JPH0617652B2 - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPH0617652B2
JPH0617652B2 JP63023691A JP2369188A JPH0617652B2 JP H0617652 B2 JPH0617652 B2 JP H0617652B2 JP 63023691 A JP63023691 A JP 63023691A JP 2369188 A JP2369188 A JP 2369188A JP H0617652 B2 JPH0617652 B2 JP H0617652B2
Authority
JP
Japan
Prior art keywords
cooling
liner
transition piece
gas turbine
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63023691A
Other languages
Japanese (ja)
Other versions
JPH01200025A (en
Inventor
一躬 岩井
浩美 小泉
勉 郡司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63023691A priority Critical patent/JPH0617652B2/en
Publication of JPH01200025A publication Critical patent/JPH01200025A/en
Publication of JPH0617652B2 publication Critical patent/JPH0617652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器に係り、特に高温の燃焼ガ
スにさらされる燃焼器ライナ及び尾筒の冷却を効果的に
行うガスタービン燃焼器に関する。
Description: TECHNICAL FIELD The present invention relates to a gas turbine combustor, and more particularly to a gas turbine combustor that effectively cools a combustor liner and a transition piece exposed to high-temperature combustion gas. .

〔従来の技術〕[Conventional technology]

従来ガスタービン燃焼器の尾筒の冷却装置としては、特
開昭62-9157号公報に記載の如く、尾筒の外周に多数の
小孔を有する衝突板を設けていわゆる衝突冷却を行うこ
とが知られている。
As a conventional cooling device for a transition piece of a gas turbine combustor, a collision plate having a large number of small holes is provided on the outer periphery of the transition piece to perform so-called collision cooling, as described in JP-A-62-9157. Are known.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

この従来の装置では、衝突板から尾筒外表面に衝突した
冷却空気は、尾筒を冷却するとともに燃焼器ライナ側に
流れてライナ外表面を対流冷却する構成となっている。
一般に対流冷却に比べて衝突冷却の方が冷却効果が高い
ことが知られているために従来の装置では尾筒の冷却作
用は十分であるが、燃焼器ライナの冷却が十分に行えな
いという問題が生ずる。また、尾筒表面に衝突した冷却
空気の全量は燃焼器頭部へ向って流れるためにライナ側
に近づくにつれて壁面に沿った空気流のために衝突冷却
流が干渉されて衝突冷却の作用を十分に発揮できない。
更に、衝突冷却には、冷却空気が高速で冷却面に衝突す
る必要があるため、圧力損失が大きくなる傾向にあり、
そのため、外筒内に取り込まれた圧縮空気の全量を衝突
冷却に使用できないという問題もあり、従来例に見られ
る如く、外筒に取り込まれた圧縮空気の一部を衝突冷却
に用い、残部はライナの冷却に用いる方式が採用されて
いる。
In this conventional apparatus, the cooling air that has collided with the outer surface of the transition piece from the collision plate cools the transition piece and flows toward the combustor liner side to convectively cool the outer surface of the liner.
It is generally known that impact cooling has a higher cooling effect than convection cooling, so that the conventional device has a sufficient cooling effect on the transition piece, but the combustor liner cannot be cooled sufficiently. Occurs. Further, since the entire amount of cooling air that has collided with the surface of the transition piece flows toward the head of the combustor, the collision cooling flow interferes due to the air flow along the wall surface as it approaches the liner side, and the effect of collision cooling is sufficient. Can not be demonstrated to.
Further, in the collision cooling, the cooling air needs to collide with the cooling surface at a high speed, so that the pressure loss tends to increase,
Therefore, there is also a problem that the entire amount of compressed air taken into the outer cylinder cannot be used for collision cooling, and as seen in the conventional example, a part of the compressed air taken into the outer cylinder is used for collision cooling and the rest is The method used to cool the liner is used.

この方式は、外筒に供給される圧縮空気量が一定である
場合には、ライナ及び尾筒の要求される冷却量を満足す
るように衝突冷却空気量とライナの対流冷却空気量との
分流比を決めることができるが、例えば、石炭ガス化燃
料を用いた場合には燃焼に要求される空気量が変化する
ために、外筒に取り込まれる空気量が変化し、部分的に
冷却が不十分となる問題がある。
This method divides the collision cooling air amount and the convection cooling air amount of the liner so as to satisfy the required cooling amount of the liner and the transition piece when the amount of compressed air supplied to the outer cylinder is constant. The ratio can be determined, but, for example, when coal gasification fuel is used, the amount of air required for combustion changes, so the amount of air taken into the outer cylinder changes and cooling is partially incomplete. There is a problem that will be sufficient.

本発明の目的は、外筒に供給される圧縮空気をライナ、
尾筒の冷却に効果的に利用できるガスタービン燃焼器及
び冷却方法を提供することにあり、もって、外筒に供縮
される圧縮空気が減少するような運転状態にあっても所
望の冷却作用が得られるガスタービン燃焼器を提供する
ことにある。
An object of the present invention is to provide a compressed air supplied to an outer cylinder with a liner,
It is to provide a gas turbine combustor and a cooling method that can be effectively used for cooling a transition piece. Therefore, even if the operating condition is such that the compressed air compressed in the outer cylinder is reduced, a desired cooling effect can be obtained. It is to provide a gas turbine combustor in which

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的は、外筒に与えられた圧縮空気を尾筒の冷却に
使用し、次にライナの冷却に繰り返し使用することで達
成される。しかも、多量の圧縮空気を冷却空気として使
用しても冷却作用の低下が少なく、かつ、冷却空気の流
路で発生する圧力損失ができる限り大きくならないよう
な冷却方式を採用する。
The above object is achieved by using the compressed air supplied to the outer cylinder to cool the transition piece and then repeatedly to cool the liner. Moreover, even if a large amount of compressed air is used as the cooling air, a cooling system is adopted in which the cooling action is less deteriorated and the pressure loss generated in the flow path of the cooling air is not as large as possible.

つまり、外筒に取り込まれた圧縮空気のほぼ全量を尾筒
外周を対流冷却する冷却流として使用し、対流冷却に使
用された空気をライナ外表面の衝突冷却空気として使用
することにより達成される。
That is, it is achieved by using almost all of the compressed air taken into the outer cylinder as a cooling flow for convectively cooling the outer circumference of the transition piece, and using the air used for convective cooling as collision cooling air on the outer surface of the liner. .

特に、本発明のガスタービン燃焼器は、頭部に燃焼ノズ
ルを有し燃焼室を形成する燃焼器ライナと、燃焼室で生
成した燃焼ガスをガスタービン翼に導く尾筒と、ライナ
及び尾筒を取り囲む外筒と、尾筒の外周に沿って形成さ
れ実質的に尾筒の軸方向に冷却空気を案内する対流冷却
筒とを備えたものであって、ライナと外筒との間に衝突
冷却筒を有することを特徴とする。この衝突冷却筒は、
対流冷却筒内を通った冷却空気を、ライナの外周面に実
質的に半径方向から衝突させるための小孔を多数備えて
いる。
In particular, the gas turbine combustor of the present invention has a combustor liner having a combustion nozzle at its head to form a combustion chamber, a transition pipe for guiding combustion gas generated in the combustion chamber to a gas turbine blade, a liner and transition pipe. And a convection cooling cylinder that is formed along the outer periphery of the transition piece and that guides the cooling air substantially in the axial direction of the transition piece, the collision between the liner and the extension tube. It is characterized by having a cooling cylinder. This collision cooling cylinder
A large number of small holes are provided for causing the cooling air that has passed through the convection cooling cylinder to collide with the outer peripheral surface of the liner in a substantially radial direction.

また、外筒に取り込まれた圧縮空気は、全量、尾筒の外
周に沿って流れ、衝突冷却筒に形成された小孔を通って
ライナの外周面に衝突する。
Further, the compressed air taken into the outer cylinder entirely flows along the outer circumference of the transition piece, and collides with the outer peripheral surface of the liner through the small holes formed in the collision cooling cylinder.

さらに、ライナ及び衝突冷却筒は同心の円筒状に形成さ
れ、尾筒側端は、共に尾筒に連結されている。
Further, the liner and the collision cooling cylinder are formed in a concentric cylindrical shape, and the tail cylinder side ends are both connected to the tail cylinder.

〔作用〕[Action]

本発明の構成によれば、外筒に取り込まれた圧縮空気
は、まず尾筒の外表面を流れて尾筒を冷却するが、この
対流冷却は、空気流が多くても衝突冷却と異なり、冷却
効率が低下することがなく、また流路面積を大きくとる
ことにより、圧力損失も小さくなる。次に、ライナは、
衝突空気により冷却されることになるが、ライナには燃
焼用の二次空気取入口が多数設けられているため、衝突
空気がライナ壁面に衝突すると速やかに空気取入口より
燃焼室内に入り、衝突空気流と干渉するような空気流が
生じにくいので、衝突冷却の効果が十分に発揮される。
According to the configuration of the present invention, the compressed air taken into the outer cylinder first flows on the outer surface of the transition piece to cool the transition piece, but this convection cooling is different from collision cooling even if the air flow is large, The cooling efficiency does not decrease, and the pressure loss is reduced by increasing the flow passage area. Next, the liner
Although it will be cooled by the collision air, the liner has many secondary air intakes for combustion, so when collision air collides with the liner wall, it immediately enters the combustion chamber through the air intake and collides. Since an air flow that interferes with the air flow is unlikely to occur, the effect of collision cooling is sufficiently exerted.

〔実施例〕〔Example〕

以下本発明の実施例を説明する。第1図はガスタービン
の主構成要素を示す。この例は複数の燃焼器をタービン
上流に環状に並べたものである。1は圧縮機外筒,2は
圧縮機動翼,3は圧縮機静翼,4は圧縮機デイフューザ
ー,5は圧縮機吐出空気を示している。6は燃焼器外
筒,7は燃焼器ライナ8を冷却するための強制対流を作
り出す対流冷却筒である。9は高温の燃焼ガスをタービ
ン入口に導くための尾筒,10は外周部に空気旋回羽根
を備えたガス燃料ノズル,11はガスタービンの起動及
び低負荷で使用される油ノズルである。12は燃料ガス
を示し13はタービン第1段静翼,14はタービン第1
段動翼である。
Examples of the present invention will be described below. FIG. 1 shows the main components of a gas turbine. In this example, a plurality of combustors are annularly arranged upstream of the turbine. Reference numeral 1 is a compressor outer cylinder, 2 is a compressor rotor blade, 3 is a compressor stationary blade, 4 is a compressor diffuser, and 5 is compressor discharge air. Reference numeral 6 is a combustor outer cylinder, and 7 is a convection cooling cylinder that produces forced convection for cooling the combustor liner 8. Reference numeral 9 is a transition piece for guiding high temperature combustion gas to the turbine inlet, 10 is a gas fuel nozzle having an air swirl vane on the outer peripheral portion, and 11 is an oil nozzle used for starting the gas turbine and for low load. 12 is fuel gas, 13 is turbine first stage vane, 14 is turbine first
It is a stepping blade.

圧縮機1から吐出された高圧,高速の空気5はデイフュ
ーザ4で減速し、圧力を回復し、途中尾筒9を冷却しな
がら燃焼機ライナ8へ供給される。燃焼器へ供給される
空気5は燃焼器ライナ8を冷却するための衝突冷却筒7
の外側に導かれ、冷却筒7に形成した孔を通るとき流速
を高め、燃焼器ライナ8を衝突冷却しながら燃焼室内に
流入する。燃焼ガス12は尾筒9によってガスタービン
入口13に導かれ、ガスタービンで仕事をした待機外に
排出される。
The high-pressure, high-speed air 5 discharged from the compressor 1 is decelerated by the diffuser 4, recovers the pressure, and is supplied to the combustor liner 8 while cooling the transition piece 9 on the way. The air 5 supplied to the combustor is a collision cooling cylinder 7 for cooling the combustor liner 8.
The flow velocity is increased as it passes through the holes formed in the cooling cylinder 7 and flows into the combustion chamber while collision cooling the combustor liner 8. The combustion gas 12 is guided to the gas turbine inlet 13 by the transition piece 9 and is discharged to the outside of the standby where the gas turbine has worked.

ガスタービンの起動は、まず初めに外部動力によって圧
縮機1を回転させ、回転数が定格回転数の約20%程度
になったときに、燃焼器の着火準備に入る。
To start the gas turbine, first, the compressor 1 is rotated by external power, and when the rotational speed reaches about 20% of the rated rotational speed, preparation for ignition of the combustor is started.

燃焼器の着火は、まず着火栓15に通電し、スパークを
飛ばした後、油ノズル11から油燃料を噴霧し燃焼を開
始する。油燃料の流量を除々に増加し圧縮機回転数が定
格になると、タービンから負荷を取り出すことが可能な
状態となる。
To ignite the combustor, first, the ignition plug 15 is energized to blow the spark, and then the oil fuel is sprayed from the oil nozzle 11 to start combustion. When the flow rate of oil fuel is gradually increased and the compressor speed reaches the rated value, the load can be taken out from the turbine.

石炭ガス化ガス、あるいは高炉から得られる高炉ガスの
様な低カロリーガスは、その単位体積中に含まれる可燃
成分割合が少なく、逆に不活性成分が60〜70%を占
めるために、燃料希薄状態では燃えにくい。したがって
ガスタービンの低負荷側のように燃料希薄領域での低カ
ロリー単独燃焼は困難となる。したがってタービンの低
負荷領域では高カロリーガスあるいは油燃料による運転
となる。このような理由から、圧縮機回転数が定格にな
った後、タービンから負荷が取り出せる状態になって
も、油燃料など高カロリー燃料の燃焼を継続し負荷を取
ることになる。
A low-calorie gas such as coal gasification gas or blast furnace gas obtained from a blast furnace has a small proportion of combustible components contained in its unit volume, and conversely contains 60 to 70% of inactive components. It is hard to burn in the state. Therefore, it becomes difficult to perform low-calorie single combustion in a fuel-lean region such as the low-load side of the gas turbine. Therefore, in the low load region of the turbine, operation is performed with high calorie gas or oil fuel. For this reason, even if the load can be taken out from the turbine after the number of revolutions of the compressor reaches the rated value, combustion of high-calorie fuel such as oil fuel is continued and the load is taken.

一方、低カロリーガスはその単独燃焼が可能となる燃料
・空気の質量比があらかじめ把握されているために、タ
ービン負荷がその状態になったところで、高カロリー燃
料と切り換ることになる。
On the other hand, the low-calorie gas is switched to the high-calorie fuel when the turbine load is in that state because the mass ratio of fuel and air that enables the single combustion of the low-calorie gas is known in advance.

これらのことは、前にも述べた様に多くの問題を含んで
いる。即ち、高カロリー燃料を燃焼した場合と、低カロ
リー燃料を燃焼した場合に同じガス温度と燃焼ガス流量
を確保しなければならない。したがって高カロリー燃焼
では燃料と空気の質量比が2:100又は3:100程
度になるのに対し、低カロリー燃焼では1:2又は1:
4程度になる。これは高カロリー燃焼では冷却筒7内を
流れる空気が低カロリー燃焼のときに比べ多量になるこ
とを意味している。
These things have many problems as mentioned before. That is, it is necessary to secure the same gas temperature and combustion gas flow rate when burning high-calorie fuel and when burning low-calorie fuel. Therefore, the mass ratio of fuel to air is approximately 2: 100 or 3: 100 in high-calorie combustion, while 1: 2 or 1: in low-calorie combustion.
It will be about 4. This means that in high-calorie combustion, the amount of air flowing in the cooling cylinder 7 is larger than that in low-calorie combustion.

第2図は本発明の一実施例である。圧縮機デイフューザ
4を出た空気5は逆転流5′となって尾筒9を冷却する
ための流路5″に流入し、流れ5aを形成し、尾筒9の
入口方向へ流れながら尾筒を対流冷却する。尾筒9を冷
却し、やや温度が上昇した空気5bは尾筒を冷却するた
めの流路5″から流出し衝突冷却筒7と燃焼器外筒6で
形成される空間に流入する。即ちこの空間は燃焼器ライ
ナ8を冷却する流路とはゆるく仕切られており、ライナ
冷却用空気流を整える働きがある。この空間をリザーバ
ー室15と呼ぶ。尾筒を冷却するための流路5″から流
出した空気5bが直接冷却筒7の内部に尾筒入口方向か
ら燃焼器上流方向に向って流入することがないように、
仕切り環7bが設けられている。この仕切り環7bは冷
却筒内部7cと空間15を完全に仕切るものでなくても
よい。この場合には吐出空気5bの一部が、燃焼器後方
から7cに燃焼器に沿って流れ込むことになる。
FIG. 2 shows an embodiment of the present invention. The air 5 exiting the compressor diffuser 4 becomes a reverse flow 5 ′ and flows into the flow path 5 ″ for cooling the transition piece 9 to form a flow 5a, while flowing toward the inlet of the transition piece 9 The air 5b, which cools the transition piece 9 and has a slightly increased temperature, flows out from the flow path 5 ″ for cooling the transition piece 9 into the space formed by the collision cooling tube 7 and the combustor outer tube 6. Inflow. That is, this space is loosely partitioned from the flow path for cooling the combustor liner 8, and has a function of adjusting the air flow for liner cooling. This space is called the reservoir chamber 15. In order to prevent the air 5b flowing out from the flow passage 5 ″ for cooling the transition piece from directly flowing into the cooling tube 7 from the transition piece inlet direction toward the combustor upstream direction,
A partition ring 7b is provided. The partition ring 7b does not have to completely partition the cooling cylinder interior 7c and the space 15. In this case, a part of the discharge air 5b will flow from the rear of the combustor to 7c along the combustor.

空間5cに一旦たくわえられた空気は冷却筒に開けられ
た空気噴出孔7aから冷却筒内部7cに高速で流れ込
み、燃焼器ライナ8に衝突する。燃焼器ライナに衝突し
た空気は燃焼器外表面に沿って広がり、この時に燃焼器
ライナから熱をうばい、燃焼器ライナの温度を下げる。
冷却筒内部に流入した空気は一部は燃焼空気として燃焼
室内へ流れ込み、一部は燃焼器内壁に沿った流れを形成
しながら空気フィルムとなって燃焼室内に流入する。
The air once stored in the space 5c flows into the inside of the cooling cylinder 7c at high speed from the air ejection holes 7a formed in the cooling cylinder, and collides with the combustor liner 8. The air impinging on the combustor liner spreads along the outer surface of the combustor, and at this time, heat is taken from the combustor liner to lower the temperature of the combustor liner.
Part of the air that has flowed into the cooling cylinder flows into the combustion chamber as combustion air, and part of the air forms an air film while flowing along the inner wall of the combustor and flows into the combustion chamber.

第3図は他の実施例における燃焼器ライナ及び衝突冷却
筒の詳細図である。衝突冷却を施している場所はフィル
ム冷却の場合に比較的高温になりやすい燃焼器ライナ頭
部で、燃焼器ライナ下流は尾筒冷却方法をそのまま延長
したものである。冷却筒内7cと外部の空間の仕切7b
はゆるく仕切られている。尚、冷却筒に形成される空気
噴出孔7aのピッチは、ライナ8の温度分布を改善する
ように頭部で密に、下流で粗にするとよい。
FIG. 3 is a detailed view of a combustor liner and an impingement cooling cylinder in another embodiment. The place where collision cooling is applied is the head of the combustor liner, which tends to reach a relatively high temperature in the case of film cooling, and the downstream of the combustor line is an extension of the transition pipe cooling method. Partition 7b for cooling cylinder 7c and external space
Is loosely partitioned. The pitch of the air ejection holes 7a formed in the cooling cylinder is preferably dense at the head and coarse at the downstream so as to improve the temperature distribution of the liner 8.

第4図は本実施例における冷却効果の一例である。燃料
は発熱量930kcal/Nm3のガスを用い、燃焼器
出口ガス温度は1260℃である。空気温度は330
℃,燃料温度は340℃である。図中△印は、従来の冷
却法である対流冷却法を用いた結果で、ライナの軸方向
距離100mmから300mmの範囲で800℃以上のメタ
ル温度を示している。
FIG. 4 shows an example of the cooling effect in this embodiment. The fuel used was a gas with a calorific value of 930 kcal / Nm 3 , and the combustor outlet gas temperature was 1260 ° C. Air temperature is 330
° C, fuel temperature is 340 ° C. The symbol Δ in the figure shows the result of using the convection cooling method which is a conventional cooling method, and shows a metal temperature of 800 ° C. or higher in the range of the axial direction distance of the liner from 100 mm to 300 mm.

一方○印は本発明による冷却方法で、従来冷却法に比べ
100deg低下しているのがわかる。
On the other hand, it can be seen that the mark ○ indicates the cooling method according to the present invention, which is 100 deg lower than that of the conventional cooling method.

〔発明の効果〕〔The invention's effect〕

本発明によれば高カロリー燃料を燃焼するときも、低カ
ロリー燃料を燃焼するときも同一燃焼器冷却構造で、同
じ程度の圧力損失で冷却することが出来るので、ガスタ
ービンの効率を低下させることがなく、しかも低カロリ
ー燃料を燃焼する場合のように少ない冷却空気において
も十分燃焼器を冷却することができる。
According to the present invention, it is possible to cool a high-calorie fuel and a low-calorie fuel with the same combustor cooling structure and with the same degree of pressure loss, thereby reducing the efficiency of the gas turbine. In addition, the combustor can be sufficiently cooled with a small amount of cooling air as in the case of burning low-calorie fuel.

さらに冷却構造は従来と大幅な変更がなく、冷却筒の変
更だけですむため、従来の信頼性をそのまま継続でき、
経済的にもすぐれている。
In addition, the cooling structure does not change significantly from the conventional one, only the cooling cylinder needs to be changed, so the conventional reliability can be continued as it is.
It is also economically superior.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明を実施したガスタービン主要構成図、
第2図は、燃焼器の詳細図、第3図は燃焼器冷却筒の具
体例、第4図は実施例による効果の一例を示す特性図で
ある。 6…外筒、7…衝突・冷却筒、7a…空気噴出孔、8…
燃焼器ライナ、9…尾筒、5″…対流冷却通路。
FIG. 1 is a main configuration diagram of a gas turbine according to the present invention,
FIG. 2 is a detailed diagram of the combustor, FIG. 3 is a specific example of the combustor cooling cylinder, and FIG. 4 is a characteristic diagram showing an example of the effect of the embodiment. 6 ... Outer cylinder, 7 ... Collision / cooling cylinder, 7a ... Air ejection hole, 8 ...
Combustor liner, 9 ... Tail tube, 5 ″ ... Convection cooling passage.

フロントページの続き (56)参考文献 特開 昭55−10004(JP,A) 特開 昭58−72822(JP,A) 特開 昭62−9157(JP,A) 特開 昭59−56618(JP,A) 特開 昭62−197645(JP,A) 実開 昭63−71432(JP,U) 実開 昭63−71434(JP,U) 実公 昭63−25317(JP,Y2)Continuation of the front page (56) Reference JP-A-55-10004 (JP, A) JP-A-58-72822 (JP, A) JP-A-62-9157 (JP, A) JP-A-59-56618 (JP , A) JP 62-197645 (JP, A) Actually opened 63-71432 (JP, U) Actually opened 63-71434 (JP, U) Actually published 63-25317 (JP, Y2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】頭部に燃焼ノズルを有し燃焼室を形成する
燃焼器ライナと、前記燃焼室で生成した燃焼ガスをガス
タービン翼に導く尾筒と、前記ライナ及び前記尾筒を取
り囲む外筒と、前記尾筒の外周に沿って形成され実質的
に尾筒の軸方向に冷却空気を案内する対流冷却筒とを備
えたガスタービン燃焼器において、 前記ライナと前記外筒との間に衝突冷却筒を有し、前記
衝突冷却筒は、前記対流冷却筒内を通った冷却空気を、
前記ライナの外周面に実質的に半径方向から衝突させる
ための小孔を多数備えたことを特徴とするガスタービン
燃焼器。
1. A combustor liner having a combustion nozzle at its head to form a combustion chamber, a tail pipe for guiding combustion gas generated in the combustion chamber to a gas turbine blade, and an outer portion surrounding the liner and the tail pipe. A gas turbine combustor comprising a cylinder and a convection cooling cylinder that is formed along the outer periphery of the transition piece and guides cooling air substantially in the axial direction of the transition piece, between the liner and the outer tube. There is a collision cooling cylinder, the collision cooling cylinder, the cooling air that has passed through the convection cooling cylinder,
A gas turbine combustor comprising a large number of small holes for substantially radially colliding with the outer peripheral surface of the liner.
【請求項2】特許請求の範囲第1項において、前記外筒
に取り込まれた圧縮空気は、全量、前記尾筒の外周に沿
って流れ、前記衝突冷却筒に形成された小孔を通って前
記ライナの外周面に衝突することを特徴とするガスター
ビン燃焼器。
2. The compressed air taken into the outer cylinder as set forth in claim 1, flows entirely along the outer periphery of the transition piece, and passes through the small holes formed in the collision cooling cylinder. A gas turbine combustor characterized by colliding with an outer peripheral surface of the liner.
【請求項3】特許請求の範囲第1項において、前記ライ
ナ及び前記衝突冷却筒は同心の円筒状に形成され、尾筒
側端は、共に前記尾筒に連結されていることを特徴とす
るガスタービン燃焼器。
3. The liner and the impingement cooling cylinder according to claim 1, wherein the liner and the collision cooling cylinder are formed in a concentric cylindrical shape, and both ends of the transition piece are connected to the transition piece. Gas turbine combustor.
JP63023691A 1988-02-05 1988-02-05 Gas turbine combustor Expired - Fee Related JPH0617652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023691A JPH0617652B2 (en) 1988-02-05 1988-02-05 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023691A JPH0617652B2 (en) 1988-02-05 1988-02-05 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPH01200025A JPH01200025A (en) 1989-08-11
JPH0617652B2 true JPH0617652B2 (en) 1994-03-09

Family

ID=12117452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023691A Expired - Fee Related JPH0617652B2 (en) 1988-02-05 1988-02-05 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH0617652B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091170B2 (en) 2008-12-24 2015-07-28 Mitsubishi Hitachi Power Systems, Ltd. One-stage stator vane cooling structure and gas turbine
US9395085B2 (en) 2009-12-07 2016-07-19 Mitsubishi Hitachi Power Systems, Ltd. Communicating structure between adjacent combustors and turbine portion and gas turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8677753B2 (en) * 2012-05-08 2014-03-25 General Electric Company System for supplying a working fluid to a combustor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510004A (en) * 1978-07-05 1980-01-24 Hitachi Ltd Gas turbine
JPS5872822A (en) * 1981-10-26 1983-04-30 Hitachi Ltd Cooling structure for gas turbine combustor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091170B2 (en) 2008-12-24 2015-07-28 Mitsubishi Hitachi Power Systems, Ltd. One-stage stator vane cooling structure and gas turbine
US9395085B2 (en) 2009-12-07 2016-07-19 Mitsubishi Hitachi Power Systems, Ltd. Communicating structure between adjacent combustors and turbine portion and gas turbine

Also Published As

Publication number Publication date
JPH01200025A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
JP4820545B2 (en) Rear FLADE engine
JP4920228B2 (en) Method and apparatus for assembling a gas turbine engine
EP0751345B1 (en) Fuel jetting nozzle assembly for use in gas turbine combustor
US3842597A (en) Gas turbine engine with means for reducing the formation and emission of nitrogen oxides
EP1074792B1 (en) Turbine combustor arrangement
US4928479A (en) Annular combustor with tangential cooling air injection
JP5552130B2 (en) Swivel cup where the flame holder is cooled
JPH07507862A (en) Combustion chamber device and combustion method
JP5507139B2 (en) Fuel nozzle central body and method of assembling the same
JPH0421054B2 (en)
JP5080815B2 (en) Exhaust duct flow splitter system
CA1108873A (en) Burner for gas turbine engine
GB2043794A (en) Turbine shrouding
US4944152A (en) Augmented turbine combustor cooling
JP2004514873A (en) Continuous dual cooling of combustor and turbine
JP2005037122A (en) Method and device for cooling combustor for gas turbine engine
US3886728A (en) Combustor prechamber
JPH08218896A (en) Power plant
CN110552747A (en) Combustion system deflection mitigation structure
JPH0415378B2 (en)
JPH0617652B2 (en) Gas turbine combustor
CN110094758B (en) Burner for improved emissions and durability and method of operation
JP7132096B2 (en) gas turbine combustor
JP2972293B2 (en) Gas turbine combustor
US4204404A (en) Combustion chamber for gas turbine engines, particularly an ignition device for such a combustion chamber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees