure, it is understood that the battery A using the anode plate a of this example has almost the same cycle characteristics as the battery B using the conventional anode plate b using silica as the liquid retaining material.

【0024】[実施例2]本実施例の鉛蓄電池用陽極板
は次のようにして製造した。まずスギの木を木の繊維方
向に沿って0.25mmの厚みに削り出し、さらに幅寸法
(繊維方向と直交する方向の寸法)0.25mm、長さ
(繊維方向の寸法)1.0mmに切断した後に、40℃で
24時間乾燥して細長い木粉を作った。図5はこのよう
にして作った木粉の概略斜視図である。本図に示すよう
に、この木粉には繊維方向に延びる複数の仮道管10…
が延びており、木粉の断面構造はいわゆる蜂の巣構造を
呈している。次に酸化鉛粉と、化成後において活物質に
対する重量比が1.5%未満となる量の木粉と希硫酸と
を混練して活物質ペーストを作った。そして、この活物
質ペーストを鋳造格子体からなる集電体に充填した後
に、これを熟成、乾燥、化成して鉛蓄電池用陽極板を完
成した。
[Example 2] The positive electrode plate for a lead storage battery of this example was manufactured as follows. First of all, a sugi tree is carved to a thickness of 0.25 mm along the fiber direction of the tree, and the width dimension (dimension in the direction orthogonal to the fiber direction) is 0.25 mm and the length (dimension in the fiber direction) is 1.0 mm. After cutting, it was dried at 40 ° C. for 24 hours to make elongated wood flour. FIG. 5 is a schematic perspective view of the wood flour thus produced. As shown in the figure, the wood powder has a plurality of temporary conduits 10 ...
, And the cross-sectional structure of wood flour has a so-called honeycomb structure. Next, an active material paste was prepared by kneading the lead oxide powder, the wood powder and the dilute sulfuric acid in an amount such that the weight ratio to the active material after chemical formation was less than 1.5%. Then, this active material paste was filled in a current collector made of a cast grid, and then this was aged, dried, and formed to complete an anode plate for a lead storage battery.

【0025】次に本実施例の陽極板の特性を調べるため
に5枚の陽極板c〜gを作って、試験を行った。陽極板
cは化成後において活物質に対する重量比が0.4%と
なる量の24メッシュの寸法を有する木粉を用いて作っ
た本実施例の陽極板である。陽極板dは、実施例1のよ
うに仮道管が延びる方向を特定していない32メッシュ
の寸法を有する木粉を用いて作った比較例の陽極板であ
る。尚、陽極板dの木粉の添加量は陽極板cと同量であ
る。陽極板eは陽極板dの活物質にさらに0.1重量%
のカットファイバー(補強材)[直径約10μm 、平均
長さ500μm]を添加した比較例の陽極板である。陽
極板fは化成後において活物質に対する重量比が0.4
%となる量の平均粒径50μm の寸法を有するグラファ
イト(保液性物質)と0.1重量%の前述のカットファ
イバーとを添加した活物質を用いて作った従来の陽極板
である。陽極板gは前述のカットファイバーのみを0.
1重量%添加した活物質を用いて作った従来の陽極板で
ある。尚、各陽極板c〜gは添加物を除いては同じ構造
を有している。そして、陽極板c〜gを高さ70cmの位
置から鉄板上に5回落下させ、活物質の脱落量を測定し
て、各陽極板の活物質強度を測定した。図6はその測定
結果を示している。本図より本実施例の陽極板cは活物
質の脱落量が少いのが判る。これは、保液性物質として
グラファイトを用いた従来の陽極板fの約1/5の脱落
量であり、カットファイバー(補強材)のみを添加した
従来の陽極板gの約1/2の脱落量である。
Next, in order to examine the characteristics of the anode plate of this example, five anode plates c to g were prepared and tested. The anode plate c is the anode plate of this embodiment, which is made by using wood powder having a size of 24 mesh such that the weight ratio to the active material is 0.4% after chemical conversion. The anode plate d is the anode plate of the comparative example made by using wood powder having a size of 32 mesh in which the direction in which the temporary tube extends is not specified as in Example 1. The amount of wood powder added to the anode plate d is the same as that of the anode plate c. The anode plate e is 0.1% by weight of the active material of the anode plate d.
This is an anode plate of a comparative example in which the cut fiber (reinforcing material) [diameter of about 10 μm, average length of 500 μm] was added. The anode plate f has a weight ratio to the active material of 0.4 after chemical conversion.
It is a conventional anode plate made of an active material to which is added graphite (a liquid retaining material) having an average particle size of 50 μm and a cut fiber of 0.1% by weight. The anode plate g has only the above-mentioned cut fiber of 0.
It is a conventional anode plate made using an active material added with 1% by weight. The anode plates c to g have the same structure except for the additives. Then, the anode plates c to g were dropped onto the iron plate 5 times from the position of 70 cm in height, the amount of the active material dropped was measured, and the active material strength of each anode plate was measured. FIG. 6 shows the measurement result. It can be seen from this figure that the positive electrode plate c of this embodiment has a small amount of active material falling off. This is about one-fifth the amount of fall of the conventional anode plate f using graphite as the liquid-retaining substance, and about 1/2 of the drop of the conventional anode plate g containing only cut fibers (reinforcing material). Is the amount.

【0026】次に陽極板c〜gのそれぞれ各1枚を電解
液を保持するリテーナを介して活物質に保液性物質を添
加していない公知の陰極板1枚と積層して極板群を作
り、この極板群全体を樹脂製フィルムで包み込んで鉛蓄
電池C〜Gを作った。そして、各電池C〜Gを1CAの
高率の定電流で放電して、各電池の陽極活物質の利用率
を調べた。図7はその測定結果を示している。本図より
本実施例の陽極板cを用いると高率放電にもかかわら
ず、陽極活物質の利用率を30%以上にできるのが判
る。
Next, each one of the anode plates c to g is laminated with one known cathode plate in which a liquid-retaining substance is not added to the active material through a retainer holding an electrolytic solution, to laminate a plate group. Then, the whole of the electrode plate group was wrapped with a resin film to produce lead acid batteries C to G. Then, each of the batteries C to G was discharged at a high constant current of 1 CA, and the utilization rate of the anode active material of each battery was examined. FIG. 7 shows the measurement result. From this figure, it can be seen that by using the anode plate c of this example, the utilization rate of the anode active material can be increased to 30% or more despite the high rate discharge.

【0027】次に各電池C〜Gに終始電圧1.74Vま
で3Aで放電した後に1.6Aで3.5時間(制限電圧
2.47V/セル)充電する充放電サイクルを繰り返して
各電池の寿命特性を調べた。図8はその測定結果を示し
ている。本図より本実施例の陽極板cを用いると500
サイクルを越える寿命の電池を得られるのが判る。
Next, each battery C to G was discharged at 3A to a voltage of 1.74V from beginning to end and then charged and discharged at 1.6A for 3.5 hours (limit voltage of 2.47V / cell). The life characteristics were investigated. FIG. 8 shows the measurement result. From the figure, it is 500 if the anode plate c of this embodiment is used.
It can be seen that a battery with a life exceeding the cycle can be obtained.

【0028】次に木粉の活物質に対する重量比と陽極活
物質の利用率との関係を調べた。図9は本実施例の陽極
板cにおいて、木粉の活物質に対する重量比のみを変え
て作った各極板の陽極活物質の利用率を測定した図であ
る。本図より木粉の重量比を0.2重量%以上1.0重
量%以下にすると陽極活物質の利用率が高くなるのが判
る。木粉の重量比が0.2重量%を下回ると木粉の保液
性物質としての作用が低下し、木粉の重量比が1.0重
量%を超えると活物質の充填量が減少して活物質利用率
は低下する。
Next, the relationship between the weight ratio of the wood powder to the active material and the utilization rate of the anode active material was investigated. FIG. 9 is a diagram showing the utilization rate of the anode active material of each electrode plate prepared by changing only the weight ratio of wood powder to the active material in the anode plate c of this example. From this figure, it can be seen that the utilization ratio of the anode active material increases when the weight ratio of wood powder is 0.2% by weight or more and 1.0% by weight or less. When the weight ratio of wood powder is less than 0.2% by weight, the action of the wood powder as a liquid-retaining substance decreases, and when the weight ratio of wood powder exceeds 1.0% by weight, the amount of the active material filled decreases. As a result, the active material utilization rate decreases.

【0029】次に木粉の長手方向の端面の面積と陽極活
物質の利用率との関係を調べた。図10は本実施例の陽
極板cにおいて、木粉の長手方向の端面の面積のみを変
えて作った各極板の陽極活物質の利用率を測定した図で
ある。本図より木粉の長手方向の端面の面積が0.04
mm2 を下回ると陽極活物質の利用率が低下するのが判
る。これは、面積が0.04mm2 を下回ると、木粉中の
仮道管の数が減少して、電解液の移動を十分に行えない
ためである。
Next, the relationship between the area of the end face of the wood powder in the longitudinal direction and the utilization rate of the anode active material was examined. FIG. 10 is a diagram showing the utilization rate of the anode active material of each electrode plate prepared by changing only the area of the end face in the longitudinal direction of the wood powder in the anode plate c of this example. From this figure, the area of the end face of wood flour in the longitudinal direction is 0.04.
It can be seen that if it is less than mm 2 , the utilization rate of the anode active material decreases. This is because when the area is less than 0.04 mm 2 , the number of temporary pipes in the wood powder decreases and the electrolyte cannot be moved sufficiently.

【0030】[実施例3]本実施例の鉛蓄電池用陽極板
は次のようにして製造した。まず針葉樹であるスギの木
を自動粉砕機を用いて10メッシュから100メッシュ
のサイズに裁断方向を特定しないで裁断した後に、ガス
バーナーを用いて500℃で1時間酸素との接触をでき
るだけ少なくして焼く蒸焼きにして平均炭化度が80%
で32メッシュから42メッシュのサイズの炭化木粉を
作った。なお、蒸焼きにする温度及び時間は得ようとす
る炭化度と炭化した木粉の強度を考慮して定めればよ
く、スギの木の木粉の場合には、200〜500℃の範
囲で1〜2時間蒸焼きにすると適度に炭化した木粉を得
ることができる。次に酸化鉛を含む鉛粉と、該鉛粉に対
して0.5重量%の炭化木粉と希硫酸とを混練して活物
質ペーストを作った。尚、炭化木粉の添加量は活物質の
充填量を大きく減少させない範囲が好ましく、本実施例
では、鉛粉に対して3重量%未満の範囲で添加するのが
好ましい。そして、この活物質ペーストを鋳造格子体か
らなる集電体に充填した後に、これを熟成、乾燥、化成
して鉛蓄電池用陽極板を完成した。
[Example 3] The positive electrode plate for a lead storage battery of this example was manufactured as follows. First, after cutting a Japanese cedar tree, which is a coniferous tree, with an automatic crusher into a size of 10 mesh to 100 mesh without specifying a cutting direction, a gas burner is used to reduce contact with oxygen as much as possible at 500 ° C. for 1 hour. The average degree of carbonization is 80%
A carbonized wood powder having a size of 32 mesh to 42 mesh was prepared by. The steaming temperature and time may be determined in consideration of the degree of carbonization to be obtained and the strength of the carbonized wood powder. In the case of cedar wood powder, the temperature and time range from 200 to 500 ° C. By steaming for 1 to 2 hours, it is possible to obtain an appropriately carbonized wood powder. Next, an active material paste was prepared by kneading lead powder containing lead oxide, carbonized wood powder of 0.5% by weight with respect to the lead powder, and dilute sulfuric acid. The amount of carbonized wood powder added is preferably in a range that does not significantly reduce the amount of the active material filled, and in the present embodiment, it is preferably added in the range of less than 3% by weight with respect to the lead powder. Then, this active material paste was filled in a current collector made of a cast grid, and then this was aged, dried, and formed to complete an anode plate for a lead storage battery.

【0031】次に本実施例の陽極板の特性を調べるため
に2枚の陽極板h,iを作って、試験を行った。陽極板
hは本実施例の陽極板である。陽極板iは、炭化木粉等
の保液性物質を添加せずその他は本実施例の陽極板と同
様の方法で製造した比較例の陽極板である。そして陽極
板h,iのそれぞれ各1枚を電解液を保持するリテーナ
を介して活物質に保液性物質を添加していない公知の陰
極板1枚と積層して極板群を作り、この極板群全体を樹
脂製フィルムで包み込んで1.4Ahの鉛蓄電池H,I
を作った。そして、各鉛蓄電池に終止電圧1.74Vま
で1Aで放電した後に1.6A、2.47Vで3.5時
間定電圧充電を行う充放電を繰り返して、鉛蓄電池H,
Iのサイクル寿命特性を調べた。図11はその測定結果
を示している。本図より本実施例の陽極板hを用いた電
池Hは、保液性物質を添加しない比較例の陽極板iを用
いた電池Iに比べてサイクル寿命特性が延びているのが
判る。
Next, in order to investigate the characteristics of the anode plate of this embodiment, two anode plates h and i were prepared and tested. The anode plate h is the anode plate of this embodiment. The anode plate i is the anode plate of the comparative example manufactured by the same method as that of the anode plate of this example except that the liquid-retaining substance such as carbonized wood powder was not added. Then, each one of the anode plates h and i is laminated with one known cathode plate in which a liquid retaining material is not added to the active material through a retainer holding an electrolytic solution to form an electrode plate group. 1.4Ah lead-acid battery H, I by encapsulating the whole electrode plate group with a resin film
made. Then, the lead storage batteries H and H are repeatedly charged and discharged by discharging each lead storage battery at a final voltage of 1.74 V at 1 A and then performing constant voltage charging at 1.6 A and 2.47 V for 3.5 hours.
The cycle life characteristics of I were investigated. FIG. 11 shows the measurement result. From this figure, it can be seen that the battery H using the anode plate h of the present example has a longer cycle life characteristic than the battery I using the anode plate i of the comparative example in which the liquid retaining material is not added.

【0032】次に鉛粉に対する炭化木粉の重量比と電池
の高率放電容量との関係を調べた。まず、炭化木粉の酸
化鉛粉に対する重量比のみを0〜5重量%の範囲で変
え、その他は本実施例の陽極板hの製造方法と同様の方
法で6種類の陽極板を作った。そして各陽極板のそれぞ
れ各1枚を電解液を保持するリテーナを介して活物質に
保液性物質を添加していない公知の陰極板1枚と積層し
て極板群を作り、この極板群全体を樹脂製フィルムで包
み込んで6種類の1.4Ahの鉛蓄電池を作った。そし
て各鉛蓄電池を4.2Aで放電して各電池の放電時間を
測定した。図12はその測定結果を示す図である。本図
より炭化木粉の重量比が3重量%を超えると活物質の充
填量が減少して高率放電容量が低下するのが判る。
Next, the relationship between the weight ratio of the carbonized wood powder to the lead powder and the high rate discharge capacity of the battery was investigated. First, 6 types of anode plates were produced by the same method as the method for producing the anode plate h of this example, except that only the weight ratio of the carbonized wood powder to the lead oxide powder was changed within the range of 0 to 5% by weight. Then, one electrode plate of each anode plate is laminated with one known cathode plate in which a liquid retaining material is not added to the active material through a retainer holding an electrolytic solution to form an electrode plate group. The whole group was wrapped with a resin film to make six types of 1.4 Ah lead-acid batteries. Then, each lead acid battery was discharged at 4.2 A and the discharge time of each battery was measured. FIG. 12 is a diagram showing the measurement results. From this figure, it can be seen that when the weight ratio of the carbonized wood powder exceeds 3% by weight, the filling amount of the active material decreases and the high rate discharge capacity decreases.

【0033】次に炭化木粉のサイズと電池の容量との関
係を調べた。まず、10メッシュから200メッシュの
範囲の各サイズの炭化木粉を添加した活物質ペーストを
用いて7種類の陽極板を作った。尚、各極板の鉛粉の総
重量に対する炭化木粉の重量比は0.5%であり、各極
板は炭化木粉のサイズを除いては本実施例の極板hと同
じ構造を有している。次に各陽極板1枚を電解液を保持
するリテーナを介して陰極板1枚とそれぞれ積層して極
板群を作り、この極板群全体を樹脂製フィルムで包み込
んで7種類の1.4Ahの鉛蓄電池を作った。そして各
電池を4.2Aで高率放電して放電時間を測定した。図
13はその測定結果を示している。本図より、炭化木粉
のサイズが100メッシュのふるいを通過するほど小さ
くなったり、16メッシュのふるいを通過できないほど
大きくなったりすると電池の容量が低下するのが判る。
尚、炭化木粉の代りに32メッシュから42メッシュの
サイズを有する炭化処理を施さない木粉を用い、その他
は本試験に用いた鉛蓄電池と同様にして作った鉛蓄電池
では、放電時間が13分であった。この結果と本図に示
される32メッシュから42メッシュの炭化木粉を用い
た鉛蓄電池の放電時間(14分)とを比較すると、炭化
木粉を用いることにより活物質内の導電性が高まって、
鉛蓄電池の容量が高くなるのが判る。
Next, the relationship between the size of the carbonized wood powder and the capacity of the battery was investigated. First, seven kinds of anode plates were made using the active material paste to which each size of carbonized wood powder in the range of 10 mesh to 200 mesh was added. The weight ratio of the carbonized wood powder to the total weight of the lead powder of each electrode plate was 0.5%, and each electrode plate had the same structure as the electrode plate h of this embodiment except the size of the carbonized wood powder. Have Next, one plate of each anode is laminated with one plate of cathode through a retainer holding an electrolytic solution to form an electrode plate group, and the entire electrode plate group is wrapped with a resin film to form seven kinds of 1.4 Ah. Made of lead acid battery. Then, each battery was discharged at a high rate of 4.2 A and the discharge time was measured. FIG. 13 shows the measurement result. From this figure, it can be seen that the capacity of the battery decreases as the size of the carbonized wood powder becomes smaller so as to pass through a 100-mesh sieve or becomes too large to pass through a 16-mesh sieve.
It should be noted that, in place of the carbonized wood powder, wood powder having a size of 32 to 42 mesh and not subjected to carbonization treatment was used. Otherwise, in a lead acid battery made in the same manner as the lead acid battery used in this test, the discharge time was 13 It was a minute. When this result is compared with the discharge time (14 minutes) of the lead storage battery using the carbonized wood powder of 32 mesh to 42 mesh shown in this figure, the conductivity in the active material is increased by using the carbonized wood powder. ,
It can be seen that the capacity of the lead storage battery increases.

【0034】次に炭化木粉のサイズと電池のサイクル寿
命特性との関係を調べた。前述の電池容量の試験に用い
た0メッシュから16メッシュの炭化木粉を用いた鉛蓄
電池と、32メッシュから42メッシュの炭化木粉を用
いた鉛蓄電池とにそれぞれ終止電圧1.74Vまで1A
で放電し、1時間休止した後に1.6A、2.47Vで
1時間定電圧充電を行う充放電充放電を繰り返して、各
鉛蓄電池のサイクル寿命特性を調べた。図14はその測
定結果を示している。本図より、炭化木粉のサイズが1
6メッシュのふるいを通過できないほど大きくなるとサ
イクル寿命特性が低下するのが判る。
Next, the relationship between the size of the carbonized wood powder and the cycle life characteristics of the battery was investigated. A lead storage battery using 0 mesh to 16 mesh carbonized wood powder used in the above-mentioned battery capacity test and a lead storage battery using 32 mesh to 42 mesh carbonized wood powder each have a final voltage of 1A up to a final voltage of 1.74V.
The lead-acid battery was examined for cycle life characteristics by repeating charge and discharge charging and discharging in which the battery was discharged for 1 hour, and after resting for 1 hour, constant voltage charging was performed at 1.6 A and 2.47 V for 1 hour. FIG. 14 shows the measurement result. From this figure, the size of carbonized wood powder is 1
It can be seen that the cycle life characteristics deteriorate when the size becomes too large to pass through a 6-mesh sieve.

【0035】尚、上記実施例3では保液性物質として平
均炭化度80%の炭化木粉を用いたが、異なる炭化度の
炭化木粉を保液性物質として用いても構わないのは勿論
である。使用する炭化木粉の炭化度が高くなるほど、活
物質の導電度は高くなるが、炭化木粉の強度が低くなる
ため、用途に応じて適宜の炭化度の炭化木粉を用いれば
よい。また、炭化木粉と炭化させない木粉とを混合した
ものを保液性物質として用いることができるのは勿論で
ある。また、上記実施例3では裁断方向を特定しないで
裁断した木粉に炭化処理を施して炭化木粉を作ったが、
実施例2に示されるように複数の仮道管が長手方向に延
びた細長い形状の木粉に炭化処理を施して炭化木粉を作
っても構わない。このような炭化木粉を保液性物質とし
て用いれば、活物質内の電解液の移動をスムーズにした
り、活物質の脱落を防止することができる。
In Example 3, carbonized wood powder having an average carbonization degree of 80% was used as the liquid retaining material, but carbonized wood powder having a different carbonization degree may be used as the liquid retaining material. Is. The higher the degree of carbonization of the carbonized wood powder used, the higher the conductivity of the active material, but the lower the strength of the carbonized wood powder. Therefore, carbonized wood powder having an appropriate carbonization degree may be used depending on the application. Further, it goes without saying that a mixture of carbonized wood powder and non-carbonized wood powder can be used as the liquid retaining material. Further, in the above-mentioned Example 3, the wood powder cut without specifying the cutting direction was carbonized to produce carbonized wood powder.
As shown in the second embodiment, carbonized wood powder may be produced by carbonizing a wood powder having an elongated shape in which a plurality of temporary conduits extend in the longitudinal direction. If such carbonized wood powder is used as the liquid-retaining substance, it is possible to smooth the movement of the electrolytic solution in the active material and prevent the active material from falling off.

【0036】また、上記各実施例は陽極板に本発明を適
用したものであるが、陰極板にも本発明を適用できるの
は勿論である。
In each of the above embodiments, the present invention is applied to the anode plate, but it goes without saying that the present invention can also be applied to the cathode plate.

【0037】また、上記各実施例では、仮道管が長い針
葉樹材のうち比較的安価なスギの木を用いて木粉を作っ
たが、乾燥して多孔質な木粉にできるものであれば、針
葉樹材だけでなく広葉樹材を用いても構わない。
In each of the above-mentioned embodiments, the wood powder was made from a relatively inexpensive cedar tree among the softwood materials having a long tracheid, but any wood powder that can be dried to form a porous wood powder can be used. For example, not only softwood but also hardwood may be used.

【0038】[0038]

【発明の効果】請求項1の発明によれば、保液性物質と
して乾燥した多孔質の木粉等を用いるため、極板の製造
コストを低くできる。また、木粉等の多孔部内に電解液
を蓄えることができるため、電池の容量及び活物質利用
率を高めることができる。しかも、木粉等が活物質全体
に分散するため、活物質の局部的な反応による応力負担
が大きくならず電池の寿命特性を向上させることができ
る。また、木粉等の多孔部内に活物質が入り込むことに
よって、活物質と保液性物質との結合力が高くなること
によっても、電池の寿命特性を向上させることができ
る。さらに、多孔質の炭化木粉は、導電性があるので、
炭化木粉を保液性物質として有する場合には、含有量を
適宜に選択して活物質内の導電性を任意に高くして、電
池の放電容量を高めることができる。
According to the first aspect of the invention, since dry porous wood powder or the like is used as the liquid retaining material, the manufacturing cost of the electrode plate can be reduced. Moreover, since the electrolytic solution can be stored in the porous portion such as wood powder, the capacity of the battery and the utilization rate of the active material can be increased. Moreover, since the wood powder and the like are dispersed throughout the active material, the stress load due to the local reaction of the active material does not increase and the life characteristics of the battery can be improved. In addition, the life characteristics of the battery can be improved by increasing the binding force between the active material and the liquid-retaining material due to the active material entering the porous portion such as wood powder. Furthermore, since the porous carbonized wood powder is electrically conductive,
When carbonized wood powder is used as the liquid-retaining substance, the content can be appropriately selected to arbitrarily increase the conductivity in the active material, thereby increasing the discharge capacity of the battery.

【0039】請求項2の発明によれば、16メッシュか
ら100メッシュのサイズの木粉等を用いるため、電池
の放電容量を好ましい範囲で高くできる。
According to the second aspect of the present invention, since wood powder having a size of 16 to 100 mesh is used, the discharge capacity of the battery can be increased within a preferable range.

【0040】請求項3の発明によれば、活物質層を形成
するために用いる鉛粉の総重量に対する木粉等の重量比
は3%未満なので、電池の放電容量の向上に大きく寄与
する。
According to the third aspect of the present invention, the weight ratio of the wood powder or the like to the total weight of the lead powder used to form the active material layer is less than 3%, which greatly contributes to the improvement of the discharge capacity of the battery.

【0041】請求項4の発明によれば、複数の仮道管が
長手方向に延びた細長い形状の木粉等を用いるため、活
物質内を電解液がスムーズに移動する。そのため、極板
全体にほぼ均一に放電反応が進行し、活物質の利用率が
大きく向上して、活物質の単位重量あたりの容量が高く
なる。また、仮道管が露出する端面部分の形状は蜂の巣
構造のように複雑な形状を呈しているため、木粉等の多
孔部の入口部分に活物質が入り込み、活物質と保液性物
質との結合力が大幅に増加する。しかも複数の仮道管は
長手方向に延びているため、木粉等の曲げ強度が高くな
り、細長い木粉等が活物質層の補強材として機能し、活
物質の脱落を防止する。そのため、電池の寿命特性を向
上させることができる。
According to the fourth aspect of the present invention, since the plurality of temporary conduits are made of wood powder or the like having an elongated shape extending in the longitudinal direction, the electrolytic solution moves smoothly in the active material. Therefore, the discharge reaction proceeds almost uniformly over the entire electrode plate, the utilization rate of the active material is greatly improved, and the capacity per unit weight of the active material is increased. Further, since the shape of the end face portion where the temporary duct is exposed has a complicated shape like a honeycomb structure, the active material enters the entrance portion of the porous portion such as wood powder, and the active material and the liquid-retaining material The binding force of is greatly increased. Moreover, since the plurality of temporary conduits extend in the longitudinal direction, the bending strength of the wood powder or the like becomes high, and the slender wood powder or the like functions as a reinforcing material for the active material layer to prevent the active material from falling off. Therefore, the life characteristics of the battery can be improved.

【0042】請求項5の発明によれば、細長い木粉等の
活物質に対する重量比を0.2%以上1.0%以下とす
るため、活物質の利用率が高くなる。
According to the fifth aspect of the present invention, the weight ratio of the slender wood powder or the like to the active material is 0.2% or more and 1.0% or less, so that the utilization rate of the active material is increased.

【0043】請求項6の発明によれば、細長い木粉等の
長手方向の端面の面積を0.04mm2 以上にするため活
物質の利用率が高くなる。
According to the invention of claim 6, the utilization rate of the active material is increased because the area of the end face in the longitudinal direction of the slender wood powder or the like is set to 0.04 mm 2 or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の極板に用いた木粉の繊維方
向と直交する面の拡大図である。
FIG. 1 is an enlarged view of a plane orthogonal to a fiber direction of wood powder used for an electrode plate of an example of the present invention.

【図2】 試験に用いた電池の保液性物質の添加量と電
池の容量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of liquid-retaining substance added to the battery used in the test and the battery capacity.

【図3】 木粉のサイズと電池の容量との関係を示す図
である。
FIG. 3 is a diagram showing the relationship between the size of wood flour and the capacity of a battery.

【図4】 試験に用いた電池の寿命特性を示す図であ
る。
FIG. 4 is a diagram showing the life characteristics of the battery used in the test.

【図5】 本発明の他の実施例の極板に用いた木粉の斜
視図である。
FIG. 5 is a perspective view of wood powder used in an electrode plate of another embodiment of the present invention.

【図6】 試験に用いた極板の活物質強度を示す図であ
る。
FIG. 6 is a view showing the active material strength of the electrode plate used in the test.

【図7】 試験に用いた電池の陽極活物質の利用率を示
す図である。
FIG. 7 is a diagram showing a utilization rate of an anode active material of a battery used in a test.

【図8】 試験に用いた電池の寿命特性を示す図であ
る。
FIG. 8 is a diagram showing the life characteristics of the battery used in the test.

【図9】 木粉の活物質に対する重量比と陽極活物質の
利用率との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the weight ratio of wood powder to the active material and the utilization rate of the anode active material.

【図10】 木粉の長手方向の端面の面積と陽極活物質
の利用率との関係を示す図である。
FIG. 10 is a diagram showing the relationship between the area of the end face of wood powder in the longitudinal direction and the utilization rate of the anode active material.

【図11】 試験に用いた電池のサイクル寿命特性を示
す図である。
FIG. 11 is a diagram showing cycle life characteristics of a battery used in a test.

【図12】 鉛粉に対する炭化木粉の重量比と電池の高
率放電容量との関係を示す図である。
FIG. 12 is a diagram showing the relationship between the weight ratio of carbonized wood powder to lead powder and the high rate discharge capacity of the battery.

【図13】 炭化木粉のサイズと電池の容量との関係を
示す図である。
FIG. 13 is a diagram showing the relationship between the size of carbonized wood powder and the capacity of a battery.

【図14】 炭化木粉のサイズと電池のサイクル寿命特
性との関係を示す図である。
FIG. 14 is a diagram showing the relationship between the size of carbonized wood powder and the cycle life characteristics of a battery.

【符号の説明】[Explanation of symbols]

1 多孔部 10 仮道管 1 Porous part 10 Temporary conduit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 活物質中に保液性物質が添加されてなる
鉛蓄電池用極板において、 前記保液性物質として乾燥した多孔質の木粉及び多孔質
の炭化木粉のうちの少なくとも1つが用いられているこ
とを特徴とする鉛蓄電池用極板。
1. A lead storage battery electrode plate comprising a liquid-retaining substance added to an active material, wherein at least one of dried porous wood powder and porous carbonized wood powder is used as the liquid-retaining substance. An electrode plate for a lead storage battery, which is characterized in that one is used.
【請求項2】 前記木粉及び前記炭化木粉は16メッシ
ュから100メッシュのサイズを有していることを特徴
とする請求項1に記載の鉛蓄電池用極板。
2. The electrode plate for a lead storage battery according to claim 1, wherein the wood powder and the carbonized wood powder have a size of 16 mesh to 100 mesh.
【請求項3】 活物質層を形成するために用いる酸化鉛
粉の総重量に対する前記保液性物質の重量比は3%未満
であることを特徴とする請求項1に記載の鉛蓄電池用極
板。
3. The lead-acid battery electrode according to claim 1, wherein the weight ratio of the liquid-retaining substance to the total weight of the lead oxide powder used to form the active material layer is less than 3%. Board.
【請求項4】 前記木粉及び前記炭化木粉として複数の
仮道管が長手方向に延びた細長い形状の木粉を用いるこ
とを特徴とする請求項1に記載の鉛蓄電池用極板。
4. The lead-acid battery electrode plate according to claim 1, wherein the wood powder and the carbonized wood powder are wood powder having an elongated shape in which a plurality of temporary conduits extend in a longitudinal direction.
【請求項5】 前記保液性物質の前記活物質に対する重
量比は0.2%以上1.0%以下であることを特徴とす
る請求項4に記載の鉛蓄電池用極板。
5. The electrode plate for a lead storage battery according to claim 4, wherein a weight ratio of the liquid retaining material to the active material is 0.2% or more and 1.0% or less.
【請求項6】 前記木粉及び前記炭化木粉の長手方向の
端面の面積は0.04mm2 以上であることを特徴とする
請求項4または5に記載の鉛蓄電池用極板。
6. The lead-acid battery electrode plate according to claim 4, wherein the wood powder and the carbonized wood powder have an end face area in the longitudinal direction of 0.04 mm 2 or more.
JP14463293A 1992-10-05 1993-06-16 Plate for lead-acid battery Expired - Fee Related JP3374445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14463293A JP3374445B2 (en) 1992-10-05 1993-06-16 Plate for lead-acid battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26622292 1992-10-05
JP4-266222 1992-10-05
JP14463293A JP3374445B2 (en) 1992-10-05 1993-06-16 Plate for lead-acid battery

Publications (2)

Publication Number Publication Date
JPH06176761A true JPH06176761A (en) 1994-06-24
JP3374445B2 JP3374445B2 (en) 2003-02-04

Family

ID=26475990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14463293A Expired - Fee Related JP3374445B2 (en) 1992-10-05 1993-06-16 Plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JP3374445B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997170A1 (en) * 2006-03-15 2008-12-03 P.C. Di Pompeo Catelli Process for producing battery electrodes, electrodes produced by this process, and batteries containing such electrodes
US20100291440A1 (en) * 2007-10-16 2010-11-18 Douglas J Miller Battery Electrode
WO2021070231A1 (en) * 2019-10-07 2021-04-15 昭和電工マテリアルズ株式会社 Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997170A1 (en) * 2006-03-15 2008-12-03 P.C. Di Pompeo Catelli Process for producing battery electrodes, electrodes produced by this process, and batteries containing such electrodes
EP1997170B1 (en) * 2006-03-15 2016-06-08 P.C. di POMPEO CATELLI S.r.l. Process for producing battery electrodes, electrodes produced by this process, and batteries containing such electrodes
US20100291440A1 (en) * 2007-10-16 2010-11-18 Douglas J Miller Battery Electrode
WO2021070231A1 (en) * 2019-10-07 2021-04-15 昭和電工マテリアルズ株式会社 Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery

Also Published As

Publication number Publication date
JP3374445B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
KR100609862B1 (en) Lithium secondary cell and method for manufacturing the same
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
US8173300B2 (en) Acid-lead battery electrode comprising a network of pores passing therethrough, and production method
JP5016306B2 (en) Lead acid battery
US4358390A (en) Zinc electrode
JP6977770B2 (en) Liquid lead-acid battery
KR20240016426A (en) Lithium-ion battery electrode, method of manufacturing the same, and lithium-ion battery
JPH05174825A (en) Lead battery
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JP3374445B2 (en) Plate for lead-acid battery
JP2006004688A (en) Lead-acid battery
JP2002141066A (en) Control valve type lead acid battery
JP5211681B2 (en) Method for producing lead-acid battery
JP2011070870A (en) Lead-acid battery
JP3339080B2 (en) Anode plate for lead storage battery and method of manufacturing the same
JP4066509B2 (en) Manufacturing method of lead acid battery
JPH01128367A (en) Sealed type lead storage battery
CN112349898B (en) Silicon cathode of lithium ion battery and battery
Johnson et al. High surface area, low-weight composite nickel fiber electrodes
JP3298177B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPH08180857A (en) Electrode plate for lead-acid battery
JP3414941B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JP2000348715A (en) Manufacture of lead-acid battery
JP3518123B2 (en) Anode plate for lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021029

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees