JPH0617504B2 - Method for producing high-carbon martensitic stainless steel suitable for quenching treatment - Google Patents

Method for producing high-carbon martensitic stainless steel suitable for quenching treatment

Info

Publication number
JPH0617504B2
JPH0617504B2 JP3652686A JP3652686A JPH0617504B2 JP H0617504 B2 JPH0617504 B2 JP H0617504B2 JP 3652686 A JP3652686 A JP 3652686A JP 3652686 A JP3652686 A JP 3652686A JP H0617504 B2 JPH0617504 B2 JP H0617504B2
Authority
JP
Japan
Prior art keywords
stainless steel
rolling
martensitic stainless
carbide
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3652686A
Other languages
Japanese (ja)
Other versions
JPS62196324A (en
Inventor
鉄也 島田
章夫 山本
武夫 芦浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3652686A priority Critical patent/JPH0617504B2/en
Publication of JPS62196324A publication Critical patent/JPS62196324A/en
Publication of JPH0617504B2 publication Critical patent/JPH0617504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼入れ処理に適した高炭素含有マルテンサイ
ト系ステンレス鋼の温間圧延による製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a high carbon content martensitic stainless steel suitable for quenching treatment by warm rolling.

包丁、剃刀、ナイフ、カッター等の家庭用あるいは工業
用刃物、医療用刃物などの刃物用マルテンサイト系ステ
ンレス鋼には、主として13%Cr−0.3%C(SUS420J
2)鋼が適用されている。しかし、この鋼を用いた刃物
は切れ味が必らずしもよくないため、「ステンレス鋼の
刃物は切れない。」との風評が立つ一因となっている。
ところで、刃物の切れ味や耐久性は刃先の硬さに比例す
るものであるから、0.3%程度のC含有量の鋼では刃
物としての硬さが不足するのは当然で、C含有量を炭素
鋼製刃物のレベルまで増量すれば、ステンレス鋼であっ
ても十分な品質評価を受けられるのである。しかし、高
品質が期待できる0.5%以上のCを含有する高炭素ス
テンレス鋼は、製品刃物中に巨大な共晶炭化物が残留し
易いため焼入れ硬度不足や刃こぼれの原因となる。さら
に、加工性が著しく悪いため薄板の製造には非効率的な
方法しか適用できないのが実情である。特に、冷間圧延
での割れ感受性が他のステンレス鋼などと比べて異常に
高いため、冷間圧延で累積圧延圧下率が上げられず製造
に難渋している状態である。その結果著しく高価な材料
とならざるを得ないため、焼入れ硬度が高く品質も優れ
ているにもかかわらず、一部が高級刃物として用いられ
ているにすぎない。従って、高級刃物用などに用いられ
ている高炭素ステンレス鋼の製造工程を簡略化し、かつ
材質を改善することは工業的に非常に要望されていたも
のである。
For martensite stainless steel for knives, razors, knives, cutters and other household or industrial knives, and medical knives, mainly 13% Cr-0.3% C (SUS420J
2) Steel is applied. However, the sharpness of blades made of this steel is not necessarily good, which is one of the reasons why the reputation of "stainless steel blades cannot be cut."
By the way, since the sharpness and durability of the blade are proportional to the hardness of the cutting edge, it is natural that the hardness of the blade is insufficient with steel having a C content of about 0.3%. If the amount is increased to the level of carbon steel cutlery, even stainless steel can undergo sufficient quality evaluation. However, high carbon stainless steel containing 0.5% or more of C, which can be expected to have high quality, tends to leave huge eutectic carbides in the product blade, which causes insufficient quenching hardness and blade spillage. Furthermore, since the workability is extremely poor, only an inefficient method can be applied to the production of thin plates. In particular, since the cracking susceptibility in cold rolling is abnormally high as compared with other stainless steels, etc., the rolling reduction cannot be increased in cold rolling, which makes production difficult. As a result, it is inevitably a very expensive material, and although it has high quenching hardness and excellent quality, only a part of it is used as a high-grade blade. Therefore, it has been highly demanded industrially to simplify the manufacturing process of high carbon stainless steel used for high-grade cutlery and improve the material.

〔従来の技術〕[Conventional technology]

刃物に使用されるマルテンサイト系ステンレス鋼は、焼
入れ・焼戻し硬度の向上および鋼中炭化物の脱落に起因
した刃こぼれ防止の点から、焼入れ処理前に鋼中の炭化
物が微細に分散析出している必要がある。しかるに、
0.5%以上のCを含有する高炭素含有マルテンサイト
系ステンレス鋼は、凝固が完了した時点で巨大な共晶炭
化物を晶出し、熱延焼鈍板中に粒径が数10μmの巨大
炭化物として残留する。このため従来の場合、鋳造され
た鋼塊に対して長時間のソーキング処理を施すことによ
り、鋼中の巨大な共晶炭化物を固溶させ、あとの球状化
処理によって均一微細な炭化物組織を得ている。しかし
ながら、長時間のソーキング処理によって、鋼塊表層に
多量の酸化スケールさらに脱炭層が生じ、製品歩留まり
が著しく低下すると同時に各工程での鋼片の手入れに多
大な工数を必要とするなどの問題点を有している。この
ようなことから、例えば特開昭58−189322号公
報ではエレクトロスラグ溶解で鋼塊を製造した後、熱延
加熱温度を規制し熱延・焼鈍を行うことにより均一微細
な球状炭化物組織を得る方法が提案されている。しか
し、この製造方法は、特殊な溶解設備を要するととも
に、工程が複雑であることから製造コストの増大を招い
ている。
The martensitic stainless steel used for blades has finely dispersed and precipitated carbides in the steel before quenching, from the viewpoint of improving quenching and tempering hardness and preventing spilling of the blades due to the loss of carbides in the steel. There is a need. However,
High carbon content martensitic stainless steel containing 0.5% or more of C crystallizes a huge eutectic carbide when solidification is completed, and forms a large carbide with a grain size of several tens of μm in the hot rolled annealed plate. To remain. For this reason, in the conventional case, a huge eutectic carbide in the steel is solid-dissolved by subjecting the cast steel ingot to soaking for a long time, and a uniform fine carbide structure is obtained by the subsequent spheroidizing treatment. ing. However, due to a long soaking process, a large amount of oxide scale and a decarburized layer are generated on the surface layer of the steel ingot, which significantly reduces the product yield and at the same time requires a large number of man-hours for the maintenance of the steel slab in each process. have. For this reason, for example, in JP-A-58-189322, after producing a steel ingot by electroslag melting, hot rolling / annealing is performed while controlling the hot rolling heating temperature to obtain a uniform fine spherical carbide structure. A method has been proposed. However, this manufacturing method requires special melting equipment, and the process is complicated, resulting in an increase in manufacturing cost.

さらに、高炭素含有マルテンサイト系ステンレス鋼は他
のステンレス鋼と比較し延性や靱性に劣り、冷間圧延の
際、鋼中の巨大炭化物を起点とし、エッジクラックやそ
の進行による板破断が発生し易い。このため従来の場
合、多数回の中間軟化焼鈍を間にはさむことによって冷
間圧延を行ない所定の板厚のものを得ている。しかし、
この従来の方法では多大な工数および費用を必要とし、
しかも一回の冷間圧延における累積圧下率が小さいため
鋼中に析出した巨大炭化物を破砕できず、微細分散され
た炭化物組織を得るに至らないなどの問題点を有してい
る。
Furthermore, high carbon content martensitic stainless steels are inferior in ductility and toughness compared to other stainless steels, and during cold rolling, giant carbides in the steel are the starting point, and edge cracks and plate fracture due to their progress occur. easy. Therefore, in the conventional case, cold rolling is performed by sandwiching a number of intermediate softening anneals to obtain a sheet having a predetermined plate thickness. But,
This conventional method requires a great deal of labor and cost,
Moreover, since the cumulative rolling reduction in one cold rolling is small, the giant carbides precipitated in the steel cannot be crushed, and it is not possible to obtain a finely dispersed carbide structure.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上述したような従来の問題点に着目してなされ
たもので、特殊な溶解設備または長時間ソーキング処理
を必要とせず、しかも冷間圧延の途中に多数回の中間軟
化焼鈍をはさむことなく、焼入れ処理に適した均一微細
な球状炭化物組織を有する高炭素含有マルテンサイト系
ステンレス鋼を製造する方法を開示するものである。
The present invention has been made by paying attention to the conventional problems as described above, and does not require special melting equipment or long-term soaking treatment, and further, inserts intermediate softening annealing a number of times during cold rolling. However, the present invention discloses a method for producing a high carbon content martensitic stainless steel having a uniform and fine spherical carbide structure suitable for quenching treatment.

〔問題点を解決するための手段〕 本発明者らは、高炭素含有マルテンサイト系ステンレス
鋼の熱延板を多数回の中間焼鈍をはさむことなく、1回
の圧延で所定の板厚とし、後の焼入れ処理に適した炭化
物組織を得る方法について種々検討を行った。その結
果、(フェライト+炭化物)の金属組織を有する高炭素
含有マルテンサイト系ステンレス鋼は加工温度が上昇す
るにつれ衝撃特性および延性が向上し、温間圧延を行う
ことによりエッジクラックやそれに起因する板破断を生
じないことを見出した。さらに、累積圧下率20%以上
の温間圧延を行った場合、鋼中に析出した巨大炭化物が
破砕されることを見出した。本願発明は、以上の知見に
基づくもので、即ち、重量でCr :10〜20%、C:
0.5〜1.2%を含む高炭素含有マルテンサイト系ス
テンレス鋼の熱延板を(フェライト+炭化物)組織とし
た後、A1変態点〜150℃の温度範囲で累積圧下率2
0%以上の温間圧延を行うことにより、エッジクラック
やその進行による板破断を発生することなく、1回の圧
延で所定の板厚にでき、しかも焼入熱処理に適した均一
微細な球状炭化物組織を有する高炭素含有マルテンサイ
ト系ステンレス鋼の製造方法である。なお、本発明にか
かる成分の鋼を(フェライト+炭化物)組織とする方法
は、従来から認められている700℃〜850℃で30分以上加
熱し徐冷する球状化焼鈍や、A1変態点温度を挾んでA1
変態点温度+100℃とA1変態点温度−200℃の間を複数
回の加熱冷却を実施し冷却する球状化焼鈍などの公知手
段が適用可能である。
[Means for Solving Problems] The present inventors set a hot-rolled sheet of high-carbon-containing martensitic stainless steel to a predetermined sheet thickness by rolling once without sandwiching intermediate annealing a number of times, Various studies were conducted on a method of obtaining a carbide structure suitable for the subsequent quenching treatment. As a result, the high carbon content martensitic stainless steel having a (ferrite + carbide) metallographic structure has improved impact characteristics and ductility as the working temperature rises, and by performing warm rolling, edge cracks and the resulting sheet It was found that no fracture occurred. Furthermore, it was found that when warm rolling with a cumulative reduction of 20% or more was performed, the giant carbides precipitated in the steel were crushed. The present invention is based on the above findings, that is, Cr: 10 to 20% by weight, C:
After forming a hot-rolled sheet of high-carbon martensitic stainless steel containing 0.5 to 1.2% into a (ferrite + carbide) structure, the cumulative rolling reduction is 2 in the temperature range of A 1 transformation point to 150 ° C.
By performing 0% or more warm rolling, it is possible to obtain a predetermined plate thickness in one rolling without causing edge cracks and plate breakage due to its progress, and moreover, uniform fine spherical carbides suitable for quenching heat treatment. It is a method for producing a high carbon content martensitic stainless steel having a structure. The method of forming the steel of the component according to the present invention into a (ferrite + carbide) structure is performed by spheroidizing annealing in which the steel is heated at 700 ° C. to 850 ° C. for 30 minutes or more and gradually cooled, and A 1 transformation point. Around the temperature A 1
Known means such as spheroidizing annealing in which heating and cooling are performed a plurality of times between a transformation point temperature of + 100 ° C. and an A 1 transformation point temperature of −200 ° C. and cooling is applicable.

〔作 用〕[Work]

以下、本発明の方法を、主として17%Cr マルテンサ
イト系ステンレス鋼を例にとって行った実験結果に基づ
いて詳細に説明する。第1図は、0.85%C,1.0
5%Cを含有する17%Cr ステンレス鋼と、通常のSU
S420J2鋼である0.35%Cを含有する13%Cr ステ
ンレス鋼を球状化焼鈍により(フェライト+炭化物)組
織とした供試材を使用して、Vノッチシヤルピー衝撃値
とエッジクラックまたは板破断の発生する累積圧下率と
の関係を示している。第1図から、衝撃値が1.5kg・
m/cm2以上の時は途中に軟化焼鈍をはさむことなく累積
圧下率70%以上の圧延が可能であることを見出した。
次に、第2図は、0.85%C,1.05%Cを含有す
る17%Cr ステンレス鋼とSUS420J2鋼の焼鈍材のVノ
ッチシャルピー衝撃試験結果である。0.85%Cおよ
び1.05%Cを含有する17%Cr ステンレス鋼の衝
撃値は、通常の冷間圧延温度領域である20〜100℃
では著しく低いことがわかる。本発明者らは、第2図に
示したとおり0.85%,1.05%のCを含有する1
7%Cr ステンレス鋼の衝撃値は150℃以上で1.5
kg・m/cm2以上となり、SUS420J2鋼の常温での衝撃値と
同レベルあるいはそれ以上であることを見出した。つま
りこのことは、第1図の結果から、150℃以上の温度
領域で圧延することによって、軟化焼鈍をはさむことな
く1回の圧延で累積圧下率70%の圧延が可能であるこ
とを示している。
Hereinafter, the method of the present invention will be described in detail based on the results of experiments conducted mainly using 17% Cr martensitic stainless steel as an example. Fig. 1 shows 0.85% C, 1.0
17% Cr stainless steel containing 5% C and normal SU
S420J2 steel, 13% Cr stainless steel containing 0.35% C, was used as a test material with (ferrite + carbide) structure by spheroidizing annealing, and V notch shearpy impact value and edge crack or plate rupture were used. It shows the relationship with the cumulative rolling reduction that occurs. From Fig. 1, the impact value is 1.5kg
It has been found that when m / cm 2 or more, rolling with a cumulative rolling reduction of 70% or more is possible without interposing softening annealing on the way.
Next, FIG. 2 shows the V-notch Charpy impact test results of annealed materials of 17% Cr stainless steel and SUS420J2 steel containing 0.85% C and 1.05% C. The impact value of 17% Cr stainless steel containing 0.85% C and 1.05% C is 20 to 100 ° C. which is a normal cold rolling temperature range.
Shows that it is extremely low. As shown in FIG. 2, the present inventors contain 0.85% and 1.05% of C 1
The impact value of 7% Cr stainless steel is 1.5 at 150 ° C or higher.
It has been found that the value is kg · m / cm 2 or more, which is the same as or higher than the impact value of SUS420J2 steel at room temperature. In other words, this indicates from the results shown in FIG. 1 that by rolling in a temperature range of 150 ° C. or higher, rolling with a cumulative rolling reduction of 70% is possible in one rolling without interposing softening annealing. There is.

次に、本発明者らは、炭化物の形態に及ぼす圧延条件の
影響を詳細に検討した所、累積圧下率が20%以上の温
間圧延を行うことにより、粒径20μm以上の巨大炭化
物が破砕されることを見出した。高炭素含有マルテンサ
イト系ステンレス鋼は冷間圧延を行うことにより巨大炭
化物の周囲にボイドを生成するが、常温付近の母相フェ
ライトの延性が低いため巨大炭化物を破砕する以前にエ
ッジクラックや板破断を生ずる。しかし温間で圧延する
場合、母相フェライトの延性が向上するため亀裂伝播が
抑制され、しかも炭化物の周囲でメタルの塑性流動が十
分に行われることから、クラックを生ずることなく巨大
炭化物が破砕される。その結果、炭化物の表面積割合が
増え後の焼入れ処理において炭化物の固溶速度が速まり
焼入れ・焼戻し硬度が向上するとともに、焼入れ処理後
の炭化物組織が均一微細となり刃こぼれを起こしにくく
なる。
Next, the present inventors have studied in detail the influence of rolling conditions on the morphology of carbides, and by performing warm rolling with a cumulative reduction of 20% or more, giant carbides with a grain size of 20 μm or more were crushed. I was found to be done. High-carbon martensitic stainless steel forms voids around the giant carbides by cold rolling, but since the ductility of the matrix ferrite near room temperature is low, edge cracks and plate rupture occur before crushing the giant carbides. Cause However, when it is rolled at a warm temperature, the ductility of the matrix ferrite is improved, crack propagation is suppressed, and the plastic flow of the metal is sufficiently performed around the carbide, so that the giant carbide is crushed without cracking. It As a result, the rate of solid solution of the carbide is increased in the subsequent quenching treatment by increasing the surface area ratio of the carbide, the quenching / tempering hardness is improved, and the carbide structure after the quenching becomes uniform and fine, which makes it difficult to cause blade spillage.

以上の結果から、C:0.5〜1.2%、Cr : 10
〜20%を含有する高炭素含有マルテンサイト系ステン
レス鋼の熱延板を(フェライト+炭化物)組織とした
後、A変態点〜150℃の温度範囲で累積圧下率20
%以上の温間圧延を行なうことを特徴とする、圧延割れ
がなくしかも後の焼入れ処理に適した高炭素含有マルテ
ンサイト系ステンレス鋼の製造方法を発明した。
From the above results, C: 0.5 to 1.2%, Cr: 10
After forming a hot-rolled sheet of a high carbon content martensitic stainless steel containing 20% to 20% into a (ferrite + carbide) structure, the cumulative rolling reduction is 20 in the temperature range of A 1 transformation point to 150 ° C.
Invented is a method for producing a high carbon content martensitic stainless steel which is free from rolling cracks and which is suitable for the subsequent quenching treatment, which is characterized by performing warm rolling of not less than 10%.

次に、成分および製造条件の限定理由について述べる。Next, the reasons for limiting the components and manufacturing conditions will be described.

C含有量を限定する理由として、C含有量が0.5%未
満であると刃物用材料として望ましい高硬度を得ること
ができなくなるため、0.5%を下限とした。しかし、
C含有量が1.2%を越えると、炭化物の析出量が増え
耐食性が低下すると同時に刃先が脆くなり刃欠けや刃こ
ぼれが生じやすいことから、本発明から除外する。
As a reason for limiting the C content, if the C content is less than 0.5%, it is not possible to obtain a high hardness that is desirable as a material for cutting tools, so 0.5% was made the lower limit. But,
If the C content exceeds 1.2%, the precipitation amount of carbides increases and the corrosion resistance decreases, and at the same time, the cutting edge becomes brittle, which easily causes chipping and chipping of the blade, and is therefore excluded from the present invention.

Cr 含有量は、10%未満ではステンレス鋼としての基
本的な耐食性に欠けるため、10%を下限とした。反対
に、Cr 含有量が20%を越えると巨大な炭化物が生成
しやすくなると共に、焼入れ・焼戻しの硬度を出すこと
ができなくなるので、本発明の特許請求の範囲から除去
した。
If the Cr content is less than 10%, the basic corrosion resistance of stainless steel is insufficient, so the lower limit is 10%. On the other hand, if the Cr content exceeds 20%, huge carbides are likely to be formed, and the hardness of quenching / tempering cannot be obtained. Therefore, they were removed from the claims of the present invention.

また、熱延板を(フェライト+炭化物)組織とする理由
としては、高炭素含有マルテンサイト系ステンレス鋼は
通常の炭素鋼と比較して焼入れ性に優れていることか
ら、熱延後放冷によって焼きが入りマルテンサイト組織
となる。マルテンサイト組織は硬度が高い上に靱性が著
しく低いことから、実用上圧延は不可能である。そこ
で、球状化焼鈍等の熱処理を行い延性および靱性に優れ
硬度の低い(フェライト+炭化物)組織とする必要があ
る。
The reason why the hot-rolled sheet has a (ferrite + carbide) structure is that high-carbon content martensitic stainless steel has better hardenability than ordinary carbon steel. It becomes baked and becomes a martensite structure. Since the martensite structure has high hardness and extremely low toughness, it cannot be practically rolled. Therefore, it is necessary to perform a heat treatment such as spheroidizing annealing to form a structure having excellent ductility and toughness and low hardness (ferrite + carbide).

温間圧延する際の圧延温度をA変態点以下とした理由
は、A変態点を越える温度では母相中にオーステナイ
トが析出し圧延中に相変態を起こすため熱間加工性が劣
化するとともに、圧延後マルテンサイト変態を起こし著
しく硬化し再び長時間の球状化焼鈍を要するため、圧延
の上限温度をA変態点とした。また、高炭素含有マル
テンサイト系ステンレス鋼をエッジクラックや板破断を
生ずることなく圧延できる温度は第2図にも示したとお
り150℃以上であるので、圧延の下限温度を150℃
とした。
The reason why the rolling temperature during the warm rolling is set to the A 1 transformation point or lower is that the temperature above the A 1 transformation point causes austenite to precipitate in the parent phase and cause phase transformation during rolling, resulting in deterioration of hot workability. At the same time, after rolling, martensitic transformation is caused to significantly harden, and spheroidizing annealing for a long time is required again. Therefore, the upper limit temperature of rolling is set to the A 1 transformation point. Further, as shown in FIG. 2, the temperature at which the high-carbon martensitic stainless steel can be rolled without causing edge cracks and plate breaks is 150 ° C. or higher, so the lower limit temperature of rolling is 150 ° C.
And

累積圧下率を20%以上とした理由としては、累積圧下
率が20%未満であると鋼中の粒径20μmの巨大炭化
物を破砕するに十分なメタルの塑性流動が行なわれず、
焼入れ処理に適した均一微細な球状炭化物組織とならな
いためである。
The reason why the cumulative reduction rate is set to 20% or more is that if the cumulative reduction rate is less than 20%, sufficient plastic flow of the metal is not performed to crush the giant carbide having a grain size of 20 μm in the steel.
This is because it does not form a uniform and fine spherical carbide structure suitable for quenching treatment.

〔実施例〕〔Example〕

第1表に示す化学成分の鋼を熱間圧延し、800℃−1時
間の熱延板焼鈍を行い(フェライト+炭化物)組織の高
炭素含有マルテンサイト系ステンレス鋼の熱延焼鈍板を
製造した。この熱延焼鈍板の炭化物のサイズを測定し巨
大炭化物の有無を調べたところ、第1表に合せて示した
通りであった。なお第1表の○は粒径20μm以上の巨
大炭化物が析出していないことを、×は析出していたこ
とを示す。この表に示すようにC含有量が少ないNo.1
では熱延板中に巨大炭化物は存在しなかった。しかしC
含有量が0.5〜1.2%であるNo.2,3,4,5,
6の高炭素含有ステンレス鋼では巨大炭化物が存在して
おり、好ましくない組織であった。
Steel with the chemical composition shown in Table 1 was hot-rolled and annealed at 800 ° C. for 1 hour to produce a hot rolled annealed sheet of high carbon content martensitic stainless steel with a structure of (ferrite + carbide). . When the size of carbides of this hot rolled annealed plate was measured and the presence or absence of giant carbides was examined, it was as shown in Table 1 together. In Table 1, ◯ indicates that giant carbides having a particle size of 20 μm or more were not deposited, and x indicates that they were deposited. No. 1 with low C content as shown in this table
There was no giant carbide in the hot rolled sheet. But C
No. 2, 3, 4, 5, whose content is 0.5-1.2%
In the high carbon content stainless steel of No. 6, huge carbide was present, which was an unfavorable structure.

この熱延焼鈍板を用いて、第2表に示す条件で圧延を行
なつたところ、200℃以上の温度範囲で累積圧下率が
20%以上の圧延では巨大炭化物は破砕され、焼入れ・
焼戻し処理後には炭化物が微細均一分散されていた。一
方、20℃で累積圧下率20%以上の圧延では、エッジ
クラック及びその進行による板破断が生じた。また、累
積圧下率が10%の場合、いずれの圧延温度でもエッジ
クラック及びその進行による板破断は生じなかったが、
焼入れ・焼戻し処理後粒径20μm以上の巨大炭化物が
残留していた。
When rolling was performed under the conditions shown in Table 2 using this hot-rolled annealed sheet, giant carbides were crushed in the rolling with a cumulative reduction of 20% or more in a temperature range of 200 ° C. or higher, and quenching
After the tempering treatment, the carbide was finely and uniformly dispersed. On the other hand, in rolling at a cumulative reduction of 20% or more at 20 ° C., edge cracks and plate breakage due to their progress occurred. Further, when the cumulative rolling reduction was 10%, edge cracking and plate breakage due to the progress thereof did not occur at any rolling temperature,
After the quenching and tempering treatment, huge carbide having a particle size of 20 μm or more remained.

〔発明の効果〕 以上示したとおり、高炭素含有マルテンサイト系ステン
レス鋼は延性が著しく低く割れ感受性が高いため、従来
は途中に軟化焼鈍をはさむ多数回の冷間圧延が繰り返し
行われていたが、本発明の方法によって、割れ感受性が
改善され1回の温間圧延により所定の板厚がえられ、し
かも後の焼入れ処理に適した、巨大炭化物のない組織を
有する高炭素含有マルテンサイト系ステンレス鋼板の製
造が可能となった。
[Effects of the Invention] As described above, since the high carbon content martensitic stainless steel has remarkably low ductility and high cracking susceptibility, conventionally, cold rolling was repeated many times with softening annealing in between. According to the method of the present invention, a high carbon content martensitic stainless steel having an improved crack susceptibility, a predetermined plate thickness obtained by one warm rolling, and a structure suitable for subsequent quenching treatment, which has a structure without a giant carbide, is obtained. It became possible to manufacture steel sheets.

この結果、工程の簡略化・材質の向上が実現するのみな
らず、連続圧延・コイル圧延が可能になるなど歩留りや
生産効率の大幅な向上が期待できる。
As a result, not only the simplification of the process and the improvement of the material can be realized, but also the yield and the production efficiency can be expected to be greatly improved by the continuous rolling and the coil rolling.

このように、本発明による工業的メリットは著しく大き
いものである。
As described above, the industrial merit of the present invention is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は、高炭素含有マルテンサイト系ステンレス鋼焼
鈍材のVノッチシャルピー衝撃値とエッジクラック及び
その進行による板破断発生累積圧下率との関係を示した
図である。また、図2は、0.85%C,1.05%C
を含有する17%Cr ステンレス鋼とSUS420J2鋼の焼鈍
材のVノッチシャルピー衝撃試験結果である。
FIG. 1 is a diagram showing a relationship between a V-notch Charpy impact value of an annealed high-carbon martensitic stainless steel and an edge crack and a cumulative reduction rate of occurrence of plate breakage due to its progress. In addition, FIG. 2 shows 0.85% C, 1.05% C
It is a V-notch Charpy impact test result of the annealed material of 17% Cr stainless steel and SUS420J2 steel containing the.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量でCr:10〜20%、C:0.5〜
1.2%を含む高炭素含有マルテンサイト系ステンレス
鋼の熱延板を球状化焼鈍により(フェライト+炭化物)
組織とした後、A1変態点〜150℃の温度範囲で累積
圧下率20%以上の温間圧延を行うことを特徴とする焼
入れ処理に適した高炭素含有マルテンサイト系ステンレ
ス鋼の製造方法。
1. Cr: 10-20% by weight, C: 0.5-
Hot rolled sheet of high carbon content martensitic stainless steel containing 1.2% by spheroidizing annealing (ferrite + carbide)
A method for producing a high carbon content martensitic stainless steel suitable for quenching, characterized by performing warm rolling with a cumulative reduction of 20% or more in a temperature range of A 1 transformation point to 150 ° C after forming a structure.
JP3652686A 1986-02-22 1986-02-22 Method for producing high-carbon martensitic stainless steel suitable for quenching treatment Expired - Lifetime JPH0617504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3652686A JPH0617504B2 (en) 1986-02-22 1986-02-22 Method for producing high-carbon martensitic stainless steel suitable for quenching treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3652686A JPH0617504B2 (en) 1986-02-22 1986-02-22 Method for producing high-carbon martensitic stainless steel suitable for quenching treatment

Publications (2)

Publication Number Publication Date
JPS62196324A JPS62196324A (en) 1987-08-29
JPH0617504B2 true JPH0617504B2 (en) 1994-03-09

Family

ID=12472238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3652686A Expired - Lifetime JPH0617504B2 (en) 1986-02-22 1986-02-22 Method for producing high-carbon martensitic stainless steel suitable for quenching treatment

Country Status (1)

Country Link
JP (1) JPH0617504B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2648709B2 (en) * 1994-08-11 1997-09-03 新日本製鐵株式会社 Method for producing high carbon content martensitic stainless steel sheet
CN107058692B (en) * 2017-06-05 2018-07-13 东北大学 A kind of online Fast Spheroidizing Annealing method after GCr15 bearing steels hot rolling
CN110283975A (en) * 2019-08-02 2019-09-27 东北大学 The method that rolling-isothermal spheroidizing processing prepares GCr15 bearing steel
CN112899445B (en) * 2021-01-18 2022-05-10 山西太钢不锈钢股份有限公司 Heat treatment method for super martensitic stainless steel medium plate
CN115491476A (en) * 2022-10-20 2022-12-20 阳江合金材料实验室 High-quality thin strip of high-carbon high-chromium martensitic stainless steel and preparation process thereof

Also Published As

Publication number Publication date
JPS62196324A (en) 1987-08-29

Similar Documents

Publication Publication Date Title
JP5333695B1 (en) Stainless steel for blades and method for producing the same
JP5277658B2 (en) Manufacturing method of hot press member
JP3354163B2 (en) Stainless steel for razor and method for producing the same
JP2019183255A (en) Martensitic stainless steel and manufacturing process therefor
WO2014162997A1 (en) Method for producing steel for blades
US3575737A (en) Razor blades and other thin cutting edge tools and method of manufacture of such tools
JPH0617504B2 (en) Method for producing high-carbon martensitic stainless steel suitable for quenching treatment
JP6044870B2 (en) Manufacturing method of steel strip for blades
JP7444018B2 (en) Steel plates, their manufacturing methods, and members
JPH05112850A (en) Precipitation hardening martensitic stainless steel excellent in workability
JPH06145907A (en) Steel for stainless razor excellent in hardenability
JPH04371524A (en) Production of high-strength steel plate for base metal of saw blade
JP5821794B2 (en) Hardened steel, its manufacturing method, and hardened steel
JPS61127813A (en) Production of high arrest refined steel containing ni
JPH05255734A (en) Production of martensitic stainless steel minimal in cracking sensitivity
JPH0598347A (en) Production of martensitic 13%cr stainless steel excellent in toughness and stress corrosion cracking resistance
JP2781325B2 (en) Method for producing medium and high carbon martensitic stainless steel strip having fine carbides
CN115637382B (en) Steel material with high corrosion resistance for stone gang saw blade matrix and preparation method thereof
JP2885436B2 (en) Rolling method of alloy tool steel
JPH0313292B2 (en)
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
JP2531880B2 (en) Gas cutting method for martensitic precipitation hardening stainless steel
JPH10298646A (en) Production of stainless steel plate
JPH0635002B2 (en) Light-load hot rolling method for martensitic stainless steel with high carbon content
JP2648709B2 (en) Method for producing high carbon content martensitic stainless steel sheet