JPH06174882A - Fat breeder reactor - Google Patents

Fat breeder reactor

Info

Publication number
JPH06174882A
JPH06174882A JP4324322A JP32432292A JPH06174882A JP H06174882 A JPH06174882 A JP H06174882A JP 4324322 A JP4324322 A JP 4324322A JP 32432292 A JP32432292 A JP 32432292A JP H06174882 A JPH06174882 A JP H06174882A
Authority
JP
Japan
Prior art keywords
reactor
core
outer periphery
reflector
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4324322A
Other languages
Japanese (ja)
Other versions
JP3126524B2 (en
Inventor
Sadao Hattori
部 禎 男 服
Shigeo Kasai
井 重 夫 笠
Norihiko Iida
田 式 彦 飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry filed Critical Toshiba Corp
Priority to JP04324322A priority Critical patent/JP3126524B2/en
Priority to US08/097,833 priority patent/US5420897A/en
Priority to FR9309410A priority patent/FR2697104B1/en
Publication of JPH06174882A publication Critical patent/JPH06174882A/en
Application granted granted Critical
Publication of JP3126524B2 publication Critical patent/JP3126524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To provide a small fast breeder reactor that reduces the amount of heat dissipated outside the reactor and the amount of irradiation of neutrons, can be accommodated by a simple, inexpensive shield structure and a cooling facility, and has high heat utilization efficiency and a long life. CONSTITUTION:A reactor core 2 is provided and a core barrel 3 is provided around the outer periphery of the reactor core 2 and a reflector 4 is provided around the outer periphery of the core barrel 3. The core barrel 3 is supported to the outer periphery of the reflector 4 by means of a support member and a bulkhead 6 constituting the inside wall of a coolant passage 5 for primary coolant is provided and a neutron shield 8 is provided within the coolant passage 5. A reactor vessel 7 constituting the outside wall of the coolant passage 5 is provided around the outer periphery of the neutron shield 8 and a guard vessel 9 is provided around the outer periphery of the reactor vessel 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は小型の高速増殖炉の構造
に係り、特に熱と中性子の原子炉容器外部への発散を少
なくした高速増殖炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a small-sized fast breeder reactor, and more particularly to a fast breeder reactor in which heat and neutrons are less diffused to the outside of a reactor vessel.

【0002】[0002]

【従来の技術】従来の小型高速増殖炉は、炉心を複数の
容器によって取り囲み、容器の外側に反射体を設け、こ
の反射体によって炉心から容器を通して外部に照射され
る中性子を反射し、炉心の燃焼と増殖とを促進させてい
た。
2. Description of the Related Art A conventional small fast breeder reactor has a core surrounded by a plurality of vessels, and a reflector is provided outside the vessel. The reflector reflects neutrons emitted from the core to the outside through the vessel, It promoted combustion and proliferation.

【0003】図4は上記従来の高速増殖炉の構造を示し
ている。従来の高速増殖炉31は中心部分に核燃料から
なる円柱状の炉心32を有し、この炉心32の外側に炉
心32を支える炉心バレル33を備え、炉心バレル33
の外側に原子炉容器34を備え、原子炉容器34の外側
に原子炉容器34を保護するガードベッセル35を備
え、さらにガードベッセル35の外側に反射体36を備
えている。炉心バレル33と原子炉容器34の間には1
次冷却材が下降する冷却材流路37が形成されている。
炉心32の垂直上方には電磁ポンプ38が設けられ、電
磁ポンプ38のさらに上方には中間熱交換器39と崩壊
熱除去コイル40が設けられている。
FIG. 4 shows the structure of the conventional fast breeder reactor. A conventional fast breeder reactor 31 has a cylindrical core 32 made of nuclear fuel at the center, and a core barrel 33 that supports the core 32 is provided outside the core 32.
A reactor vessel 34 is provided outside the reactor vessel 34, a guard vessel 35 that protects the reactor vessel 34 is provided outside the reactor vessel 34, and a reflector 36 is provided outside the guard vessel 35. 1 between the core barrel 33 and the reactor vessel 34
A coolant flow path 37 through which the next coolant descends is formed.
An electromagnetic pump 38 is provided vertically above the core 32, and an intermediate heat exchanger 39 and a decay heat removal coil 40 are provided further above the electromagnetic pump 38.

【0004】運転に際しては1次冷却材である液体ナト
リウムで原子炉容器34を満たし、炉心32内のプルト
ニウムを核分裂させる。この炉心32はプルトニウムと
劣化ウランを有してなり、このプルトニウムの核分裂に
伴って熱が発生し、中性子が放射される。この中性子は
ガードベッセル35外周の反射体36で反射されて炉心
32内の劣化ウランに吸収され、プルトニウムを生成す
る。この生成されたプルトニウムは再び核分裂して熱を
発生する。炉心32の燃焼にともなって、反射体36は
炉心32の臨界を維持しつつ相対的に上下方向に移動さ
れる。これにより、炉心32は徐々に燃焼し、長期間熱
を発生し続ける。1次冷却材は図中の実線の矢印に示す
ように、電磁ポンプ38によって上方に駆動され、中間
熱交換器39を経て冷却材流路37を下降し、炉心32
を介して再び電磁ポンプ38に流入する。1次冷却材は
炉心32内を通過し、前記炉心32内で発生した熱を吸
収してこの熱を中間熱交換器39に運ぶ。中間熱交換器
39には図中の破線の矢印に示すように入口配管41か
ら2次冷却材が流入し、1次冷却材と熱交換を行う。こ
の熱交換によって、炉心32の熱は出口配管42を介し
て外部に取り出され、動力等に利用される。
During operation, the reactor vessel 34 is filled with liquid sodium as the primary coolant, and the plutonium in the reactor core 32 is fissioned. The core 32 has plutonium and depleted uranium, and heat is generated by the fission of the plutonium, and neutrons are emitted. This neutron is reflected by the reflector 36 on the outer periphery of the guard vessel 35 and absorbed by the depleted uranium in the reactor core 32 to generate plutonium. The generated plutonium is again fissioned to generate heat. With the combustion of the core 32, the reflector 36 is relatively moved in the vertical direction while maintaining the criticality of the core 32. As a result, the core 32 gradually burns and continues to generate heat for a long time. The primary coolant is driven upward by an electromagnetic pump 38, passes through an intermediate heat exchanger 39, and descends through the coolant flow path 37, as shown by the solid arrow in the figure, and the core 32
And then flows into the electromagnetic pump 38 again. The primary coolant passes through the core 32, absorbs the heat generated in the core 32, and transfers the heat to the intermediate heat exchanger 39. A secondary coolant flows into the intermediate heat exchanger 39 from an inlet pipe 41 as shown by a dashed arrow in the figure, and exchanges heat with the primary coolant. By this heat exchange, the heat of the core 32 is extracted to the outside through the outlet pipe 42 and used for power.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の高速増殖炉は、原子炉容器内部に中性子遮蔽体がな
く、かつ、反射体が原子炉容器の外側に配設されている
ので、原子炉容器と反射体が高速増殖炉を収容する遮蔽
構造物中に大量の熱を発散させる。この熱を除去するた
めに、従来の高速増殖炉の遮蔽構造物の冷却設備は大型
化する問題があった。
However, in the above-mentioned conventional fast breeder reactor, since there is no neutron shield inside the reactor vessel and the reflector is arranged outside the reactor vessel, The vessel and reflector dissipate a large amount of heat into the shield structure containing the fast breeder reactor. In order to remove this heat, there has been a problem that the conventional cooling facility for the shield structure of the fast breeder reactor is increased in size.

【0006】また、従来の高速増殖炉は原子炉容器外部
に照射される中性子の量が多く、遮蔽構造物内の空気中
のアルゴンや窒素が放射化するので、それらの環境への
放出を防ぐための厳重な格納設備が必要となり、上記冷
却設備の大型化の問題とあいまって原子炉装置全体が大
型化する問題があった。また、従来の高速増殖炉は、原
子炉容器が原子炉の寿命期間中に受ける中性子照射量が
1023nvt(E>0.1MeV)を超えるために、ス
テンレス鋼を使用することができず、高価な高クロム鋼
を使用せざるをえない問題もあった。さらに、従来の高
速増殖炉は、電磁ポンプが炉心の直上におかれ、炉心で
加熱された高温の液体ナトリウムの熱によって電磁ポン
プに大きな熱応力を発生して信頼性維持のために寿命が
短く、このため、従来の高速増殖炉は電磁ポンプの寿命
が小型高速増殖炉全体の寿命の長さの制限となってい
た。また、従来の高速増殖炉は炉心の直上に電磁ポンプ
と中間熱交換器とを配設していたので、燃料を交換する
時に電磁ポンプと中間熱交換器とを取り外さなければな
らず、燃料の交換作業が困難な上、燃料交換時に電磁ポ
ンプ等を損傷する可能性があった。そこで、本発明の目
的は、原子炉外部への発散される熱と中性子照射量が少
なく、簡単な遮蔽構造物と冷却設備によって収容でき、
熱の利用効率が高くかつ小型の高速増殖炉を提供するこ
とにある。
Further, in the conventional fast breeder reactor, the amount of neutrons irradiated to the outside of the reactor vessel is large and the argon and nitrogen in the air inside the shield structure are activated, so that their release to the environment is prevented. Therefore, there is a problem that the entire reactor apparatus becomes large in size together with the problem that the cooling equipment becomes large in size. Further, the conventional fast breeder reactor cannot use stainless steel because the neutron dose received by the reactor vessel during the life of the reactor exceeds 10 23 nvt (E> 0.1 MeV). There was also the problem of having to use expensive high chromium steel. Furthermore, in the conventional fast breeder reactor, the electromagnetic pump is placed directly above the core, and the heat of the high-temperature liquid sodium heated in the core causes large thermal stress in the electromagnetic pump, which shortens the service life to maintain reliability. Therefore, in the conventional fast breeder reactor, the life of the electromagnetic pump is a limitation on the life of the small-sized fast breeder reactor as a whole. Further, in the conventional fast breeder reactor, the electromagnetic pump and the intermediate heat exchanger are arranged directly above the core, so that the electromagnetic pump and the intermediate heat exchanger must be removed when exchanging the fuel. The replacement work was difficult and there was a possibility of damaging the electromagnetic pump and the like during the fuel replacement. Therefore, the object of the present invention is to reduce the amount of heat and neutron irradiation radiated to the outside of the reactor, which can be accommodated by a simple shielding structure and cooling equipment,
It is to provide a small fast breeder reactor with high heat utilization efficiency.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の高速増殖炉は、核燃料からなる炉心と、前記
炉心の外周を取り囲む炉心バレルと、前記炉心バレルの
外周を取り囲む全体として環状の反射体と、前記反射体
の外周を取り囲み、原子炉の半径方向に配設された支持
部材によって前記炉心バレルを支持するとともに、1次
冷却材の冷却材流路の内壁を構成する隔壁と、前記隔壁
の外周を取り囲み、前記冷却材流路中に配設された中性
子遮蔽体と、前記中性子遮蔽体の外周を取り囲み、前記
冷却材流路の外壁を構成する原子炉容器と、前記原子炉
容器の外周を取り囲むガードベッセルとを有することを
特徴とするものである。
To achieve the above object, a fast breeder reactor according to the present invention comprises a core made of nuclear fuel, a core barrel surrounding the outer periphery of the core, and an annular ring as a whole surrounding the outer periphery of the core barrel. And a partition wall that surrounds the outer periphery of the reflector and that supports the core barrel by a support member that is arranged in the radial direction of the nuclear reactor and that constitutes the inner wall of the coolant channel of the primary coolant. , Surrounding the outer periphery of the partition wall, the neutron shield disposed in the coolant channel, and surrounding the outer periphery of the neutron shield, the reactor vessel constituting the outer wall of the coolant channel, the atom And a guard vessel that surrounds the outer circumference of the furnace vessel.

【0008】[0008]

【作用】本発明の高速増殖炉は、反射体が炉心外周に近
接していることにより、中性子が効率よく反射され、核
燃料の燃焼・増殖を効率よく行うことができる。また、
反射体自体が1次冷却材の内部に浸漬されているので、
反射体が発生する熱は高速増殖炉の出力として利用さ
れ、これによって原子炉の効率が改善される。次に、本
発明による高速増殖炉の中性子遮蔽体は、原子炉容器の
内側、かつ、冷却材流路中に配置されているので、中性
子遮蔽体で発生する熱が原子炉の出力として利用され、
かつ、原子炉容器や原子炉容器外部に照射される中性子
の量が少ない。このことにより、原子炉の熱効率を高く
することができるとともに、原子炉容器中性子の照射量
を少なくし、原子炉容器の構成材料を安価なステンレス
鋼にできる。また、高速増殖炉を収容する遮蔽構造物と
それに付随する冷却設備の熱および放射化した遮蔽構造
物内の空気に対するシール性の要求を緩和し、遮蔽構造
物と冷却設備を小型・簡素化することができる。
In the fast breeder reactor of the present invention, since the reflector is close to the outer periphery of the core, neutrons are efficiently reflected and the nuclear fuel can be efficiently burned and breeded. Also,
Since the reflector itself is immersed inside the primary coolant,
The heat generated by the reflector is used as the output of the fast breeder reactor, which improves the efficiency of the reactor. Next, the neutron shield of the fast breeder reactor according to the present invention is located inside the reactor vessel, and in the coolant flow path, so the heat generated by the neutron shield is used as the output of the reactor. ,
Moreover, the amount of neutrons irradiated to the reactor vessel and the outside of the reactor vessel is small. This makes it possible to increase the thermal efficiency of the nuclear reactor, reduce the dose of neutrons in the nuclear reactor vessel, and use inexpensive stainless steel as the constituent material of the nuclear reactor vessel. In addition, the requirement for sealing property of the shield structure that houses the fast breeder reactor and the cooling equipment associated with it to the heat and the air in the shield structure that has been radiated is relaxed, and the shield structure and cooling facility are made smaller and simpler. be able to.

【0009】[0009]

【実施例】本発明の高速増殖炉は原子炉容器の内部に反
射体と中性子遮蔽体を収容し、これらが発生する熱が原
子炉の出力として利用されるように冷却材流路を構成
し、かつ、電磁ポンプと中間熱交換器とを炉心交換作業
の障害とならないように環状に形成し、電磁ポンプを中
間熱交換器の下流に配置できるように構成し、原子炉容
器外部に発散される熱量と中性子照射量とを小さくし
て、高速増殖炉の効率を改善するとともに高速増殖炉と
これを収容する遮蔽構造物とその冷却設備とを簡単にす
るものである。以下に本発明の一実施例について添付の
図面を参照して説明する。
EXAMPLE A fast breeder reactor of the present invention contains a reflector and a neutron shield inside a reactor vessel, and a coolant passage is constructed so that heat generated by these is used as an output of the reactor. In addition, the electromagnetic pump and the intermediate heat exchanger are formed into an annular shape so as not to hinder the core replacement work, and the electromagnetic pump is arranged so that it can be arranged downstream of the intermediate heat exchanger. By reducing the amount of heat and the amount of neutron irradiation, the efficiency of the fast breeder reactor is improved, and the fast breeder reactor, the shield structure for housing the fast breeder reactor, and the cooling equipment therefor are simplified. An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は本発明の高速増殖炉の一実施例の構
成を示している。高速増殖炉1は核燃料の集合体からな
る炉心2を有し、炉心2は全体としてほぼ円柱状に形成
されている。炉心2はこれを保護する炉心バレル3によ
って外周を取り囲まれている。炉心バレル3の外側には
全体として炉心バレル3を取り囲む円環状の反射体4が
配設されている。反射体4の外側には反射体4の外周を
取り囲み、1次冷却材の冷却材流路5の内壁を構成する
隔壁6が設けられている。隔壁6の外側には間隔をあけ
て冷却材流路5の外壁を構成する原子炉容器7が配設さ
れている。冷却材流路5中には中性子遮蔽体8が炉心2
を取り囲むように配設されている。原子炉容器7のさら
に外側には原子炉容器7を保護するガードベッセル9が
設けられている。反射体4は上部プラグ10を貫通する
複数の駆動軸11によって吊り下げられ、反射体駆動装
置12によって上下に移動可能に支持されている。隔壁
6は炉心2を載置するベースプレート13から上方に延
設され、原子炉容器7との間に円環状の冷却材流路5を
形成し、この冷却材流路5の下方には上述したように中
性子遮蔽体8が配置されている。中性子遮蔽体8の上方
の冷却材流路5中には円環状の電磁ポンプ14が配設さ
れ、電磁ポンプ14のさらに上方には中間熱交換器15
が配設されている。中間熱交換器15のさらに上方には
崩壊熱除去コイル16が配設されている。中間熱交換器
15と電磁ポンプ14は一体に形成され、原子炉の上部
の構造体と一体連続的に構成されている。図に示すよう
に、中間熱交換器15のチューブ側とシェル側はそれぞ
れ1次冷却材と2次冷却材が流通するように構成されて
いる。中間熱交換器15と電磁ポンプ14の下端部と隔
壁6の上端部との間には、熱による小型高速増殖炉1の
伸縮を吸収し、冷却材流路5を画すシールベロー17が
設けられている。この高速増殖炉1は炉心2にプルトニ
ウムを含む核燃料を使用し、運転に際しては炉心2のプ
ルトニウムを分裂させて熱を出すとともに余剰の高速中
性子を劣化ウランに吸収させ、燃やす量より多いプルト
ニウムを生成する。反射体4は炉心2から照射される中
性子を反射し、炉心2の核燃料の燃焼・増殖を促進す
る。核燃料の燃焼に伴って、反射体4は核燃料の臨界を
維持しながら徐々に移動され、このことにより、徐々に
炉心2の新しい燃料部分が燃焼され、長期間燃焼を維持
することができる。
FIG. 1 shows the construction of an embodiment of the fast breeder reactor of the present invention. The fast breeder reactor 1 has a core 2 made of an assembly of nuclear fuels, and the core 2 is formed in a substantially columnar shape as a whole. The core 2 is surrounded by a core barrel 3 that protects the core 2. An annular reflector 4 that surrounds the core barrel 3 as a whole is disposed outside the core barrel 3. A partition wall 6 that surrounds the outer periphery of the reflector 4 and forms the inner wall of the coolant channel 5 of the primary coolant is provided outside the reflector 4. A reactor vessel 7 that forms an outer wall of the coolant channel 5 is arranged outside the partition wall 6 with a space therebetween. A neutron shield 8 is provided in the core 2 in the coolant passage 5.
It is arranged so as to surround. A guard vessel 9 for protecting the reactor vessel 7 is provided further outside the reactor vessel 7. The reflector 4 is suspended by a plurality of drive shafts 11 penetrating the upper plug 10, and is supported by a reflector drive device 12 so as to be movable up and down. The partition wall 6 extends upward from the base plate 13 on which the reactor core 2 is mounted, and forms an annular coolant flow passage 5 with the reactor vessel 7. Below the coolant flow passage 5, the above-described partition wall 6 is formed. Thus, the neutron shield 8 is arranged. An annular electromagnetic pump 14 is disposed in the coolant flow path 5 above the neutron shield 8, and an intermediate heat exchanger 15 is further above the electromagnetic pump 14.
Is provided. A decay heat removal coil 16 is disposed above the intermediate heat exchanger 15. The intermediate heat exchanger 15 and the electromagnetic pump 14 are integrally formed, and are integrally and continuously formed with the upper structure of the nuclear reactor. As shown in the figure, the tube side and the shell side of the intermediate heat exchanger 15 are configured so that the primary coolant and the secondary coolant flow respectively. Between the intermediate heat exchanger 15, the lower end of the electromagnetic pump 14 and the upper end of the partition wall 6, a seal bellows 17 that absorbs expansion and contraction of the small fast breeder reactor 1 due to heat and defines the coolant flow path 5 is provided. ing. This fast breeder reactor 1 uses nuclear fuel containing plutonium in the core 2. During operation, the plutonium in the core 2 is split to generate heat and excess surplus fast neutrons are absorbed by depleted uranium to produce plutonium in excess of the amount burned. To do. The reflector 4 reflects the neutrons emitted from the core 2 and promotes the combustion and multiplication of nuclear fuel in the core 2. With the burning of the nuclear fuel, the reflector 4 is gradually moved while maintaining the criticality of the nuclear fuel, whereby the fresh fuel portion of the core 2 is gradually burned and the burning can be maintained for a long time.

【0011】運転に際しては、原子炉容器7内に1次冷
却材の液体ナトリウムが満たされ、この1次冷却材によ
って炉心2を冷却しつつ核分裂による熱を外部に取り出
す。次に1次冷却材の流れを説明する。図1の実線の矢
印は1次冷却材の流れ方向を示しており、これら実線の
矢印に示すように1次冷却材は電磁ポンプ14によって
下方に駆動され、中性子遮蔽体8の内部を流過して原子
炉容器7の底部に至る。次に1次冷却材は炉心2内を流
通しながら上昇し、原子炉容器7上部で中間熱交換器1
5のチューブ側に流入する。さらに1次冷却材は中間熱
交換器15で2次冷却材と熱交換を行った後に流出し、
再び電磁ポンプ14によって下方に駆動される。1次冷
却材に対して2次冷却材は外部から入口ノズル18を経
て中間熱交換器15のシェル側に流入し、中間熱交換器
15で1次冷却材によって加熱された後に、出口ノズル
19から外部に流出してその熱を動力等に変換する。
In operation, the reactor vessel 7 is filled with liquid sodium as a primary coolant, and the primary coolant is used to cool the core 2 while taking out heat from nuclear fission. Next, the flow of the primary coolant will be described. The solid arrows in FIG. 1 indicate the flow direction of the primary coolant. As shown by these solid arrows, the primary coolant is driven downward by the electromagnetic pump 14 and flows through the inside of the neutron shield 8. And reaches the bottom of the reactor vessel 7. Next, the primary coolant rises while flowing through the core 2, and the intermediate heat exchanger 1 is placed above the reactor vessel 7.
5 flows into the tube side. Furthermore, the primary coolant flows out after heat exchange with the secondary coolant in the intermediate heat exchanger 15,
It is driven downward again by the electromagnetic pump 14. In contrast to the primary coolant, the secondary coolant flows into the shell side of the intermediate heat exchanger 15 from the outside through the inlet nozzle 18, and after being heated by the primary coolant in the intermediate heat exchanger 15, the outlet nozzle 19 Flows out from the outside and converts the heat into motive power.

【0012】図2は図1に示す矢印A−Aにおける本実
施例の高速増殖炉の横断面を示している。本実施例では
6本の駆動軸11が中心から等しい距離に配設され、そ
の外側には中間熱交換器15の内胴20と外胴21があ
る。内胴20と胴21との間には伝熱管22が配設され
ている。符号23は中間熱交換器15と電磁ポンプ14
とを一体に吊り下げる外側シュラウドを示している。図
2と図1とから明らかなように、本実施例では中間熱交
換器15が環状に形成され、その内側に反射体4の駆動
軸11があり、駆動軸11は炉心2と干渉しない中心か
らの距離に配設されている。すなわち、炉心2の上方部
分は空洞の空間であり、このことにより、電磁ポンプ1
4と中間熱交換器15とを取り外すことなく炉心2の交
換作業を行うことができる。
FIG. 2 shows a cross section of the fast breeder reactor of this embodiment along the arrow AA shown in FIG. In this embodiment, six drive shafts 11 are arranged at equal distances from the center, and on the outside thereof, there are an inner case 20 and an outer case 21 of the intermediate heat exchanger 15. A heat transfer tube 22 is arranged between the inner case 20 and the case 21. Reference numeral 23 represents the intermediate heat exchanger 15 and the electromagnetic pump 14.
And an outer shroud that suspends and together. As is clear from FIG. 2 and FIG. 1, in this embodiment, the intermediate heat exchanger 15 is formed in an annular shape, and the drive shaft 11 of the reflector 4 is provided inside thereof, and the drive shaft 11 is a center that does not interfere with the core 2. Is located at a distance from. That is, the upper portion of the reactor core 2 is a hollow space, which allows the electromagnetic pump 1
The core 2 can be replaced without removing the intermediate heat exchanger 4 and the intermediate heat exchanger 15.

【0013】図3は図1に示す矢印B−Bにおける本実
施例の高速増殖炉の横断面を示している。図3に示すよ
うに炉心2は横断面が全体として円形に形成され、その
外側には炉心バレル3があり、炉心バレル3の外側には
全体として円環状の反射体4が駆動軸11によって吊り
下げられている。反射体4の外側には隔壁6があり、隔
壁6の内側には複数のリブ24が高速増殖炉1の半径方
向内方に突出するように設けられている。これらリブ2
4は反射体4を貫通し、先端部で炉心バレル3の外周を
支持している。反射体4は6つに分割され、各分割部分
はリブ24と干渉せずに上下移動可能に駆動軸11によ
って吊り下げられている。図3に示すように、隔壁6の
周囲には全体として円環状の中性子遮蔽体8があり、こ
の中性子遮蔽体8は多数の円柱25を互いに隙間を有す
るように隔壁6周囲に配置して構成されている。これに
より、1次冷却材は中性子遮蔽体8の内部を流通し、中
性子遮蔽体8を効率よく冷却することができる。
FIG. 3 shows a cross section of the fast breeder reactor of this embodiment along the arrow BB shown in FIG. As shown in FIG. 3, the core 2 has a circular cross section as a whole, a core barrel 3 is located outside the core 2, and a generally annular reflector 4 is hung by a drive shaft 11 outside the core barrel 3. It has been lowered. A partition wall 6 is provided outside the reflector 4, and a plurality of ribs 24 are provided inside the partition wall 6 so as to project radially inward of the fast breeder reactor 1. These ribs 2
Reference numeral 4 penetrates the reflector 4 and supports the outer periphery of the core barrel 3 at its tip. The reflector 4 is divided into six parts, and each divided part is suspended by the drive shaft 11 so as to be vertically movable without interfering with the ribs 24. As shown in FIG. 3, there is an annular neutron shield 8 around the partition wall 6 as a whole, and the neutron shield 8 is configured by arranging a large number of cylinders 25 around the partition wall 6 so as to have gaps between them. Has been done. This allows the primary coolant to flow through the inside of the neutron shield 8 and efficiently cool the neutron shield 8.

【0014】上記構造に基づいて本実施例の作用につい
て以下に説明する。本実施例の反射体4は炉心2の外周
に近接して設けられているので、中性子が効果的に反射
され、核燃料の燃焼・増殖が効率よく行われ、核燃料の
燃焼に伴って、臨界を維持しながら反射体4を徐々に移
動することで徐々に炉心2の新しい燃料部分が燃焼さ
れ、長期間燃焼を維持することができる。中性子遮蔽体
8は、反射体4を通過あるいは迂回して放射する中性子
を遮蔽し、原子炉容器7および遮蔽構造物内の空間に照
射される中性子の量を減少させる。このことにより、原
子炉容器7の構成材料としてステンレス鋼を使用でき、
安価な原子炉容器7を得ることができる。さらに、遮蔽
構造物内の熱および放射化されるアルゴンと窒素の量が
減少するので、遮蔽構造物の冷却設備を小型化でき、放
射化されたアルゴンや窒素に対するシール性の要求を緩
和することができる。また、上記反射体4と中性子遮蔽
体8は1次冷却材の内部に浸漬されているので、それら
が発生する熱は高速増殖炉1の出力として利用され、よ
り高効率の高速増殖炉1を得ることができる。また、本
実施例では電磁ポンプ14は中間熱交換器15の下流側
に設置されているので、電磁ポンプ14が駆動する1次
冷却材は循環サイクル中もっとも低温のものである。こ
のことにより、電磁ポンプ14が受ける熱応力が小さ
く、長期間の使用に耐えることができるので、この結
果、高速増殖炉1全体の寿命が延長される。さらに、炉
心2上方にこれと干渉する電磁ポンプ14等の機器が配
設されていないので、交換時に上部プラグ10を取り除
いて使用済みの炉心2を直接垂直上方へ引き出すことが
できる。このことにより、従来中間熱交換器15や電磁
ポンプ14を取り外して行っていた核燃料の交換作業が
簡略化され、交換作業に伴う電磁ポンプ14等の損傷を
未然に防止することができる。
The operation of this embodiment will be described below based on the above structure. Since the reflector 4 of this embodiment is provided in the vicinity of the outer periphery of the core 2, neutrons are effectively reflected, the nuclear fuel is efficiently burned and propagated, and the criticality is increased with the burning of the nuclear fuel. By gradually moving the reflector 4 while maintaining it, the new fuel portion of the core 2 is gradually burned, and combustion can be maintained for a long time. The neutron shield 8 shields neutrons that pass through or bypass the reflector 4 and radiate, and reduces the amount of neutrons that are irradiated to the space inside the reactor vessel 7 and the shield structure. As a result, stainless steel can be used as a constituent material of the reactor vessel 7,
An inexpensive reactor vessel 7 can be obtained. Furthermore, since the heat and the amount of activated argon and nitrogen in the shielding structure are reduced, the cooling facility of the shielding structure can be downsized, and the sealing requirement for the activated argon and nitrogen can be relaxed. You can Further, since the reflector 4 and the neutron shield 8 are immersed in the primary coolant, the heat generated by them is utilized as the output of the fast breeder reactor 1, and the more efficient fast breeder reactor 1 is provided. Obtainable. Further, in this embodiment, since the electromagnetic pump 14 is installed on the downstream side of the intermediate heat exchanger 15, the primary coolant driven by the electromagnetic pump 14 has the lowest temperature in the circulation cycle. As a result, the thermal stress applied to the electromagnetic pump 14 is small, and the electromagnetic pump 14 can withstand long-term use. As a result, the life of the fast breeder reactor 1 as a whole is extended. Further, since no device such as the electromagnetic pump 14 that interferes with the core 2 is disposed above the core 2, the upper plug 10 can be removed at the time of replacement and the used core 2 can be directly pulled out vertically. This simplifies the nuclear fuel replacement work that was conventionally performed by removing the intermediate heat exchanger 15 and the electromagnetic pump 14, and can prevent damage to the electromagnetic pump 14 and the like due to the replacement work.

【0015】なお、本出願に係る発明は、高速増殖炉1
の中心から外側へ炉心2、炉心バレル3、反射体4、隔
壁6、中性子遮蔽体8、原子炉容器7、ガードベッセル
9を配設し、隔壁6と原子炉容器7の間に冷却材流路5
を形成したものであるが、上記説明から明らかなよう
に、反射体4を半径方向に複数個に分割して各反射体4
の分割部分を軸方向に移動可能に支持したものや、内部
を1次冷却材が流通するように中性子遮蔽体8を間隙を
有する複数の円柱や多重構造の円環体によって構成した
ものや、冷却材流路5の上部に円環状の電磁ポンプ14
と中間熱交換器15を配設し、電磁ポンプ14と中間熱
交換器15の内側で反射体4を吊り下げた構造のもの
や、電磁ポンプ14と中間熱交換器15を原子炉の上部
構造体と一体に構成し、その下端部と原子炉の下部構造
体に立設された隔壁6の上端部との間にシールベロー1
7を設けたものは本発明の技術的範囲に含まれるもので
ある。
The invention according to the present application is the fast breeder reactor 1
The core 2, the core barrel 3, the reflector 4, the partition wall 6, the neutron shield 8, the reactor vessel 7, and the guard vessel 9 are arranged from the center to the outside, and the coolant flow is provided between the partition wall 6 and the reactor vessel 7. Road 5
However, as is clear from the above description, the reflector 4 is divided into a plurality of pieces in the radial direction, and each of the reflectors 4 is formed.
Of which the divided parts of the above are movably supported in the axial direction, those in which the neutron shield 8 is composed of a plurality of cylinders having a gap or a multi-ring torus so that the primary coolant flows through the inside, An annular electromagnetic pump 14 is provided above the coolant channel 5.
And the intermediate heat exchanger 15 are arranged and the reflector 4 is suspended inside the electromagnetic pump 14 and the intermediate heat exchanger 15, or the electromagnetic pump 14 and the intermediate heat exchanger 15 are superstructures of a nuclear reactor. The seal bellows 1 is formed integrally with the body, and is provided between the lower end of the body and the upper end of the partition wall 6 erected on the lower structure of the nuclear reactor.
Those provided with 7 are included in the technical scope of the present invention.

【0016】[0016]

【発明の効果】本発明による高速増殖炉は、炉心の外周
に反射体を配し、反射体の外周に冷却材流路を構成し、
この冷却材流路中に中性子遮蔽体を配し、これらの全体
を原子炉容器とガードベッセル内に収容しているので、
熱の利用効率が高く、かつ、原子炉容器の外側に漏れる
中性子や熱が少ない。原子炉容器の外側に漏れる中性子
や熱が少ないことにより、中性子や熱に対する許容限界
が比較的低い鋼材によって原子炉容器を形成することが
できるとともに、高速増殖炉を収容する遮蔽構造物とそ
の冷却設備を小型化することができ、かつ、冷却設備の
放射化した窒素やアルゴンに対するシール性の要求を緩
和することができる。
In the fast breeder reactor according to the present invention, the reflector is arranged on the outer periphery of the core, and the coolant passage is formed on the outer periphery of the reflector.
A neutron shield is placed in this coolant channel, and since all of these are housed in the reactor vessel and guard vessel,
The heat utilization efficiency is high, and the amount of neutrons and heat that leak to the outside of the reactor vessel is small. Due to the small amount of neutrons and heat leaking to the outside of the reactor vessel, it is possible to form the reactor vessel with steel materials that have a relatively low allowable limit for neutrons and heat, and also to shield the fast breeder reactor and its cooling structure. The equipment can be downsized, and the requirement for the sealing ability of the cooling equipment against the activated nitrogen or argon can be relaxed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による高速増殖炉の一実施例の軸方向の
断面を示した断面図。
FIG. 1 is a sectional view showing an axial cross section of an embodiment of a fast breeder reactor according to the present invention.

【図2】本発明による高速増殖炉の一実施例の軸方向に
垂直な断面を示した断面図。
FIG. 2 is a cross-sectional view showing a cross section perpendicular to the axial direction of an embodiment of a fast breeder reactor according to the present invention.

【図3】本発明による高速増殖炉の一実施例の軸方向に
垂直な断面を示した断面図。
FIG. 3 is a cross-sectional view showing a cross section perpendicular to the axial direction of an embodiment of a fast breeder reactor according to the present invention.

【図4】従来の高速増殖炉の軸方向の断面を示した断面
図。
FIG. 4 is a cross-sectional view showing a cross section in the axial direction of a conventional fast breeder reactor.

【符号の説明】[Explanation of symbols]

1 高速増殖炉 2 炉心 3 炉心バレル 4 反射体 5 冷却材流路 6 隔壁 7 原子炉容器 8 中性子遮蔽体 9 ガードベッセル 11 駆動軸 14 電磁ポンプ 15 中間熱交換器 16 崩壊熱除去コイル 17 シールベロー 24 リブ 25 円柱 1 Fast Breeder Reactor 2 Core 3 Core Barrel 4 Reflector 5 Coolant Channel 6 Partition 7 Reactor Vessel 8 Neutron Shield 9 Guard Vessel 11 Drive Shaft 14 Electromagnetic Pump 15 Intermediate Heat Exchanger 16 Decay Heat Removal Coil 17 Seal Bellow 24 Rib 25 cylinder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯 田 式 彦 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shikihiko Iida 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Head Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】核燃料からなる炉心と、前記炉心の外周を
取り囲む炉心バレルと、前記炉心バレルの外周を取り囲
む全体として環状の反射体と、前記反射体の外周を取り
囲み、原子炉の半径方向に配設された支持部材によって
前記炉心バレルを支持するとともに、1次冷却材の冷却
材流路の内壁を構成する隔壁と、前記隔壁の外周を取り
囲み、前記冷却材流路中に配設された中性子遮蔽体と、
前記中性子遮蔽体の外周を取り囲み、前記冷却材流路の
外壁を構成する原子炉容器と、前記原子炉容器の外周を
取り囲むガードベッセルとを有することを特徴とする高
速増殖炉。
1. A core made of nuclear fuel, a core barrel surrounding the outer periphery of the core, an annular reflector as a whole surrounding the outer periphery of the core barrel, and an outer periphery of the reflector in a radial direction of a nuclear reactor. The core barrel is supported by the disposed support member, and the partition wall that forms the inner wall of the coolant channel of the primary coolant and the outer periphery of the partition wall is surrounded and disposed in the coolant channel. A neutron shield,
A fast breeder reactor comprising: a reactor vessel surrounding the outer periphery of the neutron shield and forming an outer wall of the coolant passage; and a guard vessel surrounding the outer periphery of the reactor vessel.
JP04324322A 1992-07-30 1992-12-03 Fast breeder reactor Expired - Lifetime JP3126524B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04324322A JP3126524B2 (en) 1992-12-03 1992-12-03 Fast breeder reactor
US08/097,833 US5420897A (en) 1992-07-30 1993-07-29 Fast reactor having reflector control system
FR9309410A FR2697104B1 (en) 1992-07-30 1993-07-30 Fast reactor equipped with a control system for reflector.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04324322A JP3126524B2 (en) 1992-12-03 1992-12-03 Fast breeder reactor

Publications (2)

Publication Number Publication Date
JPH06174882A true JPH06174882A (en) 1994-06-24
JP3126524B2 JP3126524B2 (en) 2001-01-22

Family

ID=18164501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04324322A Expired - Lifetime JP3126524B2 (en) 1992-07-30 1992-12-03 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JP3126524B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026214A (en) * 2006-07-24 2008-02-07 Toshiba Corp Fast reactor
WO2010126028A1 (en) * 2009-04-27 2010-11-04 株式会社 東芝 Fast reactor
JP2012523008A (en) * 2009-04-06 2012-09-27 シーレイト リミテッド ライアビリティー カンパニー Traveling wave fission reactor, nuclear fuel assembly, and method of controlling burnup in these
US8295425B2 (en) 2007-05-17 2012-10-23 Kabushiki Kaisha Toshiba Fast reactor having reactivity control reflector
WO2023009153A1 (en) * 2021-07-29 2023-02-02 Terrapower, Llc Modified low power, fast spectrum molten fuel reactor designs having improved neutronics
US11728052B2 (en) 2020-08-17 2023-08-15 Terra Power, Llc Fast spectrum molten chloride test reactors
US11791057B2 (en) 2018-03-12 2023-10-17 Terrapower, Llc Reflectors for molten chloride fast reactors
US11798694B2 (en) 2015-09-30 2023-10-24 Terrapower, Llc Molten fuel nuclear reactor
US11881320B2 (en) 2019-12-23 2024-01-23 Terrapower, Llc Molten fuel reactors and orifice ring plates for molten fuel reactors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037842A1 (en) * 2007-09-20 2009-03-26 Kabushiki Kaisha Toshiba Fast reactor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026214A (en) * 2006-07-24 2008-02-07 Toshiba Corp Fast reactor
US8295425B2 (en) 2007-05-17 2012-10-23 Kabushiki Kaisha Toshiba Fast reactor having reactivity control reflector
JP2016128828A (en) * 2009-04-06 2016-07-14 テラパワー, エルエルシー Traveling wave nuclear fission reactor, fuel assembly, and method of controlling burnup therein
JP2016128829A (en) * 2009-04-06 2016-07-14 テラパワー, エルエルシー Traveling wave nuclear fission reactor, fuel assembly, and method of controlling burnup therein
JP2012523008A (en) * 2009-04-06 2012-09-27 シーレイト リミテッド ライアビリティー カンパニー Traveling wave fission reactor, nuclear fuel assembly, and method of controlling burnup in these
JP2012523007A (en) * 2009-04-06 2012-09-27 シーレイト リミテッド ライアビリティー カンパニー Traveling wave fission reactor, nuclear fuel assembly, and method of controlling burnup in these
US9093182B2 (en) 2009-04-27 2015-07-28 Kabushiki Kaisha Toshiba Fast reactor
CN102414757A (en) * 2009-04-27 2012-04-11 株式会社东芝 Fast reactor
WO2010126028A1 (en) * 2009-04-27 2010-11-04 株式会社 東芝 Fast reactor
US11798694B2 (en) 2015-09-30 2023-10-24 Terrapower, Llc Molten fuel nuclear reactor
US11791057B2 (en) 2018-03-12 2023-10-17 Terrapower, Llc Reflectors for molten chloride fast reactors
US11881320B2 (en) 2019-12-23 2024-01-23 Terrapower, Llc Molten fuel reactors and orifice ring plates for molten fuel reactors
US11728052B2 (en) 2020-08-17 2023-08-15 Terra Power, Llc Fast spectrum molten chloride test reactors
WO2023009153A1 (en) * 2021-07-29 2023-02-02 Terrapower, Llc Modified low power, fast spectrum molten fuel reactor designs having improved neutronics

Also Published As

Publication number Publication date
JP3126524B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US4678626A (en) Radiant vessel auxiliary cooling system
US8331523B2 (en) Liquid cooled nuclear reactor with annular steam generator
JP3126524B2 (en) Fast breeder reactor
CN108140433B (en) Nuclear reactor
EP0397509A2 (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US3128234A (en) Modular core units for a neutronic reactor
JP2006337215A (en) Fast reactor
CA2700249A1 (en) Reflector-controlled fast reactor
JP4101422B2 (en) Liquid metal cooled nuclear reactor and liquid metal cooled nuclear power plant
EP0180187B1 (en) Nuclear reactor with irradiation shields for pressure vessel welds
US4118275A (en) Variable flow control for a nuclear reactor control rod
JP2008122248A (en) Fast reactor
JPH0552979A (en) Small-sized fast breeder reactor
KR101617299B1 (en) Fast nuclear reactor
JP3874310B2 (en) Liquid metal cooled fast reactor
JP2022091259A (en) Reactor core structure and nuclear reactor
JP2022091260A (en) Lower end plug and fuel rod
JP2022091261A (en) Reactor core structure and nuclear reactor
Batjukov et al. System for cooling set of fuel assemblies arranged in reactor vessel
Knights et al. IMPROVEMENTS IN OR RELATING TO NUCLEAR REACTOR SHIELDING
JPH06258481A (en) Fast breeder reactor
Bingham et al. Nuclear reactor
Lambert Leakage-limiter for nuclear reactor fuel element feet
Hayden et al. IMPROVEMENTS RELATING TO NUCLEAR REACTOR INSTALLATIONS

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13