JPH06174320A - Cooling apparatus - Google Patents

Cooling apparatus

Info

Publication number
JPH06174320A
JPH06174320A JP7292193A JP7292193A JPH06174320A JP H06174320 A JPH06174320 A JP H06174320A JP 7292193 A JP7292193 A JP 7292193A JP 7292193 A JP7292193 A JP 7292193A JP H06174320 A JPH06174320 A JP H06174320A
Authority
JP
Japan
Prior art keywords
cooled condenser
water
refrigerant
condenser
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7292193A
Other languages
Japanese (ja)
Other versions
JP2709890B2 (en
Inventor
Makoto Sasaki
誠 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP5072921A priority Critical patent/JP2709890B2/en
Publication of JPH06174320A publication Critical patent/JPH06174320A/en
Application granted granted Critical
Publication of JP2709890B2 publication Critical patent/JP2709890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To increase a cooling capability of a refrigerant condenser in a freezer, and reduce the consumed amount of water of the refrigerant condenser and the amount of waste heat into a room. CONSTITUTION:In a refrigerant circuit of a freezer, refrigerant gas compressed by a compressor 11 is condensed by the successive passage through a primary air cooled condenser 13, a water cooled condenser 14, and a secondary air cooled condenser 15 and led from an expansion valve 18 to an evaporator 19 for evaporation and hence for freezing action and is further circulated to the compressor 11 while an automated water supply valve 21 is provided on a cooling water passage 12 to the water cooled condenser 14, whereby the automated water supply valve 21 is opened when a temperature condition is severe to actuate the water cooled condenser 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機、冷却機、冷蔵
庫等の冷却装置、とくにその冷媒回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for refrigerators, chillers, refrigerators and the like, and more particularly to a refrigerant circuit thereof.

【0002】[0002]

【従来の技術】冷凍機における従来の冷媒回路は、図5
に示すように、圧縮機1により圧縮された冷媒ガスが空
冷または水冷凝縮器2により凝縮し、膨張弁3を経て蒸
発器4で蒸発することにより冷凍作用または製氷作用を
行い、再び冷媒ガスが圧縮機1へ循環するように構成さ
れているが、凝縮器2が空冷式の場合には、冷凍能力を
増大させるため圧縮機1の容量を大きくすると、凝縮器
2を大型にする必要があって冷凍機の外形寸法が大幅に
増加すると共に、凝縮器2による厨房内あるいは機械室
内への排熱量が増大して室温が上昇する結果、室内の作
業環境が悪化したり、凝縮器2自身の冷却能力が低下し
て冷凍機の性能に悪影響を及ぼし、あるいは、厨房内冷
房の負荷増大により消費電力が増加する等の不具合があ
り、また、凝縮器2が水冷式の場合には、使用する冷却
水量が多くなってその費用がかさむため、冷凍コストが
高くついていた。
2. Description of the Related Art A conventional refrigerant circuit in a refrigerator is shown in FIG.
As shown in, the refrigerant gas compressed by the compressor 1 is condensed by the air-cooled or water-cooled condenser 2 and evaporated in the evaporator 4 through the expansion valve 3 to perform the refrigerating operation or the ice making operation, and the refrigerant gas is again cooled. Although it is configured to circulate to the compressor 1, when the condenser 2 is an air-cooled type, it is necessary to increase the size of the condenser 2 if the capacity of the compressor 1 is increased to increase the refrigerating capacity. As a result, the external dimensions of the refrigerator are significantly increased, and the amount of heat exhausted by the condenser 2 into the kitchen or the machine room is increased to raise the room temperature. As a result, the working environment in the room is deteriorated and the condenser 2 itself If the condenser 2 has a water cooling type, there is a problem that the cooling capacity is reduced and the refrigerator performance is adversely affected, or the load on the cooling in the kitchen increases, resulting in an increase in power consumption. The amount of cooling water is increasing Because of costly, freezing cost was on high.

【0003】また、図6に示す冷凍機の冷媒回路におい
ては、圧縮機1により圧縮された冷媒ガスが順次水冷凝
縮器5及び空冷凝縮器6を通って凝縮し、その後は図5
の回路と同じ構成となっているが、水冷凝縮器5へ冷却
水を供給するための自動給水弁7は空冷凝縮器6から流
出する冷媒液の温度または圧力により開閉制御され、上
記冷媒液の温度または圧力が設定値より低下して自動給
水弁7が閉じられると、水冷凝縮器5内に貯留する冷却
水が圧縮機1から吐出される高温の冷媒ガスにより加熱
されて高く昇温するため、この状態から冷却水を排出す
ると、塩化ビニール製の排水管が高温冷却水の熱によっ
て曲がったり、配管用の接着剤が溶けたりして排水管か
ら水洩れを起こすおそれがあると同時に、発生した水蒸
気が排水口付近で結露して水滴が垂れる等の不具合があ
り、一旦水洩れを起こすと、冷凍機が設置されている床
の絨毯を傷める等重大な支障を来す欠点があり、さら
に、自動給水弁7がその設定温度または設定圧力付近で
開閉を繰り返すような場合でも、水冷凝縮器5内の冷却
水が昇温して60°Cをも越える結果、上記と似た好ま
しくない現象を起こすおそれがあった。
Further, in the refrigerant circuit of the refrigerator shown in FIG. 6, the refrigerant gas compressed by the compressor 1 is sequentially condensed through the water-cooled condenser 5 and the air-cooled condenser 6, and thereafter the refrigerant gas shown in FIG.
However, the automatic water supply valve 7 for supplying the cooling water to the water-cooled condenser 5 is controlled to open and close by the temperature or pressure of the refrigerant liquid flowing out from the air-cooled condenser 6, and When the temperature or pressure falls below the set value and the automatic water supply valve 7 is closed, the cooling water stored in the water-cooled condenser 5 is heated by the high-temperature refrigerant gas discharged from the compressor 1 and rises in temperature high. , If the cooling water is discharged from this state, the drain pipe made of vinyl chloride may be bent by the heat of the high-temperature cooling water, or the adhesive for piping may melt, causing water leakage from the drain pipe. There is a problem that the generated water vapor condenses around the drain outlet and drops water drops, and once water leakage occurs, there is a drawback that it will cause serious trouble such as damaging the carpet on the floor where the refrigerator is installed. , The automatic water supply valve 7 Even when the opening / closing is repeated near the set temperature or set pressure, the temperature of the cooling water in the water-cooled condenser 5 rises to more than 60 ° C, which may cause an undesirable phenomenon similar to the above. .

【0004】また、図7に示す冷凍機の冷媒回路におい
ては、圧縮機1により圧縮された冷媒ガスが順次空冷凝
縮器6及び水冷凝縮器5を通って凝縮し、その後は図5
の回路と同じ構成となっていて、図6と同等の自動給水
弁7をそなえているが、周囲温度の高低にかかわらず、
圧縮機1から吐出される高温の冷媒ガスがすべて空冷凝
縮器6を通り、ここでできる限りの排熱が行われるた
め、図5の凝縮器2が空冷式の場合とほぼ同等の不具合
があると共に、水冷凝縮器5には多くの冷却水が流れて
コストの上昇を助長し、さらに、水冷凝縮器5から流出
する冷媒液の温度または圧力が設定値より低下して自動
給水弁7が閉じられたときには、空冷凝縮器6の出口で
冷媒が液化していて、それより後方の配管容積が水冷凝
縮器5の存在により大きくなる結果、図6のように冷媒
ガスが先に水冷凝縮器5を通る場合と比較して冷媒封入
量を多くせざるをえないので、冷媒の寝込み起動による
ホーミング等が発生しやすくなって、圧縮機1が損傷す
るおそれがあり、冷凍機の信頼性を損ねる欠点があっ
た。
Further, in the refrigerant circuit of the refrigerator shown in FIG. 7, the refrigerant gas compressed by the compressor 1 is sequentially condensed through the air-cooled condenser 6 and the water-cooled condenser 5, and thereafter, FIG.
It has the same configuration as the circuit of and has an automatic water supply valve 7 equivalent to that of FIG. 6, but regardless of whether the ambient temperature is high or low,
Since all the high-temperature refrigerant gas discharged from the compressor 1 passes through the air-cooled condenser 6 and exhaust heat is performed as much as possible here, there is a problem substantially similar to the case where the condenser 2 of FIG. 5 is of the air-cooled type. At the same time, a large amount of cooling water flows into the water-cooled condenser 5 to promote an increase in cost, and further, the temperature or pressure of the refrigerant liquid flowing out of the water-cooled condenser 5 falls below a set value to close the automatic water supply valve 7. At this time, the refrigerant is liquefied at the outlet of the air-cooled condenser 6, and the pipe volume behind it is increased due to the presence of the water-cooled condenser 5. As a result, the refrigerant gas comes first as shown in FIG. Since the amount of refrigerant to be filled must be increased as compared with the case of passing through, the homing etc. due to the start-up of the refrigerant is likely to occur, the compressor 1 may be damaged, and the reliability of the refrigerator is impaired. There was a flaw.

【0005】なお、上記各冷媒回路において、それぞれ
圧縮機1の出口側から凝縮器2、5、6及び膨張弁3を
バイパスして蒸発器4の入口側に連通するホットガス路
を付設し、そのホットガス路に設置したホットガス弁を
開くことにより、圧縮機1から直接蒸発器4へ高温の冷
媒ガスを導いて、蒸発器4の除霜あるいは除氷を行うも
のにおいても、冷凍作用または製氷作用を行わせる場合
には、前記と同様の不具合を伴うことは避けられなかっ
た。
In each of the above-mentioned refrigerant circuits, a hot gas passage is provided, which bypasses the condensers 2, 5, 6 and the expansion valve 3 from the outlet side of the compressor 1 and communicates with the inlet side of the evaporator 4, By opening the hot gas valve installed in the hot gas passage, the high-temperature refrigerant gas is directly guided from the compressor 1 to the evaporator 4 to perform defrosting or deicing of the evaporator 4. When the ice making operation is performed, it is unavoidable that the same problems as described above are involved.

【0006】[0006]

【発明が解決しようとする課題】本発明は、冷却装置に
おける冷媒凝縮器の冷却能力を高め、しかも、冷媒凝縮
器の消費水量及び室内への排熱量を少なくすることを目
的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to enhance the cooling capacity of a refrigerant condenser in a cooling device and to reduce the amount of water consumed by the refrigerant condenser and the amount of heat exhausted into the room.

【0007】[0007]

【課題を解決するための手段】このため、本発明にかか
る冷却装置は、圧縮機により圧縮された冷媒ガスが順次
小容量の一次空冷凝縮器、水冷凝縮器及び二次空冷凝縮
器を通って凝縮し、さらに膨張器及び蒸発器を経て上記
圧縮機に循環されるように構成されている。
Therefore, in the cooling device according to the present invention, the refrigerant gas compressed by the compressor is sequentially passed through the primary air-cooled condenser, the water-cooled condenser and the secondary air-cooled condenser. It is configured to be condensed and further circulated to the compressor through an expander and an evaporator.

【0008】[0008]

【作用】すなわち、圧縮機から流出する高温の冷媒ガス
は先ず小容量の一次空冷凝縮器を通って冷却され、次い
で水冷凝縮器を通り、さらに二次空冷凝縮器を通ること
により凝縮するので、凝縮器全体としての冷却能力が高
められると共に、冷却装置が設置された室内へ凝縮器の
空冷作用により排出される熱量は比較的少なくなって、
室内温度の上昇を容易に抑制することができ、さらに、
冷媒ガスは一次空冷凝縮器により冷却されてから水冷凝
縮器を通るため、水冷凝縮器が作動していないときで
も、水冷凝縮器内の冷却水温度が高く上昇することも抑
制されて、その排水時の障害を回避することができる。
In other words, the high-temperature refrigerant gas flowing out of the compressor is first cooled through a small capacity primary air-cooled condenser, then passed through a water-cooled condenser, and further condensed through a secondary air-cooled condenser. While the cooling capacity of the condenser as a whole is enhanced, the amount of heat discharged into the room in which the cooling device is installed by the air cooling function of the condenser is relatively small,
You can easily suppress the rise in room temperature, and
Since the refrigerant gas is cooled by the primary air-cooled condenser and then passes through the water-cooled condenser, it is possible to prevent the temperature of the cooling water in the water-cooled condenser from rising to a high level even when the water-cooled condenser is not operating, and its drainage The obstacles of time can be avoided.

【0009】[0009]

【実施例】以下、本発明の実施例について同等部分には
同一符号を付けて説明する。図1に示すオーガ式製氷機
の冷媒回路10において、圧縮機11により圧縮された
冷媒ガスは、ファン12により常時冷却空気が供給され
る小容量の一次空冷凝縮器13を通って空冷され、冷媒
の飽和温度である約60°Cにまで降温することにより
気液混合状態となって水冷凝縮器14へ導かれ、さら
に、圧縮機11内の図示しないオイルクーラを経てか
ら、ファン12によって同様に常時冷却空気が供給され
る二次空冷凝縮器15を通ることにより再度空冷されて
凝縮する。
Embodiments of the present invention will be described below by giving the same reference numerals to the same parts. In the refrigerant circuit 10 of the auger type ice maker shown in FIG. 1, the refrigerant gas compressed by the compressor 11 is air-cooled through a small capacity primary air-cooling condenser 13 to which cooling air is constantly supplied by a fan 12, By lowering the temperature to about 60 ° C., which is the saturation temperature of, the gas-liquid mixed state is introduced to the water-cooled condenser 14, and further, after passing through an oil cooler (not shown) in the compressor 11, the fan 12 also similarly. By passing through the secondary air-cooling condenser 15 to which cooling air is constantly supplied, the air is cooled again and condensed.

【0010】次いで、凝縮した冷媒はレシーバタンク1
6に導かれて完全に液化し、さらに、ドライヤ17を経
てから膨張弁18において急減圧され、蒸発器19で蒸
発することにより製氷水から熱を奪って製氷作用を行
い、その後再び圧縮機11へ循環する。また、水冷凝縮
器14に接続された冷却水管路20には自動給水弁21
が設置され、自動給水弁21は、二次空冷凝縮器15か
ら流出する冷媒液の温度または圧力の高低により開閉制
御される。
Next, the condensed refrigerant is transferred to the receiver tank 1
6, completely liquefied, and further, after passing through the dryer 17, the pressure is rapidly reduced in the expansion valve 18 and evaporated in the evaporator 19 to remove heat from the ice making water to perform the ice making operation, and then to the compressor 11 again. Circulate to. In addition, the cooling water pipe 20 connected to the water-cooled condenser 14 has an automatic water supply valve 21.
The automatic water supply valve 21 is controlled to open and close depending on the temperature or pressure of the refrigerant liquid flowing out from the secondary air-cooling condenser 15.

【0011】上記装置において、二次空冷凝縮器15か
ら流出する冷媒液の温度または圧力が設定値以上のとき
は、自動給水弁21が開かれて水冷凝縮器14へ冷却水
が送給され、水冷凝縮器14を通る冷媒が冷却される
が、周囲温度が低下すること等により空冷凝縮器13、
15の冷却能力が相対的に大きくなって、二次空冷凝縮
器15から流出する冷媒液の温度または圧力が設定値以
下となると、自動給水弁21が閉じられて水冷凝縮器1
4は冷媒の冷却作用を行わなくなる。
In the above apparatus, when the temperature or pressure of the refrigerant liquid flowing out from the secondary air-cooled condenser 15 is equal to or higher than the set value, the automatic water supply valve 21 is opened to supply the cooling water to the water-cooled condenser 14. The refrigerant passing through the water-cooled condenser 14 is cooled, but the air-cooled condenser 13, due to a decrease in ambient temperature,
When the cooling capacity of 15 becomes relatively large and the temperature or pressure of the refrigerant liquid flowing out from the secondary air-cooled condenser 15 becomes equal to or lower than a set value, the automatic water supply valve 21 is closed and the water-cooled condenser 1
4 does not cool the refrigerant.

【0012】すなわち、周囲温度が比較的高い場合等
は、自動給水弁21が開かれて水冷凝縮器14が作動す
ることにより、製氷機が設置されている厨房または機械
室に対して一次空冷凝縮器13及び二次空冷凝縮器15
から排出される熱量が少なく抑えられるので、厨房また
は機械室内に熱気のこもることが防止されて作業環境を
良好に保持できると共に、室内の高温化が抑制されるた
め、製氷機は十分に性能を発揮することができて、その
信頼性を容易に高めることができる。
That is, when the ambient temperature is relatively high, the automatic water supply valve 21 is opened and the water-cooled condenser 14 is actuated, so that the primary air-cooled condensation is performed on the kitchen or machine room where the ice maker is installed. Vessel 13 and secondary air-cooled condenser 15
Since the amount of heat discharged from the machine is kept low, it is possible to prevent hot air from staying in the kitchen or machine room, maintain a good working environment, and suppress indoor temperature rise. It can be demonstrated and its reliability can be easily enhanced.

【0013】また、周囲温度の低下等により二次空冷凝
縮器15から流出する冷媒液の温度または圧力が設定値
以下に低下して、水冷凝縮器14が冷媒を冷却する必要
がなくなった場合は、自動給水弁21が閉じるため、冷
却水の消費量を従来よりも大幅に減少させることができ
て、製氷機の稼動コストを容易に低減させることができ
る。しかも、水冷凝縮器14に冷却水が送給されず内部
に冷却水が貯留していても、水冷凝縮器14を通過する
冷媒は一次空冷凝縮器13によりすでに冷却されて、飽
和温度である約60°Cにまで降温しているので、上記
貯留水がこの温度以上に加熱されることはなく、従っ
て、水冷凝縮器14から貯留水が排出されるとき、排水
管が熱害を受けたり、排水口付近に水蒸気が発生して結
露を助長することは回避され、製氷機としての取扱いが
大層楽となる。なお、周囲温度の程度等により自動給水
弁21が開閉を繰り返すような場合においても、前記と
同様な作用効果があることはいうまでもない。
Further, when the temperature or pressure of the refrigerant liquid flowing out from the secondary air-cooled condenser 15 falls below a set value due to a decrease in ambient temperature or the like, and it becomes unnecessary for the water-cooled condenser 14 to cool the refrigerant, Since the automatic water supply valve 21 is closed, the amount of cooling water consumed can be greatly reduced as compared with the conventional case, and the operating cost of the ice maker can be easily reduced. Moreover, even if the cooling water is not supplied to the water-cooled condenser 14 and the cooling water is stored inside, the refrigerant passing through the water-cooled condenser 14 has already been cooled by the primary air-cooled condenser 13 and has a saturated temperature. Since the temperature is lowered to 60 ° C., the stored water is not heated above this temperature, and therefore, when the stored water is discharged from the water-cooled condenser 14, the drain pipe receives heat damage, It is avoided that water vapor is generated near the drainage outlet and promotes dew condensation, which makes it much easier to handle as an ice machine. Needless to say, even in the case where the automatic water supply valve 21 is repeatedly opened and closed depending on the ambient temperature and the like, the same operational effect as described above can be obtained.

【0014】また、温度条件の厳しいときに水冷凝縮器
14を稼動させることにより、一次空冷凝縮器13及び
二次空冷凝縮器15の容量を比較的小さくして凝縮器全
体の占める容積を減少させ、製氷機を小型化してその設
置に要する面積を容易に少なくすることができる。さら
に、一次空冷凝縮器13及び二次空冷凝縮器15の中間
に水冷凝縮器14を設け、必要なときに水冷凝縮器14
を稼動させているが、水冷凝縮器14の後方に二次空冷
凝縮器15が配設されてその出口で冷媒が液化するた
め、それより下流側の配管容積が図7に示す冷媒回路の
空冷凝縮器6下流側と比較して小さく、冷媒封入量が比
較的少なくてすむメリットがある。
Further, by operating the water-cooled condenser 14 under severe temperature conditions, the capacities of the primary air-cooled condenser 13 and the secondary air-cooled condenser 15 are made relatively small to reduce the volume occupied by the entire condenser. It is possible to downsize the ice making machine and easily reduce the area required for its installation. Furthermore, a water-cooled condenser 14 is provided between the primary air-cooled condenser 13 and the secondary air-cooled condenser 15, and the water-cooled condenser 14 is provided when necessary.
However, since the secondary air-cooled condenser 15 is disposed behind the water-cooled condenser 14 and the refrigerant is liquefied at its outlet, the pipe volume on the downstream side thereof is air-cooled in the refrigerant circuit shown in FIG. It is smaller than the downstream side of the condenser 6 and has the merit that the amount of refrigerant enclosed is relatively small.

【0015】なお、一次空冷凝縮器13は小容量のもの
でよいため、これを単に屈曲銅管で構成して放熱させる
ことにより、冷却空気の強制的な対流を省くことがで
き、また、図2に示すようにオイルクーラの使用を省略
して、水冷凝縮器14から流出した冷媒を二次空冷凝縮
器15へ直接導くようにしてもよく、あるいは図3のよ
うに、ドライヤ17から膨張弁18に至る管路と蒸発器
19から圧縮機11に至る管路とを接触させた熱交換部
22を設け、ドライヤ17から膨張弁18に流れる冷媒
を熱交換部22において過冷却させるようにすることも
できるものであり、さらに、自動給水弁21の開閉制御
は、圧縮機11により圧縮された冷媒ガスが前記凝縮器
により凝縮する前の温度または圧力の高低により行われ
るようにすることも可能である。
Since the primary air-cooling condenser 13 may have a small capacity, it can be constructed by simply using a bent copper tube to radiate heat, so that forced convection of cooling air can be omitted, and The use of an oil cooler may be omitted as shown in FIG. 2 and the refrigerant flowing out of the water-cooled condenser 14 may be directly guided to the secondary air-cooled condenser 15, or, as shown in FIG. A heat exchange section 22 is provided in which a pipe line reaching 18 and a pipe line extending from the evaporator 19 to the compressor 11 are in contact with each other, and the refrigerant flowing from the dryer 17 to the expansion valve 18 is subcooled in the heat exchange unit 22. Further, the opening / closing control of the automatic water supply valve 21 may be performed depending on the temperature or pressure of the refrigerant gas compressed by the compressor 11 before being condensed by the condenser. It is a function.

【0016】次に、図4に示す冷凍機の冷媒回路30
は、図1の冷媒回路10と同様の構造を有していて、上
記冷媒回路10と同等の作用効果を奏することができる
外、圧縮機11の出口側から蒸発器19の入口側に直接
連通するホットガス路31が形成され、ホットガス路3
1にホットガス弁32が設置されていて、蒸発器19の
除霜あるいは除氷を行う場合には、ファン12を停止さ
せると共に自動給水弁21を閉じてホットガス弁32を
開くことにより、圧縮機11から蒸発器19へ高温の冷
媒ガスを導いて、目的を達することができる。
Next, the refrigerant circuit 30 of the refrigerator shown in FIG.
Has a structure similar to that of the refrigerant circuit 10 of FIG. 1 and can achieve the same effect as that of the refrigerant circuit 10, and directly communicates from the outlet side of the compressor 11 to the inlet side of the evaporator 19. The hot gas passage 31 is formed, and the hot gas passage 3 is formed.
When the hot gas valve 32 is installed in No. 1 and the evaporator 19 is defrosted or deiced, the fan 12 is stopped, the automatic water supply valve 21 is closed, and the hot gas valve 32 is opened. The hot refrigerant gas can be conducted from the machine 11 to the evaporator 19 to achieve its purpose.

【0017】この冷媒回路30は、空冷凝縮器13、1
5及び水冷凝縮器14を有しているため、水冷凝縮器の
みをそなえた冷凍機の冷媒回路と比較して自動給水弁2
1の開閉設定値を高くする必要があり、冷凍運転中の高
圧側冷媒圧力が比較的高くなる結果、冷凍運転を一旦中
止してホットガス路31により蒸発器19の除霜あるい
は除氷を行うときには、蒸発器19に流れる冷媒ガスの
初期圧力が高くなるので、上記除霜あるいは除氷を迅速
に行わせることができ、製氷機においては製氷能力を容
易に向上させることができる。
This refrigerant circuit 30 includes air-cooled condensers 13 and 1
5 and the water-cooled condenser 14, the automatic water supply valve 2 is different from the refrigerant circuit of the refrigerator having only the water-cooled condenser.
It is necessary to increase the opening / closing set value of 1, and the refrigerant pressure on the high-pressure side during the refrigeration operation becomes relatively high. As a result, the refrigeration operation is temporarily stopped and the evaporator 19 is defrosted or deiced by the hot gas passage 31. At some times, the initial pressure of the refrigerant gas flowing through the evaporator 19 becomes high, so that the above defrosting or deicing can be performed quickly, and the ice making capacity of the ice making machine can be easily improved.

【0018】また、冷媒回路30は、空冷凝縮器13、
15及び水冷凝縮器14を有しているため、空冷凝縮器
のみをそなえた同冷凍能力の冷凍機における冷媒回路と
比較して空冷凝縮器を小容量とすることができるので、
周囲温度が低い場合等のように自動給水弁21を閉じて
水冷凝縮器14による冷却作用を止め、空冷凝縮器1
3、15のみにより冷媒ガスを冷却して冷凍運転をする
ときの高圧側冷媒圧力は比較的高くなり、従って、前記
の場合と同様に蒸発器19の除霜あるいは除氷を迅速に
行わせて、製氷機における製氷能力を容易に向上させる
ことができる。
The refrigerant circuit 30 includes an air-cooled condenser 13,
Since it has 15 and the water-cooled condenser 14, the air-cooled condenser can have a small capacity as compared with the refrigerant circuit in the refrigerator having the same refrigerating capacity provided with only the air-cooled condenser.
When the ambient temperature is low, the automatic water supply valve 21 is closed to stop the cooling action of the water-cooled condenser 14, and the air-cooled condenser 1
When the refrigerant gas is cooled by only 3 and 15 to perform the refrigerating operation, the high pressure side refrigerant pressure becomes relatively high. Therefore, as in the case described above, the evaporator 19 can be quickly defrosted or deiced. The ice making capacity of the ice making machine can be easily improved.

【0019】なお、ホットガス弁をそなえたホットガス
路を図2及び図3の冷媒回路にも設けることにより、冷
媒回路30と同等の作用効果を奏することができるよう
になるのはいうまでもない。また、上記各実施例におけ
る膨張弁をキャピラリーチューブ等に代え、あるいはま
た、自動給水弁を開閉制御する温度または圧力の設定値
を変えることによって、製氷能力や消費水量等を変更す
ることができ、さらに、本発明は冷却機や冷蔵庫等の冷
却装置にも同様に実施できるものである。
Needless to say, by providing a hot gas passage having a hot gas valve also in the refrigerant circuits shown in FIGS. 2 and 3, it is possible to achieve the same effects as the refrigerant circuit 30. Absent. Further, by replacing the expansion valve in each of the above embodiments with a capillary tube or the like, or by changing the set value of the temperature or pressure for controlling the opening and closing of the automatic water supply valve, it is possible to change the ice making capacity, the amount of water consumption, etc. Furthermore, the present invention can be similarly applied to a cooling device such as a refrigerator or a refrigerator.

【0020】[0020]

【発明の効果】本発明にかかる冷却装置においては、圧
縮機により圧縮された冷媒ガスが順次一次空冷凝縮器、
水冷凝縮器及び二次空冷凝縮器を通って凝縮するため、
凝縮器全体の冷却能力が増強されて装置の小型化を図る
ことができ、また、空冷凝縮器から室内に排出される熱
量は従来と比較して少なくなるので、室内の作業環境が
改善されると同時に、冷却装置自身の作動も良好となっ
てその信頼性が高められ、さらに、水冷凝縮器が休止し
ている場合においても、内部の冷却水温度が高くなるこ
とを抑制して、その排水時の障害を容易に回避すること
ができる。
In the cooling device according to the present invention, the refrigerant gas compressed by the compressor is sequentially cooled by the primary air-cooled condenser,
To condense through a water-cooled condenser and a secondary air-cooled condenser,
The cooling capacity of the entire condenser can be increased to reduce the size of the device, and the amount of heat discharged from the air-cooled condenser to the room will be smaller than in the past, improving the indoor work environment. At the same time, the operation of the cooling device itself is improved and its reliability is enhanced, and even when the water-cooled condenser is at rest, the internal cooling water temperature is prevented from rising and its drainage is suppressed. Time obstacles can be easily avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における冷媒回路図。FIG. 1 is a refrigerant circuit diagram according to an embodiment of the present invention.

【図2】本発明の他の実施例における冷媒回路図。FIG. 2 is a refrigerant circuit diagram according to another embodiment of the present invention.

【図3】本発明のさらに他の実施例における冷媒回路
図。
FIG. 3 is a refrigerant circuit diagram in still another embodiment of the present invention.

【図4】本発明のさらに他の実施例における冷媒回路
図。
FIG. 4 is a refrigerant circuit diagram in still another embodiment of the present invention.

【図5】従来装置における冷媒回路図。FIG. 5 is a refrigerant circuit diagram in a conventional device.

【図6】従来装置における冷媒回路図。FIG. 6 is a refrigerant circuit diagram in a conventional device.

【図7】従来装置における冷媒回路図。FIG. 7 is a refrigerant circuit diagram in a conventional device.

【符号の説明】[Explanation of symbols]

10 冷媒回路 11 圧縮機 13 一次空冷凝縮器 14 水冷凝縮器 15 二次空冷凝縮器 18 膨張弁 19 蒸発器 20 冷却水管路 21 自動給水弁 22 熱交換部 30 冷媒回路 31 ホットガス路 10 Refrigerant Circuit 11 Compressor 13 Primary Air Cooling Condenser 14 Water Cooling Condenser 15 Secondary Air Cooling Condenser 18 Expansion Valve 19 Evaporator 20 Cooling Water Pipeline 21 Automatic Water Supply Valve 22 Heat Exchange Section 30 Refrigerant Circuit 31 Hot Gas Path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機により圧縮された冷媒ガスが順次
小容量の一次空冷凝縮器、水冷凝縮器及び二次空冷凝縮
器を通って凝縮し、さらに膨張器及び蒸発器を経て上記
圧縮機に循環されるように構成された冷却装置。
1. A refrigerant gas compressed by a compressor is successively condensed through a small-capacity primary air-cooled condenser, a water-cooled condenser and a secondary air-cooled condenser, and further passes through an expander and an evaporator to reach the compressor. A cooling device configured to circulate.
JP5072921A 1992-09-29 1993-03-08 Cooling system Expired - Lifetime JP2709890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5072921A JP2709890B2 (en) 1992-09-29 1993-03-08 Cooling system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-284053 1992-09-29
JP28405392 1992-09-29
JP5072921A JP2709890B2 (en) 1992-09-29 1993-03-08 Cooling system

Publications (2)

Publication Number Publication Date
JPH06174320A true JPH06174320A (en) 1994-06-24
JP2709890B2 JP2709890B2 (en) 1998-02-04

Family

ID=26414058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5072921A Expired - Lifetime JP2709890B2 (en) 1992-09-29 1993-03-08 Cooling system

Country Status (1)

Country Link
JP (1) JP2709890B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060201A (en) * 2008-09-03 2010-03-18 Hoshizaki Electric Co Ltd Cooling device
WO2015059832A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger
JP2020085399A (en) * 2018-11-30 2020-06-04 株式会社フジマック Cooling unit
CN111457672A (en) * 2020-05-13 2020-07-28 中国成达工程有限公司 Method and device for condensing crude chloroethylene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163872U (en) * 1983-04-20 1984-11-02 三菱重工業株式会社 Refrigeration equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163872U (en) * 1983-04-20 1984-11-02 三菱重工業株式会社 Refrigeration equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060201A (en) * 2008-09-03 2010-03-18 Hoshizaki Electric Co Ltd Cooling device
WO2015059832A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger
US10101091B2 (en) 2013-10-25 2018-10-16 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus using the same heat exchanger
JP2020085399A (en) * 2018-11-30 2020-06-04 株式会社フジマック Cooling unit
CN111457672A (en) * 2020-05-13 2020-07-28 中国成达工程有限公司 Method and device for condensing crude chloroethylene

Also Published As

Publication number Publication date
JP2709890B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
KR20030029882A (en) Heat pump
JP6420686B2 (en) Refrigeration cycle equipment
JP5178771B2 (en) Freezer refrigerator
US5636528A (en) Cooling method and system therefor
KR20000014024A (en) Freezing cycle device for refrigerator
US5916254A (en) Method of circulating refridgerant for defrosting and refrigerator employing the same
JP2007309585A (en) Refrigerating device
JP3484131B2 (en) Freezer refrigerator
JPH10300321A (en) Cooler for freezer refrigerator and its defrosting method
JP2709890B2 (en) Cooling system
KR100208886B1 (en) Defrost structure of refrigerator
KR100293700B1 (en) Refrigeration system of refrigerator and its control method
JP2003194427A (en) Cooling device
KR20090043991A (en) Hot-line apparatus of refrigerator
JP5068340B2 (en) Freezer refrigerator
JP2008070021A (en) Refrigerator
KR100550581B1 (en) Refrigerator with a deep freezer
JP3233799B2 (en) Cooling system
WO2024127997A1 (en) Defrosting system for refrigeration device
KR101385173B1 (en) Cooling apparatus for refrigeration car
KR100394008B1 (en) Refrigerating cycle for refrigerator and method for controlling the same
KR100210055B1 (en) Defrost use refrigerant structure of refrigerator
CN218955219U (en) Condensing unit and air conditioner
KR100404192B1 (en) Refrigerating cycle of refrigerator
KR100404193B1 (en) Refrigerating cycle of refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 16

EXPY Cancellation because of completion of term