JPH06172951A - Production of heat resistant thin leaf spring - Google Patents

Production of heat resistant thin leaf spring

Info

Publication number
JPH06172951A
JPH06172951A JP35179892A JP35179892A JPH06172951A JP H06172951 A JPH06172951 A JP H06172951A JP 35179892 A JP35179892 A JP 35179892A JP 35179892 A JP35179892 A JP 35179892A JP H06172951 A JPH06172951 A JP H06172951A
Authority
JP
Japan
Prior art keywords
leaf spring
thin leaf
heat
resistant thin
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35179892A
Other languages
Japanese (ja)
Inventor
Hitoshi Kinugawa
仁志 衣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP35179892A priority Critical patent/JPH06172951A/en
Publication of JPH06172951A publication Critical patent/JPH06172951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PURPOSE:To produce a heat resistant thin leaf spring excellent in yielding resistance with good productivity by subjecting high Ni-Cr heat resistant steel having a specified compsn. to solution treatment to form its shape into a thin leaf spring one and thereafter executing aging treatment under specified conditions. CONSTITUTION:An Ni-contg. heat resistant alloy material having a compsn. contg., by weight, <0.08% C, <0.35% Mn, <0.35% Si, 17.00 to 21.00% Cr, 50.00 to 55.00% Ni, 2.80 to 3.30% Mo, 4.75 to 5.50% Nb+Ta, 0.65 to 1.15% Ti and 0.20 to 0.80% Al, and the balance Fe is subjected to solution treatment in such a manner that it is held under heating to 900 to 1200 deg.C to form its shape into a thin leaf spring one, and after that, aging treatment is executed in such a manner that it is held under heating at 700 to 760 deg.C for 2 to 5hr. The heat resistant thin leaf spring excellent in yielding resistance in the case of use at a high temp. of <=600 deg.C can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、インコネル718に相
当するニツケル含有耐熱材料によつて耐熱薄板ばねを製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat-resistant thin leaf spring from a nickel-containing heat-resistant material corresponding to Inconel 718.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】】0.
08%以下のC、0.35%以下のMn、0.35%以下
のSi、17.00〜21.00%のCr、50.00〜5
5.00%のNi、2.80〜3.30%のMo、4.75〜
5.50%のNb+Ta、0.65〜1.15%のTi、0.2
0〜0.80%のAl及び残りのFeを成分としたインコ
ネル718に相当するニツケル含有耐熱材料によつて耐
熱薄板ばねを製造する手段としては、従来より、ニツケ
ル含有耐熱材料を溶体化処理して薄板ばね形状に成形し
た後に時効処理するという方法が採られており、かかる
製造方法においては、時効処理を行うことによつて薄板
ばねの耐へたり性を向上させるようになつている。
2. Prior Art and Problems to be Solved by the Invention
08% or less C, 0.35% or less Mn, 0.35% or less Si, 17.00 to 21.00% Cr, 50.00 to 5
5.00% Ni, 2.80-3.30% Mo, 4.75-
5.50% Nb + Ta, 0.65 to 1.15% Ti, 0.2
As a means for producing a heat-resistant thin leaf spring using a nickel-containing heat-resistant material corresponding to Inconel 718 containing 0 to 0.80% Al and the remaining Fe, the solution containing nickel-containing heat-resistant material has been conventionally used. In this manufacturing method, the sag resistance of the thin leaf spring is improved by performing the aging treatment.

【0003】その時効処理の標準的な条件として、従来
は、720℃の温度で8時間加熱保持した後に、2時間
炉冷して温度を620℃まで下げ、さらに、620℃の
温度で8時間加熱保持するようになつていた。
As a standard condition for the aging treatment, conventionally, heating and holding at a temperature of 720 ° C. for 8 hours, then furnace cooling for 2 hours to lower the temperature to 620 ° C., and further for 8 hours at a temperature of 620 ° C. It was supposed to be kept heated.

【0004】しかしながら、この従来の時効処理条件
は、製造される耐熱薄板ばねが主に航空機や原子力装置
の部品のように極めて高い温度に曝される状態で使用さ
れることを前提に設定したものである。
However, the conventional aging treatment conditions are set on the assumption that the heat-resistant thin leaf springs to be manufactured are used in a state where they are mainly exposed to extremely high temperatures such as parts of aircrafts and nuclear power plants. Is.

【0005】このため、航空機や原子力装置における使
用温度よりも低い600℃以下で使用するための耐熱薄
板ばねを製造する場合には、耐へたり性及び生産性の点
を考慮すると、従来の標準的な時効処理が必ずしも最良
とは言えない。
Therefore, when manufacturing a heat-resistant thin leaf spring for use at 600 ° C. or lower, which is lower than the operating temperature in an aircraft or a nuclear power plant, considering the sag resistance and productivity, the conventional standard is used. Aging treatment is not always the best.

【0006】本発明は、上記事情に鑑みて創案されたも
のであり、生産性に優れ、かつ、製造される耐熱薄板ば
ねに600℃以下の温度での使用において十分な耐へた
り性をもたせることのできる製造方法を提供することを
目的とする。
The present invention has been devised in view of the above circumstances, and is excellent in productivity, and the manufactured heat-resistant thin leaf spring has sufficient sag resistance when used at a temperature of 600 ° C. or lower. It is an object of the present invention to provide a manufacturing method capable of producing the same.

【0007】[0007]

【課題を解決するための手段】本発明の耐熱薄板ばねの
製造方法は、上記課題を解決するための手段として、
0.08%以下のC、0.35%以下のMn、0.35%以
下のSi、17.00〜21.00%のCr、50.00〜
55.00%のNi、2.80〜3.30%のMo、4.75
〜5.50%のNb+Ta、0.65〜1.15%のTi、0.
20〜0.80%のAl及び残りのFeを成分としたニツ
ケル含有耐熱材料を、溶体化処理して薄板ばね形状に成
形した後、700〜760℃の温度で2〜5時間加熱保
持する条件で時効処理する構成とした。
A method for manufacturing a heat-resistant thin leaf spring according to the present invention comprises means for solving the above-mentioned problems.
0.08% or less C, 0.35% or less Mn, 0.35% or less Si, 17.00 to 21.00% Cr, 50.00 to 50%
55.00% Ni, 2.80 to 3.30% Mo, 4.75
˜5.50% Nb + Ta, 0.65˜1.15% Ti, 0.1.
A condition in which a nickel-containing heat-resistant material containing 20 to 0.80% Al and the remaining Fe as components is subjected to solution treatment to form a thin leaf spring, and then heated and held at a temperature of 700 to 760 ° C. for 2 to 5 hours. It is configured to be aged in.

【0008】[0008]

【作用】本発明の製造方法は上記構成になり、18時間
を要する標準的な時効処理を行う従来の製造方法と比較
すると、時効処理に要する時間は短い。
The manufacturing method of the present invention has the above-mentioned structure, and the time required for the aging treatment is shorter than that of the conventional manufacturing method in which the standard aging treatment requires 18 hours.

【0009】また、製造した耐熱薄板ばねの耐へたり性
については、燃焼制御センサにおいてセラミツク製のセ
ンサ棒に弾縮力によつて外嵌される略C字形断面の薄板
ばね状のホルダとそのホルダから突出する細長い端子と
を一体に成形した形状をなす耐熱薄板ばねを本発明方法
と従来方法とにより製造して、600℃以下の一定の条
件下で負荷を与えたときにおける両者のホルダの径変化
率を比較する試験を行つたところ、本発明方法によつて
製造した耐熱薄板ばねの方が従来方法によつて製造した
耐熱薄板ばねに比べて径変化率が小さく、耐へたり性が
優れているという結果が得られた。
As for the sag resistance of the manufactured heat-resistant thin leaf spring, a holder having a substantially C-shaped cross-section and a thin leaf spring-like holder which is externally fitted to a ceramic sensor rod in a combustion control sensor by elastic force is provided. A heat-resistant thin leaf spring having a shape in which elongated terminals projecting from the holder are integrally molded is manufactured by the method of the present invention and the conventional method, and both holders are subjected to a load under a constant condition of 600 ° C. or less. When a test was performed to compare the rate of change in diameter, the heat-resistant thin leaf spring produced by the method of the present invention had a smaller rate of change in diameter than the heat-resistant thin leaf springs produced by the conventional method, and was resistant to sagging. The result was excellent.

【0010】[0010]

【実施例】以下、本発明を燃焼制御センサの部品として
用いられる耐熱薄板ばねの製造に適用した実施例を添付
図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to manufacture of a heat-resistant thin leaf spring used as a component of a combustion control sensor will be described below with reference to the accompanying drawings.

【0011】本実施例方法によつて製造される耐熱薄板
ばね1を用いる燃焼制御センサAは、図示しない自動車
のエンジンへの O2の吸入量を調節して燃焼効率を向上
させるために燃焼ガス中の O2濃度の検出を行うもので
あつて、図4に示すように、セラミツク製のセンサ棒B
に2つの耐熱薄板ばね1、1を取り付けるとともに各耐
熱薄板ばね1をリード線Cを介して図示しない制御装置
に接続した構成になる。
The combustion control sensor A using the heat-resistant thin leaf spring 1 manufactured by the method of this embodiment adjusts the amount of O 2 sucked into the engine of an automobile (not shown) to improve combustion efficiency. As shown in FIG. 4, a sensor rod B made of ceramic is used to detect the O 2 concentration in the inside.
Two heat-resistant thin leaf springs 1 and 1 are attached to each of the heat-resistant thin leaf springs 1, and each heat-resistant thin leaf spring 1 is connected to a control device (not shown) via a lead wire C.

【0012】かかる燃焼制御センサAに用いる耐熱薄板
ばね1は、センサ棒Bの外径よりも内径寸法の小さい略
C字形に回曲した薄板ばね状をなすホルダ2と、ホルダ
2から突出してリード線Cが接続される細長い端子3と
を一体に成形した形状をなしており、ホルダ2をその弾
縮力によつてセンサ棒Bに外嵌させることにより端子3
がセンサ棒Bと平行をなすように取り付けられるように
なつている。
The heat-resistant thin leaf spring 1 used in the combustion control sensor A has a holder 2 in the shape of a thin leaf spring which is bent into a substantially C-shape having an inner diameter smaller than the outer diameter of the sensor rod B, and a lead protruding from the holder 2. The elongated terminal 3 to which the wire C is connected is integrally molded, and the terminal 3 is fitted to the sensor rod B by its elastic force.
Is attached so as to be parallel to the sensor rod B.

【0013】かかる耐熱薄板ばね1の製造は、0.08
%以下のC、0.35%以下のMn、0.35%以下のS
i、17.00〜21.00%のCr、50.00〜55.0
0%のNi、2.80〜3.30%のMo、4.75〜5.5
0%のNb+Ta、0.65〜1.15%のTi、0.20〜
0.80%のAl及び残りのFeを成分としたインコネル
718に相当するニツケル含有耐熱材料を、900〜1
200℃で加熱保持することにより溶体化処理して上記
の薄板ばね形状に成形した後に、後述する条件で時効処
理を施すという手順で行われる。
The heat-resistant thin leaf spring 1 is manufactured by 0.08.
% C or less, 0.35% or less Mn, 0.35% or less S
i, 17.0 to 21.00% Cr, 50.00 to 55.0
0% Ni, 2.80-3.30% Mo, 4.75-5.5
0% Nb + Ta, 0.65 to 1.15% Ti, 0.20 to
A nickel-containing heat-resistant material corresponding to Inconel 718 containing 0.80% Al and the remaining Fe was used as 900-1.
The solution treatment is performed by heating and holding at 200 ° C. to form the thin leaf spring shape, and then the aging treatment is performed under the conditions described below.

【0014】本実施例方法における時効処理の条件は次
の要領で設定した。まず、時効処理の温度を720℃に
仮設定し、その仮設定温度で時間を変えて時効処理を行
うことにより複数の耐熱薄板ばね1を製造し、各耐熱薄
板ばね1について、夫々、センサ棒Bに外嵌したホルダ
2に600℃の温度で200時間にわたつて185kgf
/mm2の負荷をかける試験を行い、センサ棒Bから外し
た自由状態におけるホルダ2の試験前の径寸法に対する
試験後の径寸法の変化率を調べた。
The conditions of the aging treatment in the method of this embodiment were set as follows. First, a plurality of heat-resistant thin leaf springs 1 are manufactured by temporarily setting the temperature of the aging treatment to 720 ° C. and performing the aging treatment by changing the time at the temporarily set temperature. 185 kgf for 200 hours at the temperature of 600 ℃ in the holder 2 fitted on B
A test of applying a load of / mm 2 was performed, and the change rate of the diameter dimension after the test with respect to the diameter dimension before the test of the holder 2 in the free state removed from the sensor rod B was examined.

【0015】その結果は、各時効時間における径変化率
をあらわす図2のグラフに示すとおりである。これによ
り、生産性及び耐へたり性を考慮すると、径変化率が小
さくて時間が比較的短い2〜5時間を時効時間として設
定するのが好適であり、特に最適な時効時間は5時間で
あるということが明らかになつた。
The results are shown in the graph of FIG. 2 showing the diameter change rate at each aging time. Therefore, in consideration of productivity and sag resistance, it is preferable to set the aging time to 2 to 5 hours when the rate of diameter change is small and the time is relatively short, and the optimum aging time is 5 hours. It became clear that there was.

【0016】次に、時効処理を行う時間を5時間に設定
し、温度を変えて時効処理を行うことにより複数の耐熱
薄板ばね1を製造し、各耐熱薄板ばね1について、夫
々、センサ棒Bに外嵌したホルダ2に600℃の温度で
200時間にわたつて185kgf/mm2の負荷をかける試
験を行い、センサ棒Bから外した自由状態におけるホル
ダ2の試験前の径寸法に対する試験後の径寸法の変化率
を調べた。
Next, the aging treatment time is set to 5 hours, and a plurality of heat-resistant thin leaf springs 1 are manufactured by changing the temperature and performing the aging treatment. A test of applying a load of 185 kgf / mm 2 to the holder 2 externally fitted to the holder at a temperature of 600 ° C. for 200 hours was performed. The rate of change in diameter was investigated.

【0017】その結果は、各時効温度における径変化率
をあらわす図3のグラフに示すとおりである。これによ
り、時効温度を700〜760℃とした場合の径変化率
が、従来の標準的時効処理を行つた耐熱薄板ばねについ
て上記と同じ条件で試験を行つたときの径変化率の値と
同じかそれ以下の値となることから、この700〜76
0℃を時効温度とするのが好適であり、特に最適な時効
温度は、径変化率が最も低い720℃であるということ
が明らかになつた。
The results are shown in the graph of FIG. 3 showing the diameter change rate at each aging temperature. As a result, the diameter change rate when the aging temperature was 700 to 760 ° C. was the same as the value of the diameter change rate when the conventional heat-resistant thin leaf spring subjected to the standard aging treatment was tested under the same conditions as above. Since the value will be less than or equal to this, this 700-76
It was found that 0 ° C. is preferable as the aging temperature, and the most suitable aging temperature is 720 ° C., which has the lowest rate of change in diameter.

【0018】以上の手順により、時効処理の条件とし
て、2〜5時間の時効時間と700〜760℃の時効温
度が得られた。そして、本実施例においては、720℃
の温度で5時間加熱保持するという条件で時効処理を行
うこととした。
By the above procedure, an aging time of 2 to 5 hours and an aging temperature of 700 to 760 ° C. were obtained as conditions for the aging treatment. And in this embodiment, 720 ° C.
It was decided to perform the aging treatment under the condition of heating and holding at the temperature of 5 hours.

【0019】本実施例方法における時効処理工程は、図
1(a)のグラフに示すように、従来の製造方法におい
て18時間をかけて行う標準的な時効処理工程と比較す
ると、時効処理に要する時間が短くなつており、生産性
に優れている。
As shown in the graph of FIG. 1A, the aging treatment step in the method of this embodiment requires aging treatment as compared with the standard aging treatment step which takes 18 hours in the conventional manufacturing method. Time is getting shorter and productivity is excellent.

【0020】また、上記条件で時効処理した本実施例の
耐熱薄板ばね1の耐へたり性については、従来方法で製
造した耐熱薄板ばねと比較するため、両方の耐熱薄板ば
ねについて、夫々、センサ棒Bに外嵌したホルダ2に5
00℃の温度と600℃の温度で200時間にわたつて
185kgf/mm2の負荷をかける試験を行い、センサ棒B
から外した自由状態におけるホルダ2の試験前の径寸法
に対する試験後の径寸法の変化率を調べた。
Further, the sag resistance of the heat-resistant thin leaf springs 1 of the present embodiment subjected to the aging treatment under the above conditions is compared with that of the heat-resistant thin leaf springs manufactured by the conventional method. 5 in the holder 2 fitted on the rod B
A test was conducted by applying a load of 185 kgf / mm 2 for 200 hours at a temperature of 00 ° C and 600 ° C.
The rate of change of the diameter dimension after the test with respect to the diameter dimension before the test of the holder 2 in the free state removed from the above was investigated.

【0021】その結果は、500℃と600℃の各試験
温度における径変化率をあらわす図1(b)のグラフに
示すとおりである。すなわち、本実施例方法によつて製
造した耐熱薄板ばね1の径変化率は従来方法によつて製
造した耐熱薄板ばねの径変化率よりも小さく、600℃
以下の温度で使用する場合における耐へたり性について
は、本実施例方法による耐熱薄板ばね1の方が従来方法
による耐熱薄板ばねよりも優れていることが明らかにな
つた。
The results are shown in the graph of FIG. 1 (b) showing the rate of diameter change at each test temperature of 500 ° C. and 600 ° C. That is, the diameter change rate of the heat-resistant thin leaf spring 1 manufactured by the method of this example is smaller than the diameter change rate of the heat-resistant thin leaf spring manufactured by the conventional method, and is 600 ° C.
With respect to the sag resistance when used at the following temperatures, it was revealed that the heat-resistant thin leaf spring 1 according to the method of this example is superior to the heat-resistant thin leaf spring according to the conventional method.

【0022】[0022]

【発明の効果】上記実施例において具体的に説明したよ
うに、本発明の製造方法は、時効処理時間が2〜5時間
で済むから、18時間かけた標準的な時効処理を行う従
来の製造方法と比較すると、時効処理に要する時間が短
くて生産性に優れるという効果がある。
As described in detail in the above examples, since the aging treatment time of the manufacturing method of the present invention is 2 to 5 hours, the conventional aging treatment for 18 hours is carried out. Compared with the method, there is an effect that the time required for the aging treatment is short and the productivity is excellent.

【0023】また、本発明方法によつて製造した耐熱薄
板ばねは、従来方法によつて製造した耐熱薄板ばねと比
較すると、600℃以下で使用する場合における耐へた
り性に優れている。
Further, the heat-resistant thin leaf spring manufactured by the method of the present invention is superior to the heat-resistant thin leaf spring manufactured by the conventional method when it is used at 600 ° C. or lower.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明にかかる実施例方法における時
効処理工程と従来方法における標準的な時効処理工程を
あらわすグラフである。(b)は本発明にかかる実施例
方法によつて製造した耐熱薄板ばねと従来方法によつて
製造した耐熱薄板ばねの径変化率をあらわすグラフであ
る。
FIG. 1A is a graph showing an aging treatment step in an example method according to the present invention and a standard aging treatment step in a conventional method. (B) is a graph showing the rate of change in diameter of the heat-resistant thin leaf spring manufactured by the method of the example according to the present invention and the heat-resistant thin leaf spring manufactured by the conventional method.

【図2】本発明にかかる実施例方法における時効処理の
時間を設定するための試験の結果をあらわすグラフであ
る。
FIG. 2 is a graph showing the result of a test for setting the time of aging treatment in the example method according to the present invention.

【図3】本発明にかかる実施例方法における時効処理の
温度を設定するための試験の結果をあらわすグラフであ
る。
FIG. 3 is a graph showing the results of a test for setting the temperature of the aging treatment in the example method according to the present invention.

【図4】本発明にかかる実施例方法によつて製造した耐
熱薄板ばねを燃焼制御センサの部品として使用する状態
をあらわす斜視図である。
FIG. 4 is a perspective view showing a state in which a heat-resistant thin leaf spring manufactured by an embodiment method according to the present invention is used as a component of a combustion control sensor.

【符号の説明】[Explanation of symbols]

1:耐熱薄板ばね 1: Heat-resistant thin leaf spring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 0.08%以下のC、0.35%以下のM
n、0.35%以下のSi、17.00〜21.00%のC
r、50.00〜55.00%のNi、2.80〜3.30%
のMo、4.75〜5.50%のNb+Ta、0.65〜1.1
5%のTi、0.20〜0.80%のAl及び残りのFeを
成分としたニツケル含有耐熱材料を、溶体化処理して薄
板ばね形状に成形した後、700〜760℃の温度で2
〜5時間加熱保持する条件で時効処理することを特徴と
する耐熱薄板ばねの製造方法。
1. A C content of 0.08% or less and an M content of 0.35% or less.
n, 0.35% or less of Si, 17.0 to 21.00% of C
r, 50.00 to 55.00% Ni, 2.80 to 3.30%
Mo, 4.75-5.50% Nb + Ta, 0.65-1.1
Nickel-containing heat-resistant material containing 5% Ti, 0.20 to 0.80% Al and the remaining Fe as a component was solution-treated and formed into a thin leaf spring shape, and then at a temperature of 700 to 760 ° C.
A method for manufacturing a heat-resistant thin leaf spring, which comprises performing an aging treatment under conditions of heating and holding for up to 5 hours.
JP35179892A 1992-12-07 1992-12-07 Production of heat resistant thin leaf spring Pending JPH06172951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35179892A JPH06172951A (en) 1992-12-07 1992-12-07 Production of heat resistant thin leaf spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35179892A JPH06172951A (en) 1992-12-07 1992-12-07 Production of heat resistant thin leaf spring

Publications (1)

Publication Number Publication Date
JPH06172951A true JPH06172951A (en) 1994-06-21

Family

ID=18419682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35179892A Pending JPH06172951A (en) 1992-12-07 1992-12-07 Production of heat resistant thin leaf spring

Country Status (1)

Country Link
JP (1) JPH06172951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2341871A (en) * 1998-07-09 2000-03-29 Sachs Race Eng Gmbh Friction clutch with nickel-chromium alloy spring means and processes associated with the making of such spring means
JP2006257462A (en) * 2005-03-15 2006-09-28 Nippon Seisen Co Ltd Alloy wire for heat resistant spring, and heat resistant coil spring for high temperature environment using the same
JP2008144202A (en) * 2006-12-07 2008-06-26 Daido Steel Co Ltd Heat-resistant spring and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2341871A (en) * 1998-07-09 2000-03-29 Sachs Race Eng Gmbh Friction clutch with nickel-chromium alloy spring means and processes associated with the making of such spring means
US6216839B1 (en) 1998-07-09 2001-04-17 Sachs Race Engineering Gmbh Friction clutch with nickel-chromium alloy spring elements
GB2341871B (en) * 1998-07-09 2001-12-12 Sachs Race Eng Gmbh Friction clutch with nickel-chromium alloy spring means and processes associated with making such spring means
JP2006257462A (en) * 2005-03-15 2006-09-28 Nippon Seisen Co Ltd Alloy wire for heat resistant spring, and heat resistant coil spring for high temperature environment using the same
JP2008144202A (en) * 2006-12-07 2008-06-26 Daido Steel Co Ltd Heat-resistant spring and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR100725400B1 (en) Self-calibrating balance spring for mechanical oscillator of balance spring / balance assembly of watch movement and method of manufacturing this balance spring
JP5805371B2 (en) Heat treatment method for coil spring
CN105821359A (en) Heat-treatment technology of high-plasticity nickel base alloy
JPH06172951A (en) Production of heat resistant thin leaf spring
US2766156A (en) Heat-treatment of nickel-chromiumcobalt alloys
Hidnert Thermal expansion of tantalum
US2170844A (en) Hardening refractory metals
US2533736A (en) Electric resistance element and method of heat-treatment
JPH0633206A (en) Method for heat-treating ni-base alloy
US2986485A (en) Annealing process for magnetic steel strip
JPS61183455A (en) Manufacture of ni-ti type shape memory material
JPS61143567A (en) Manufacture of high temperature spring
JPS61142672A (en) Electric connection terminal clip for filament lighting of magnetron
US2685547A (en) Platinum catalysts
US2533735A (en) Electric resistance element and method of heat-treatment
US4118224A (en) Nickel-chromium heating element alloy having improved operating life
US1650631A (en) Process of preparing metals with high-temperature fusing points such as tungsten andof preparing wire therefrom
SU1581775A1 (en) Method of chemical and thermal treating of alloys
JPS6260851A (en) Manufacture of shape memory ni-ti alloy
JPS61272350A (en) High carbon steel rod and its manufacture
JP2002235141A (en) Molybdenum wire
JP2024055597A (en) Heater, single crystal manufacturing apparatus, single crystal manufacturing method
SU1765247A1 (en) Method of treating articles made of heat-resistant nickel alloys
SU316735A1 (en) METHOD OF HEAT TREATMENT OF HEAT-RESISTANT MELTS
JPS5929401A (en) Method of producing indirectly-heated thermistor