JPH0617316A - Aromatic polyamide fiber - Google Patents

Aromatic polyamide fiber

Info

Publication number
JPH0617316A
JPH0617316A JP10542593A JP10542593A JPH0617316A JP H0617316 A JPH0617316 A JP H0617316A JP 10542593 A JP10542593 A JP 10542593A JP 10542593 A JP10542593 A JP 10542593A JP H0617316 A JPH0617316 A JP H0617316A
Authority
JP
Japan
Prior art keywords
fiber
strength
denier
aromatic polyamide
light resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10542593A
Other languages
Japanese (ja)
Inventor
Osamu Makino
治 槙野
Toshitsugu Matsuki
寿嗣 松木
Toshihiro Mita
利弘 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP10542593A priority Critical patent/JPH0617316A/en
Publication of JPH0617316A publication Critical patent/JPH0617316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide a high-tenacity aromatic polyamide fiber having light resistance improved by the ultraviolet-reflecting, shielding, and absorbing actions of inorganic particles having a high refractive index. CONSTITUTION:The objective aromatic polyamide fiber having a single fiber fineness of 0.5-50de and mechanical properties satisfying the following conditions contains (at least in the surface layer of the fiber) 0.1-5wt.% (based on the fiber) of inorganic particles having refractive index of >=2.0 and an average particle diameter of <=0.3mum. Strength, >=18g/de; elongation, >=3.5%; initial modulus, >=450g/de.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐光性に優れた芳香族ポ
リアミド繊維に関する。
FIELD OF THE INVENTION The present invention relates to an aromatic polyamide fiber having excellent light resistance.

【0002】[0002]

【従来の技術】パラ配向芳香族ポリアミド繊維は優れた
力学特性により工業用繊維として各方面に用途を展開し
ているが、耐光性が必ずしも満足のいくレベルではなく
繊維を日光暴露して使用する場合に繊維物性が劣化しや
すいという問題がある。
2. Description of the Related Art Para-oriented aromatic polyamide fibers are used in various fields as industrial fibers due to their excellent mechanical properties, but their light resistance is not always at a satisfactory level, and they are exposed to sunlight for use. In this case, there is a problem that the physical properties of the fiber tend to deteriorate.

【0003】この原因は十分解明されている訳ではない
が、水の共存下で光化学反応によりアミド結合が切断し
て分解したり、アミド結合がフリース転位反応を起こす
可能性や、酸化によりラジカルを発生して分解する可能
性等が要因として考えられている。
Although the cause of this is not fully understood, there is a possibility that an amide bond is cleaved and decomposed by a photochemical reaction in the presence of water, a Fries rearrangement reaction occurs in the amide bond, and radicals are generated by oxidation. It is considered that there is a possibility that it will be generated and decomposed.

【0004】従って、産業資材等のロープやネットの場
合、表面に他の繊維や樹脂で被覆して耐光劣化を抑制す
る対策を施す必要がある。また特に極細繊維を活かした
軽量高強力スポーツ衣料用織物等へ展開するにあたり、
耐光性のよい芳香族ポリアミド繊維が望まれていた。
Therefore, in the case of ropes or nets of industrial materials, it is necessary to cover the surface with other fibers or resins to take measures to suppress light resistance deterioration. In addition, especially when developing into lightweight and high-strength textiles for sports clothing that utilize ultrafine fibers,
Aromatic polyamide fibers having good light resistance have been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は高屈折
率の無機粒子による紫外線の反射と遮閉作用及び紫外線
吸収作用等によって耐光性を改善した高強力芳香族ポリ
アミド繊維を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-strength aromatic polyamide fiber having improved light resistance due to the reflection, blocking, and absorption of ultraviolet rays of inorganic particles having a high refractive index. is there.

【0006】[0006]

【課題を解決するための手段】これまでアラミド繊維の
耐光性改善方策としては以下のようなものが提案されて
いるが、現在のところ未だ十分満足できる水準になって
いない。即ち、ベンゾトリアゾール系や置換ベンゾフェ
ノン系等の紫外線吸収剤を2〜6%繊維中に0.01μ
以上の集塊を持たぬよう均一に分散ブレンドした方法
(USP3888821号公報)では高温熱処理する工
程を経る場合に剤が熱劣化しやすいうえに剤が繊維内部
まで均一に分布するので添加効率が低いという問題があ
る。また光退色性顔料を0.02〜10%添加すること
で耐光による変色を相殺する方法(特開平2―2292
81号公報)の場合は原理的に難しく、色相が限定され
るという問題がある。アミド基をN―芳香族アシル化し
てイミド基に変性する方法(特開平2―178324号
公報)は芳香族ポリアミド溶媒に溶かした状態で塩化ベ
ンゾイル等でN―芳香族アシル化をする必要があるので
工程が長くなる。
[Means for Solving the Problems] The following measures have been proposed so far as measures for improving the light resistance of aramid fibers, but at the present time they have not been sufficiently satisfactory. That is, a benzotriazole-based or substituted benzophenone-based UV absorber is used in an amount of 0.01 μm in 2 to 6% fiber.
In the method of uniformly dispersing and blending so as not to have agglomerates (US Pat. No. 3,888,821), the agent is likely to be thermally deteriorated during the high temperature heat treatment step and the agent is evenly distributed to the inside of the fiber, resulting in low addition efficiency. There is a problem. Further, a method of canceling discoloration due to light resistance by adding 0.02 to 10% of a photobleaching pigment (JP-A-2-2292).
No. 81), it is theoretically difficult and there is a problem that the hue is limited. In the method of N-aromatic acylating an amide group to modify it into an imide group (JP-A-2-178324), it is necessary to carry out N-aromatic acylation with benzoyl chloride or the like in a state of being dissolved in an aromatic polyamide solvent. Therefore, the process becomes long.

【0007】我々は紫外線の反射及び吸収剤の効果的な
添加等による耐光性改善方策について鋭意検討した結
果、特定の無機粒子を繊維の少なくとも表層部に存在さ
せることにより繊維の機械的物性を損なう事なく耐光性
に優れたアラミド繊維を得ることができることを見出し
本発明に達した。
As a result of diligent studies on measures for improving light resistance by reflecting ultraviolet rays and effectively adding an absorber, the presence of specific inorganic particles in at least the surface layer of the fiber impairs the mechanical properties of the fiber. The present invention has been accomplished by finding that aramid fibers having excellent light resistance can be obtained without any problem.

【0008】即ち本発明は、繊維の少なくとも表層部
に、屈折率2.0以上、平均粒径0.3μ以下の無機粒
子が繊維重量の0.1%以上5%以下含有され単糸繊度
が0.5デニール以上50デニール以下であって、力学
特性が下記範囲を満足することを特徴とする芳香族ポリ
アミド繊維。 強度:18g/de以上 伸度:3.5%以上 初期モジュラス:450g/de以上である。
That is, according to the present invention, at least the surface layer portion of the fiber contains inorganic particles having a refractive index of 2.0 or more and an average particle diameter of 0.3 μ or less in an amount of 0.1% to 5% by weight of the fiber, and the single yarn fineness is An aromatic polyamide fiber having a denier of 0.5 to 50 and a mechanical property satisfying the following range. Strength: 18 g / de or more Elongation: 3.5% or more Initial modulus: 450 g / de or more.

【0009】以下本発明について詳細に説明する。本発
明が対象とする芳香族ポリアミドは繰り返し単位の80
モル%以上、好ましくは90モル%以上が下記の繰り返
し単位からなる芳香族ポリアミドまたは芳香族コポリア
ミドである。
The present invention will be described in detail below. The aromatic polyamide which is the object of the present invention has a repeating unit of 80
An aromatic polyamide or an aromatic copolyamide having the following repeating units accounts for not less than mol%, preferably not less than 90 mol%.

【0010】[0010]

【化1】 [Chemical 1]

【0011】(ここでAr1、Ar2は、下記の群から
選ばれた同一のまたは相異なる芳香族残基である。但
し、芳香族残基の水素原子はハロゲン原子または低級ア
ルキル基で置換されていても良い。)
(Here, Ar1 and Ar2 are the same or different aromatic residues selected from the following groups, provided that the hydrogen atom of the aromatic residue is substituted with a halogen atom or a lower alkyl group. May be.)

【0012】[0012]

【化2】 [Chemical 2]

【0013】Xは下記残基から選ばれる。X is selected from the following residues.

【0014】[0014]

【化3】 [Chemical 3]

【0015】かかる芳香族ポリアミド製造方法について
は、例えば英国特許第1501948号公報、米国特許
第3738964号公報、特開昭49―100522号
公報等に記載されている。
The method for producing the aromatic polyamide is described in, for example, British Patent No. 1501948, US Pat. No. 3,738,964, and Japanese Patent Laid-Open No. 49-100522.

【0016】繊維中の無機粒子の分布位置は繊維の少な
くとも表層部である。繊維の全体でもよいが表層部に集
中的に分布している方が効果的である。好ましくは繊維
半径の20%以下の表層部分、より好ましくは繊維半径
の10%以下の表層部分である。繊維表面であってもよ
い。繊維の全体すなわち繊維断面内に均一に分布してい
る場合は紫外線の反射であれ吸収であれ添加の効率が低
いので、高濃度の添加をする必要があり、この場合には
繊維物性に悪影響を及ぼさないよう無機粒子の粒子サイ
ズ微小化や粗大凝集粒子低減に細心の注意を払う必要が
ある。無機粒子の分布を実質的に繊維表層部とする方策
としては、芯鞘型複合紡糸として鞘成分に高濃度の無
機粒子をブレンドする方法や染色のように外部から無
機粒子を含浸させる方法そのほか膨潤状態にある繊維
に無機粒子を付与した後乾燥収縮させて無機粒子を表層
部にとり込む方法、静電気により繊維表面に付着させ
た後融着もしくは接着により固定する方法、高濃度に
無機粒子をブレンドした樹脂を繊維表面にコーティング
する方法等がある。
The distribution position of the inorganic particles in the fiber is at least the surface layer portion of the fiber. It may be the whole fiber, but it is more effective if it is concentrated in the surface layer. It is preferably a surface layer portion having a fiber radius of 20% or less, and more preferably a fiber layer radius of 10% or less. It may be the fiber surface. If the fiber is evenly distributed throughout the fiber, that is, in the fiber cross section, the efficiency of addition is low whether it is reflection of UV light or absorption, so it is necessary to add a high concentration, and in this case the physical properties of the fiber are adversely affected. It is necessary to pay close attention to the reduction of the particle size of the inorganic particles and the reduction of coarse agglomerated particles so as not to affect it. As a measure to make the distribution of inorganic particles substantially in the fiber surface layer, a method of blending a high concentration of inorganic particles into a sheath component as a core-sheath type composite spinning, a method of impregnating inorganic particles from the outside such as dyeing, and other swelling Inorganic particles are applied to the fibers in a state and then dried and shrunk to incorporate the inorganic particles into the surface layer, static electricity is applied to the fiber surface and then fixed by fusion or adhesion, and the inorganic particles are blended in a high concentration. There is a method of coating resin on the fiber surface.

【0017】無機粒子の屈折率は2.0以上である。一
般的に光の反射率はρ=((n2−n1)/(n2+n
1))2 、(ここでniは第i層の屈折率)で表され添
加粒子の屈折率が低いと紫外線の反射効率が低下しその
結果繊維の紫外線被爆による劣化が増大する。屈折率が
2.0以上の無機粒子としては、ルチル型酸化チタン、
アナターゼ型酸化チタン、亜鉛華、カドミウムレッド、
朱、ベンガラ、中黄鉛、カドミウムイエロー、黄酸化
鉄、クロムバーミリオン等がある。
The refractive index of the inorganic particles is 2.0 or more. Generally, the reflectance of light is ρ = ((n2-n1) / (n2 + n
1)) 2 , (where ni is the refractive index of the i-th layer) and the refractive index of the added particles is low, the reflection efficiency of ultraviolet rays decreases, and as a result, the deterioration of the fibers due to exposure to ultraviolet rays increases. As the inorganic particles having a refractive index of 2.0 or more, rutile type titanium oxide,
Anatase type titanium oxide, zinc white, cadmium red,
Red, red iron oxide, middle yellow lead, cadmium yellow, yellow iron oxide, chrome vermilion, etc.

【0018】なお上記の無機粒子と共に用途によっては
無機の紫外線吸収剤(カーボンブラック、クロム酸鉛、
酸化クロム等)、有機の紫外線吸収剤、ラジカル捕捉剤
(フェノール系酸化防止剤、リン系酸化防止剤、アミン
系酸化防止剤、ヒンダードアミン類)との併用は更に効
果的である。
In addition to the above-mentioned inorganic particles, an inorganic ultraviolet absorber (carbon black, lead chromate,
(Chromium oxide, etc.), organic UV absorbers, radical scavengers (phenolic antioxidants, phosphorus antioxidants, amine antioxidants, hindered amines) are more effective in combination.

【0019】添加すべき無機物の平均粒径は0.3μ以
下である。粒子径が大きくなると添加剤が欠陥異物とし
て作用し単糸切れによる毛羽や断糸の原因となり好まし
くない。
The average particle size of the inorganic substance to be added is 0.3 μm or less. If the particle size becomes large, the additive acts as a defective foreign matter, causing fluff or yarn breakage due to single yarn breakage, which is not preferable.

【0020】無機粒子の添加濃度は0.1%以上5%以
下である。0.1%未満では紫外線の反射や遮閉効果が
殆んどなく、5%を越えると異物としての影響が増大し
て物性が低下する。
The addition concentration of the inorganic particles is 0.1% or more and 5% or less. If it is less than 0.1%, there is almost no ultraviolet ray reflection or shielding effect, and if it exceeds 5%, the effect as foreign matter increases and the physical properties deteriorate.

【0021】繊維の単糸繊度は0.5デニール以上50
デニール以下である。0.5デニール未満の場合は添加
粒子が欠陥異物として作用し製糸性が不安定となる。又
繊維の比表面積が大きくなるので耐光劣化を受け易くそ
の結果粒子の添加量を増加させることにつながり、無機
粒子の添加がなお一層異物として悪影響を及ぼし工程調
子を乱し好ましくない。50デニールを越えると繊維の
比表面積は小さく耐光劣化を受けにくいが、製糸工程で
比表面積が小さいことで凝固が不完全になりやすく、そ
の結果水洗や延伸工程で工程調子を乱し、物性も低下し
やすい。
The single yarn fineness of the fiber is 0.5 denier or more and 50.
It is less than or equal to denier. If the denier is less than 0.5 denier, the added particles act as defective foreign matter and the spinnability becomes unstable. Further, since the specific surface area of the fiber becomes large, the fiber is liable to be deteriorated by light resistance, and as a result, the addition amount of particles is increased, and the addition of inorganic particles further adversely affects foreign matter as a foreign substance, which is not preferable. If it exceeds 50 denier, the fiber has a small specific surface area and is less susceptible to light resistance deterioration, but the small specific surface area in the yarn making process tends to cause incomplete coagulation, resulting in disturbed process conditions in the washing and drawing processes and physical properties. Easy to fall.

【0022】強度は18g/d以上である。強度は高い
程好ましいが、添加物の濃度を上げるにつれて強度は低
下の傾向があり、18g/d未満では高強度繊維として
のアラミド繊維の特徴が失われる。
The strength is 18 g / d or more. The higher the strength is, the more preferable it is, but the strength tends to decrease as the concentration of the additive is increased, and if it is less than 18 g / d, the characteristics of the aramid fiber as a high strength fiber are lost.

【0023】伸度は3.5%以上である。3.5%未満
の場合は撚糸して使用する場合に撚り歪が大きくなり、
撚糸コードの強力利用率が低下する。
The elongation is 3.5% or more. If it is less than 3.5%, twisting strain becomes large when used by twisting,
The strength utilization of the twisted cord is reduced.

【0024】初期モジュラスは450g/d以上であ
る。450g/d未満の場合は高モジュラス繊維として
の特徴がなくなる。
The initial modulus is 450 g / d or more. When it is less than 450 g / d, the characteristics as a high modulus fiber are lost.

【0025】[0025]

【実施例】以下に本発明を実施例をもって説明する。な
お製糸テストに使用したポリマー溶液(ドープ)は次の
ような溶液重合法で調製した。 ドープの調製 窒素を内部にフローしている錨形攪拌翼を有する混合槽
に水分率約20ppmのN―メチル―2―ピロリドン
(以降NMPと称す)205lを投入し、パラフェニレ
ンジアミン2764gと3,4′―ジアミノジフェニル
エーテル5114gとを精秤して投入し溶解させた。こ
のジアミン溶液にその温度が30℃、攪拌回転数が64
回/分の状態においてテレフタル酸クロライド1032
0gを精秤して投入した。溶液の温度が反応熱によって
53℃まで上昇したのち60分間加熱して85℃とし
た。85℃でさらに15分間攪拌を続けて溶液の粘度上
昇が終了したことをもって重合反応終了とした。この後
水酸化カルシウムの22.5wt%NMPスラリー1
6.8kgを投入し、20分間攪拌を続けてpH5.4
としたドープを目開き20ミクロンのフィルターで濾過
してポリマー濃度6%のポリマー溶液(以降ドープと称
す)調製を完了した。
EXAMPLES The present invention will be described below with reference to examples. The polymer solution (dope) used in the yarn making test was prepared by the following solution polymerization method. Preparation of dope 205 l of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) having a water content of about 20 ppm was put into a mixing tank having an anchor-shaped stirring blade in which nitrogen was flown, and 2764 g of paraphenylenediamine and 3, 5114 g of 4'-diaminodiphenyl ether was precisely weighed and added, and dissolved. The temperature of this diamine solution was 30 ° C. and the stirring speed was 64.
Terephthalic acid chloride 1032 at times / minute
0 g was precisely weighed and charged. The temperature of the solution rose to 53 ° C. due to the heat of reaction and was then heated for 60 minutes to 85 ° C. The polymerization reaction was terminated when the increase in the viscosity of the solution was completed by continuing stirring at 85 ° C for a further 15 minutes. After this, 22.5 wt% NMP slurry of calcium hydroxide 1
Add 6.8 kg and continue stirring for 20 minutes to reach pH 5.4.
The dope was filtered through a filter having an opening of 20 microns to complete the preparation of a polymer solution having a polymer concentration of 6% (hereinafter referred to as a dope).

【0026】[0026]

【比較例1】上記の重合法で調製したドープを使用して
以下の条件で製糸して得られた繊維の耐光性評価を行っ
た。紡糸はドライジェット紡糸方式で、ノズル形状は直
径0.3mmの丸断面、1000孔の口金を使用し、吐
出量1350g/分、ドープ温度107℃で出糸したの
ち、50℃、NMP30%水溶液中で凝固させ、紡糸速
度47m/分で凝固浴より引出した後、水洗後水和ゲル
形成無機化合物を付与後、乾燥・熱延伸を経て500m
/分で製品を巻取り1500デニールの糸を得た。この
アラミド繊維の物性は以下の通りであった。 全繊度 :1502デニール ヤーン強力:42.7kg 強度 :28.4g/d 破断伸度 :4.54% モジュラス:577g/d この試料を63度*300時間のサンシャイン耐光劣化
評価した結果、残存強力が16.8kg、維持率は39
%であった。同一試料を63度*300時間のカーボン
フェード耐光劣化評価した結果残存強力17.9kg、
維持率42%であった。
Comparative Example 1 The light resistance of a fiber obtained by spinning the dope prepared by the above polymerization method under the following conditions was evaluated. Spinning is a dry jet spinning method, the nozzle shape is a round cross section with a diameter of 0.3 mm, and a 1000-hole spinneret is used. The yarn is spun at a discharge rate of 1350 g / min and a dope temperature of 107 ° C., then at 50 ° C. in a 30% NMP aqueous solution. After coagulation with water, drawing from the coagulation bath at a spinning speed of 47 m / min, washing with water, application of a hydrated gel-forming inorganic compound, drying and heat stretching to 500 m
The product was wound at 1 / min to obtain a yarn of 1500 denier. The physical properties of this aramid fiber were as follows. Total fineness: 1502 denier Yarn strength: 42.7 kg Strength: 28.4 g / d Breaking elongation: 4.54% Modulus: 577 g / d This sample was evaluated for sunshine light resistance deterioration for 63 degrees * 300 hours, and the residual strength was found to be 16.8kg, maintenance rate is 39
%Met. As a result of evaluating the carbon fade fade resistance deterioration of the same sample at 63 degrees for 300 hours, the remaining strength is 17.9 kg,
The maintenance rate was 42%.

【0027】[0027]

【実施例1】比較例1に示す製糸方法において、水和ゲ
ル形成性無機物に屈折率が約2.7、平均粒子径0.0
2μのルチル型酸化チタンの超微粒子(シリカで表面処
理)を2%添加した水和ゲルとして水洗後の未延伸糸に
付与した後、乾燥・熱延伸を経て500m/分で製品を
巻取り1500デニールの糸を得た。このアラミド繊維
の物性は以下の通りであった。 デニール :1503デニール ヤーン強力:43.3kg 強度 :28.8g/d 破断伸度 :4.60% モジュラス:583g/d 繊維中TiO2濃度:0.25% 尚、繊維断面方向におけTiO2の分布は表層部5%以
内に実質的にあることをXMAにより確認した。この試
料を63度*300時間のサンシャイン耐光劣化評価し
た結果、残存強力が21.5kg、維持率は50%であ
った。同一試料を63度*300時間のカーボンフェー
ド耐光劣化評価した結果残存強力21.2kg、維持率
49%であった。
Example 1 In the yarn making method shown in Comparative Example 1, the hydrated gel-forming inorganic material has a refractive index of about 2.7 and an average particle diameter of 0.0.
After applying 2% of 2μ of rutile-type titanium oxide ultrafine particles (surface treatment with silica) to the undrawn yarn after washing with water, the product was dried and hot-drawn, and the product was wound up at 500 m / min 1500 I got a denier thread. The physical properties of this aramid fiber were as follows. Denier: 1503 Denier yarn Strength: 43.3 kg Strength: 28.8 g / d Elongation at break: 4.60% Modulus: 583 g / d TiO2 concentration in fiber: 0.25% The distribution of TiO2 in the fiber cross-section direction It was confirmed by XMA that the surface layer was substantially within 5%. As a result of evaluating the sunshine light resistance deterioration of this sample for 63 degrees * 300 hours, the residual strength was 21.5 kg and the maintenance rate was 50%. The same sample was evaluated for carbon fade fade resistance to light of 63 ° * 300 hours. As a result, the residual strength was 21.2 kg and the maintenance rate was 49%.

【0028】[0028]

【実施例2】比較例1対比、使用すべきドープに屈折率
が約2.7、平均粒子径0.04μのルチル型酸化チタ
ンの超微粒子(アルミナシリカで表面処理)をNMPス
ラリ−の状態でポリマー比3%添加し均一混合したドー
プを用いることのみ変更して他の条件は比較例1と同一
条件で製糸した。このアラミド繊維の物性は以下の通り
であった。 デニール :1509デニール ヤーン強力:38.8kg 強度 :25.7g/d 破断伸度 :4.43% モジュラス:571g/d 繊維中TiO2濃度:3.0% 尚、繊維断面方向におけTiO2の分布はほぼ均一であ
ることをXMAにより確認した。この試料を63度*3
00時間のサンシャイン耐光劣化評価した結果、残存強
力が18.6kg、維持率は48%であった。同一試料
を63度*300時間のカーボンフェード耐光劣化評価
した結果残存強力17.8kg、維持率46%であっ
た。
Example 2 In comparison with Comparative Example 1, ultrafine particles of rutile type titanium oxide having a refractive index of about 2.7 and an average particle size of 0.04 μ (surface-treated with alumina silica) were used as NMP slurry in the dope to be used. In the same manner as in Comparative Example 1, except that only a dope prepared by adding 3% of the polymer ratio and uniformly mixed was used, the yarn was spun. The physical properties of this aramid fiber were as follows. Denier: 1509 Denier yarn Strength: 38.8 kg Strength: 25.7 g / d Elongation at break: 4.43% Modulus: 571 g / d TiO2 concentration in fiber: 3.0% The distribution of TiO2 in the fiber cross-section direction It was confirmed by XMA that it was almost uniform. This sample is 63 degrees * 3
As a result of evaluating the sunshine light resistance deterioration for 00 hours, the residual strength was 18.6 kg and the maintenance rate was 48%. The same sample was evaluated for carbon fade fade resistance to light of 63 ° * 300 hours. As a result, the residual strength was 17.8 kg and the maintenance rate was 46%.

【0029】[0029]

【実施例3】比較例1に示す製糸方法において、水和ゲ
ル形成性無機物に屈折率が約2.7、平均粒子径0.0
5μのルチル型酸化チタンの超微粒子(酸化アルミニウ
ムで表面処理実施)の超微粒子を3%添加した水和ゲル
として水洗後の未延伸糸に付与した後、乾燥・熱延伸を
経て500m/分で製品を巻取り1500デニールの糸
を得た。このアラミド繊維の物性は以下の通りであっ
た。 デニール :1511デニール ヤーン強力:42.5kg 強度 :28.1g/d 破断伸度 :4.75% モジュラス:598g/d 繊維中TiO2濃度:0.34% 尚、繊維断面方向におけTiO2の分布は表層部5%以
内に実質的にあることをXMAにより確認した。この試
料を63度*300時間のサンシャイン耐光劣化評価し
た結果、残存強力が22.1kg、維持率は52%であ
った。同一試料を63度*300時間のカーボンフェー
ド耐光劣化評価した結果残存強力20.4kg、維持率
48%であった。
Example 3 In the yarn making method shown in Comparative Example 1, the hydrated gel-forming inorganic material has a refractive index of about 2.7 and an average particle diameter of 0.0.
5 μm of ultrafine particles of rutile type titanium oxide (surface treated with aluminum oxide) was added as 3% hydrated gel to the undrawn yarn after washing with water, followed by drying and hot drawing at 500 m / min. The product was wound to obtain 1500 denier yarn. The physical properties of this aramid fiber were as follows. Denier: 1511 Denier yarn Strength: 42.5 kg Strength: 28.1 g / d Breaking elongation: 4.75% Modulus: 598 g / d TiO2 concentration in the fiber: 0.34% The distribution of TiO2 in the fiber cross-section direction It was confirmed by XMA that the surface layer was substantially within 5%. As a result of evaluating the sunshine light resistance deterioration of this sample for 63 degrees * 300 hours, the residual strength was 22.1 kg and the maintenance rate was 52%. The same sample was evaluated for carbon fade fade resistance deterioration of 63 ° * 300 hours. As a result, the residual strength was 20.4 kg and the maintenance rate was 48%.

【0030】[0030]

【実施例4】実施例2対比、使用すべきドープに1次粒
子径60mμのカーボンブラックを、ポリマー比1.5
%添加し均一混合したドープを用いることのみ変更して
他の条件は実施例3と同一とした。得られたアラミド繊
維の物性は以下の通りであった。デニール :1531
デニール ヤーン強力:38.0kg 強度 :24.8g/d 破断伸度 :4.30% モジュラス:584g/d 繊維中TiO2濃度:0.18% 尚、繊維断面方向におけTiO2の分布は表層部5%以
内に実質的にあることをXMAにより確認した。カーボ
ン粒子の分布は透過電子顕微鏡により繊維中に均一に分
布していることを確認した。この試料を63度*300
時間のサンシャイン耐光劣化評価した結果、残存強力が
30.0kg、維持率は79%であった。同一試料を6
3度*300時間のカーボンフェード耐光劣化評価した
結果残存強力27.0kg、維持率71%であった。
EXAMPLE 4 In contrast to Example 2, the dope to be used was carbon black having a primary particle size of 60 mμ and a polymer ratio of 1.5.
%, And the other conditions were the same as in Example 3 except that only the dope was added and uniformly mixed. The physical properties of the obtained aramid fiber were as follows. Denier: 1531
Denier yarn Tensile strength: 38.0 kg Strength: 24.8 g / d Elongation at break: 4.30% Modulus: 584 g / d TiO2 concentration in fiber: 0.18% The distribution of TiO2 in the fiber cross-section direction is the surface layer 5 It was confirmed by XMA that it was substantially within%. It was confirmed by a transmission electron microscope that the carbon particles were uniformly distributed in the fiber. This sample is 63 degrees * 300
As a result of evaluating the sunshine light resistance deterioration of time, the residual strength was 30.0 kg and the maintenance rate was 79%. 6 same samples
As a result of evaluating the carbon fade fade light resistance deterioration at 3 degrees * 300 hours, the residual strength was 27.0 kg and the maintenance rate was 71%.

【0031】[0031]

【実施例5】実施例4対比、製品仕上げ油剤にヒンダー
ドアミン(チバガイギー社、CHIMASSORB94
4)を2%添加した仕上げ油剤として他の条件は実施例
3と同一とした。得られたアラミド繊維の物性は以下の
通りであった。 デニール :1506デニール ヤーン強力:34.9kg 強度 :23.2g/d 破断伸度 :3.98% モジュラス:584g/d 繊維中TiO2濃度:0.14% 尚、繊維断面方向におけTiO2の分布は表層部5%以
内に実質的にあることをXMAにより確認した。カーボ
ン粒子の分布は透過電子顕微鏡により繊維中に均一に分
布していることを確認した。この試料を63度*300
時間のサンシャイン耐光劣化評価した結果、残存強力が
28.3kg、維持率は81%であった。同一試料を6
3度*300時間のカーボンフェード耐光劣化評価した
結果残存強力24.4kg、維持率70%であった。
[Example 5] In contrast to Example 4, a hindered amine (CHIMAGESO, CHIMASSORB94) was used as a product finishing oil.
Other conditions were the same as in Example 3 as a finishing oil agent containing 4% of 4) added. The physical properties of the obtained aramid fiber were as follows. Denier: 1506 Denier yarn Strength: 34.9 kg Strength: 23.2 g / d Elongation at break: 3.98% Modulus: 584 g / d TiO2 concentration in fiber: 0.14% The distribution of TiO2 in the fiber cross-section direction It was confirmed by XMA that the surface layer was substantially within 5%. It was confirmed by a transmission electron microscope that the carbon particles were uniformly distributed in the fiber. This sample is 63 degrees * 300
As a result of evaluating the sunshine light resistance deterioration of time, the residual strength was 28.3 kg and the maintenance rate was 81%. 6 same samples
As a result of carbon fade fade resistance deterioration evaluation of 3 times * 300 hours, the remaining strength was 24.4 kg and the maintenance rate was 70%.

【0032】[0032]

【実施例6】実施例5対比、製品仕上げ油剤にベンゾト
リアゾール系紫外線吸収剤(チバガイギー社、TINU
VIN213)を2%添加した仕上げ油剤として他の条
件は実施例3と同一とした。得られたアラミド繊維の物
性は以下の通りであった。 デニール :1548デニール ヤーン強力:39.3kg 強度 :25.4g/d 破断伸度 :4.39% モジュラス:564g/d 繊維中TiO2濃度:0.20% 尚、繊維断面方向におけTiO2の分布は表層部5%以
内に実質的にあることをXMAにより確認した。カーボ
ン粒子の分布は透過電子顕微鏡により繊維中に均一に分
布していることを確認した。この試料を63度*300
時間のサンシャイン耐光劣化評価した結果、残存強力が
31.0kg、維持率は79%であった。同一試料を6
3度*300時間のカーボンフェード耐光劣化評価した
結果残存強力28.7kg、維持率73%であった。
[Example 6] In contrast to Example 5, a benzotriazole-based UV absorber (Ciba Geigy Co., Ltd., TINU) was used as a product finishing oil agent.
Other conditions were the same as in Example 3 as the finishing oil agent containing 2% of VIN213). The physical properties of the obtained aramid fiber were as follows. Denier: 1548 Denier yarn Strength: 39.3 kg Strength: 25.4 g / d Elongation at break: 4.39% Modulus: 564 g / d TiO2 concentration in fiber: 0.20% The distribution of TiO2 in the fiber cross-section direction It was confirmed by XMA that the surface layer was substantially within 5%. It was confirmed by a transmission electron microscope that the carbon particles were uniformly distributed in the fiber. This sample is 63 degrees * 300
As a result of evaluating the sunshine light resistance deterioration of time, the residual strength was 31.0 kg and the maintenance rate was 79%. 6 same samples
As a result of evaluating the carbon fade light resistance deterioration of 3 degrees * 300 hours, the residual strength was 28.7 kg and the maintenance rate was 73%.

【0033】[0033]

【比較例2】実施例2に示す製糸方法において、使用す
るドープへの添加剤を屈折率が約1.6、平均粒子径
0.7μのシリカを2%とし、他の条件は同一として製
糸した。得られたアラミド繊維の物性は以下の通りであ
った。 デニール :1503デニール ヤーン強力:32.3kg 強度 :21.5g/d 破断伸度 :4.10% モジュラス:523g/d 繊維中TiO2濃度:0.35% 尚、繊維断面方向におけTiO2の分布は繊維断面内に
実質的に均一に分布していることをXMAにより確認し
た。この試料を63度*300時間のサンシャイン耐光
劣化評価した結果、残存強力が13.2kg、維持率は
41%であった。同一試料を63度*300時間のカー
ボンフェード耐光劣化評価した結果残存強力12.9k
g、維持率40%であった。
[Comparative Example 2] In the yarn making method shown in Example 2, the additive to the dope used was a silica having a refractive index of about 1.6 and an average particle diameter of 0.7μ was 2%, and the other conditions were the same. did. The physical properties of the obtained aramid fiber were as follows. Denier: 1503 Denier yarn Strength: 32.3 kg Strength: 21.5 g / d Breaking elongation: 4.10% Modulus: 523 g / d TiO2 concentration in fiber: 0.35% The distribution of TiO2 in the fiber cross-section direction It was confirmed by XMA that it was distributed substantially uniformly in the fiber cross section. As a result of evaluating the sunshine light resistance deterioration of this sample for 63 degrees * 300 hours, the residual strength was 13.2 kg and the maintenance rate was 41%. As a result of evaluating the carbon fade fade resistance deterioration of the same sample at 63 degrees for 300 hours, the remaining strength is 12.9k.
and the maintenance rate was 40%.

【0034】[0034]

【比較例3】実施例1に示す製糸方法において、水和ゲ
ル形成性無機物に屈折率が約2.5、平均粒子径0.5
μのアナターゼ型TiO2を2%添加した水和ゲルとし
て水洗後の未延伸糸に付与した後、乾燥・熱延伸を経て
500m/分で製品を巻取り1500デニールの糸を得
た。このアラミド繊維の物性は以下の通りであった。 デニール :1503デニール ヤーン強力:36.8kg 強度 :24.5g/d 破断伸度 :4.65% モジュラス:573g/d 繊維中TiO2濃度:0.34% 尚、繊維断面方向におけTiO2の分布は表層部5%以
内に実質的にあることをXMAにより確認した。この試
料を63度*300時間のサンシャイン耐光劣化評価し
た結果、残存強力が13.2kg、維持率は36%であ
った。同一試料を63度*300時間のカーボンフェー
ド耐光劣化評価した結果残存強力13.6kg、維持率
37%であった。
Comparative Example 3 In the yarn making method shown in Example 1, the hydrated gel-forming inorganic material has a refractive index of about 2.5 and an average particle diameter of 0.5.
A hydrated gel containing 2% of anatase-type TiO2 was applied to the undrawn yarn after washing with water, dried and hot drawn, and the product was wound at 500 m / min to obtain a yarn of 1500 denier. The physical properties of this aramid fiber were as follows. Denier: 1503 Denier yarn Strength: 36.8 kg Strength: 24.5 g / d Elongation at break: 4.65% Modulus: 573 g / d TiO2 concentration in fiber: 0.34% The distribution of TiO2 in the fiber cross-section direction is It was confirmed by XMA that the surface layer was substantially within 5%. As a result of evaluating the sunshine light resistance deterioration of this sample for 63 degrees * 300 hours, the residual strength was 13.2 kg and the maintenance rate was 36%. The same sample was evaluated for carbon fade fade resistance deterioration of 63 degrees * 300 hours, and as a result, the residual strength was 13.6 kg and the maintenance rate was 37%.

【0035】[0035]

【発明の効果】以上のように、本発明によれば繊維物性
を低下することなく耐光性に優れたアラミド繊維を得る
ことができる。
As described above, according to the present invention, it is possible to obtain an aramid fiber having excellent light resistance without deteriorating the physical properties of the fiber.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月20日[Submission date] May 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】[0033]

【比較例2】実施例2に示す製糸方法において、使用す
るドープへの添加剤を屈折率が約1.6、平均粒子径
0.7μのシリカを2%とし、他の条件は同一として製
糸した。得られたアラミド繊維の物性は以下の通りであ
った。 デニール :1503デニール ヤーン強力:32.3kg 強度 :21.5g/d 破断伸度 :4.10% モジュラス:523g/d 繊維中SiO2 濃度:0.35% 尚、繊維断面方向におけSiO2 の分布は繊維断面内に
実質的に均一に分布していることをXMAにより確認し
た。この試料を63度*300時間のサンシャイン耐光
劣化評価した結果、残存強力が13.2kg、維持率は
41%であった。同一試料を63度*300時間のカー
ボンフェード耐光劣化評価した結果残存強力12.9k
g、維持率40%であった。
[Comparative Example 2] In the yarn making method shown in Example 2, the additive to the dope used was a silica having a refractive index of about 1.6 and an average particle diameter of 0.7μ was 2%, and the other conditions were the same. did. The physical properties of the obtained aramid fiber were as follows. Denier: 1503 denier yarn strong: 32.3Kg Strength: 21.5 g / d elongation at break 4.10% modulus: 523 g / d fibers in SiO 2 concentration: 0.35% In addition, the SiO 2 put in the fiber cross-sectional direction It was confirmed by XMA that the distribution was substantially uniform within the fiber cross section. As a result of evaluating the sunshine light resistance deterioration of this sample for 63 degrees * 300 hours, the residual strength was 13.2 kg and the maintenance rate was 41%. As a result of evaluating the carbon fade fade resistance deterioration of the same sample at 63 degrees for 300 hours, the remaining strength is 12.9k.
and the maintenance rate was 40%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繊維の少なくとも表層部に、屈折率2.
0以上、平均粒径0.3μ以下の無機粒子が繊維重量の
0.1%以上5%以下含有され単糸繊度が0.5デニー
ル以上50デニール以下であって、力学特性が下記範囲
を満足することを特徴とする芳香族ポリアミド繊維。 強度:18g/de以上 伸度:3.5%以上 初期モジュラス:450g/de以上
1. A refractive index of 2. at least on the surface layer of the fiber.
Inorganic particles having an average particle size of 0 or more and 0.3 μ or less are contained in an amount of 0.1% or more and 5% or less of the fiber weight, the single yarn fineness is 0.5 denier or more and 50 denier or less, and the mechanical properties satisfy the following range. An aromatic polyamide fiber characterized by being. Strength: 18g / de or more Elongation: 3.5% or more Initial modulus: 450g / de or more
JP10542593A 1992-05-07 1993-05-06 Aromatic polyamide fiber Pending JPH0617316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10542593A JPH0617316A (en) 1992-05-07 1993-05-06 Aromatic polyamide fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-114812 1992-05-07
JP11481292 1992-05-07
JP10542593A JPH0617316A (en) 1992-05-07 1993-05-06 Aromatic polyamide fiber

Publications (1)

Publication Number Publication Date
JPH0617316A true JPH0617316A (en) 1994-01-25

Family

ID=26445712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10542593A Pending JPH0617316A (en) 1992-05-07 1993-05-06 Aromatic polyamide fiber

Country Status (1)

Country Link
JP (1) JPH0617316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156802A (en) * 2006-12-26 2008-07-10 Teijin Techno Products Ltd High-strength rope
JP2013515768A (en) * 2009-12-29 2013-05-09 コーロン インダストリーズ インク Aromatic diamine and method for producing the same, aramid fiber and method for producing the same
JP2014194126A (en) * 2013-03-28 2014-10-09 Nbc Meshtec Inc Insect screen
KR20190044086A (en) * 2016-09-01 2019-04-29 이 아이 듀폰 디 네모아 앤드 캄파니 Carbon-containing mode Two-component filament yarn of acrylic and aramid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156802A (en) * 2006-12-26 2008-07-10 Teijin Techno Products Ltd High-strength rope
JP2013515768A (en) * 2009-12-29 2013-05-09 コーロン インダストリーズ インク Aromatic diamine and method for producing the same, aramid fiber and method for producing the same
JP2014194126A (en) * 2013-03-28 2014-10-09 Nbc Meshtec Inc Insect screen
KR20190044086A (en) * 2016-09-01 2019-04-29 이 아이 듀폰 디 네모아 앤드 캄파니 Carbon-containing mode Two-component filament yarn of acrylic and aramid

Similar Documents

Publication Publication Date Title
US4374977A (en) Poly-p-phenylene-terephthalamide fibers excellent in fatigue resistance and process for preparation thereof
CA1170011A (en) High-modulus polyacrylonitrile filaments and fibers and a process for their production
JP2018012910A (en) Polyarylene sulfide fibers and composites including fibers
US2754223A (en) Coated glass fiber and method of making
WO1986007393A1 (en) Tire cord made of polyvinyl alcohol
DE3009407A1 (en) FIBERS CONSISTING OF POLY-P-PHENYLENE-TEREPHTHALAMIDE WITH A HIGH YOUNG MODULE AND METHOD FOR THE PRODUCTION THEREOF
JP2007056392A (en) Flame retardant polyamide fiber and flame retardant fabric
DE19613965A1 (en) Low shrinkage hybrid yarns, process for their production and their use
JP3020750B2 (en) Aromatic polyamide fiber
JPH0617316A (en) Aromatic polyamide fiber
EP0568912B1 (en) Aromatic polyamide filament having an enhanced weathering resistance
CN110637114A (en) High-penetration-prevention core sheath composite fiber and fabric
KR101479801B1 (en) Aramid Rope
JP7028682B2 (en) Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber.
JP3379142B2 (en) Nylon 66 rubber reinforcement cord
JP4660014B2 (en) rope
JPS60185833A (en) Polyester fiber dip code for reinforcing rubber
JP3291812B2 (en) High strength polyhexamethylene adipamide fiber
KR930003221B1 (en) Producing method of high-density polyester fiber
JP3563160B2 (en) Longline
EP3626868A1 (en) Liquid crystalline polyester fiber and method for producing same
JP7239382B2 (en) Easy-dyeable meta-type wholly aromatic polyamide fiber and method for producing the same
JP2022014632A (en) Meta-type wholly aromatic polyamide fiber and manufacturing method thereof
JP2007077538A (en) Aromatic polyamide fiber
CN1104460C (en) Poly(p-phenylene terephthalamide) articles of high flame strength