JPH06172905A - Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance - Google Patents

Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance

Info

Publication number
JPH06172905A
JPH06172905A JP5156804A JP15680493A JPH06172905A JP H06172905 A JPH06172905 A JP H06172905A JP 5156804 A JP5156804 A JP 5156804A JP 15680493 A JP15680493 A JP 15680493A JP H06172905 A JPH06172905 A JP H06172905A
Authority
JP
Japan
Prior art keywords
alloy
layer
core material
heat exchanger
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5156804A
Other languages
Japanese (ja)
Inventor
Yoshifusa Shiyouji
美房 正路
Zenichi Tanabe
善一 田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP25640287A external-priority patent/JPH01100237A/en
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP5156804A priority Critical patent/JPH06172905A/en
Publication of JPH06172905A publication Critical patent/JPH06172905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al alloy material for heat exchanger excellent in strength and pitting corrosion resistance by providing an Al coating layer to a core material composed of an alloy having a specific composition consisting of Cu, Mn, Mg, and Al and forming a specific copper diffused layer. CONSTITUTION:An alloy having a composition consisting of, by weight, 0.2-1.0% Cu, further 0.6-1.4% Mn and/or 0.1-0.8% Mg, and the balance Al with inevitable impurities is used as a core material. One side or both sides of this core material are clad with coating layer consisting of pure Al or Al alloy and, in the course of its manufacture or brazing heating, Cu in the core material is allowed to diffuse in the coating layer, by which a copper diffused layer having sacrificial anode effect is formed in the surface layer part. At this time, the thickness of the diffusion layer, where Cu concentration is gradually reduced from the inner part of the coating material toward the surface, is regulated to 40-300mum, and the difference in Cu concentration between the inner part and the surface is regulated to 0.15-0.6%. By this method, the sacrificial anode effect of the surface layer part of the material can be made sufficient and maintained over a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、エバポレータ、コン
デンサ、ラジエータ等の熱交換器用アルミニウム合金材
に関し、特に耐孔食性と強度にすぐれた材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy material for heat exchangers such as evaporators, condensers and radiators, and more particularly to a material excellent in pitting corrosion resistance and strength.

【0002】[0002]

【従来の技術】例えば自動車用の熱交換器(エバポレー
タ、コンデンサ、ラジエータ等)用材料として用いられ
るアルミニウム合金材としては3003合金が一般的で
あるが、より強度の高い熱交換器用材料としては、30
04、6951合金などが用いられる。
2. Description of the Related Art For example, 3003 alloy is generally used as an aluminum alloy material used as a material for a heat exchanger (evaporator, condenser, radiator, etc.) for automobiles, but as a material for a heat exchanger having higher strength, Thirty
04, 6951 alloy or the like is used.

【0003】[0003]

【発明が解決しようとする課題】3003合金はろう付
加熱(600℃)後の強度が12kg/mm2に達しな
いので、熱交換器の軽量化のための薄肉化が困難であ
る。又、3004、6951合金などは耐孔食性が不十
分であり、冷媒用通路管材の孔食による貫通漏洩事故が
問題となっている。
Since the strength of the 3003 alloy after the brazing heat (600 ° C.) does not reach 12 kg / mm 2 , it is difficult to reduce the thickness of the heat exchanger in order to reduce its weight. Further, the 3004, 6951 alloys and the like have insufficient pitting corrosion resistance, and there is a problem of penetration leakage due to pitting corrosion of the refrigerant passage pipe material.

【0004】そこで各種防食法が提案されているが、外
面(大気側)腐食に対する防食法と内面(水溶液側)腐
食に対する防食法に大別される。
Therefore, various anticorrosion methods have been proposed, but they are roughly classified into an anticorrosion method against outer surface (atmosphere side) corrosion and an inner surface (aqueous solution side) corrosion.

【0005】外面腐食はエバポレータ、コンデンサ、ラ
ジエータ等において主として問題になる。管外面に亜鉛
拡散層を形成させ、その犠牲陽極効果で防食することが
考えられている。熱交換器の組立に真空ろう付を行う
と、蒸気圧の低い亜鉛が蒸発飛散し、犠牲陽極効果が不
十分となる欠点がある。又、管材より電位の卑なフィン
材(Al−Zn系、Al−Sn系等)の犠牲陽極効果で
管材を防食することも考えられているが、フィン接合部
近傍しか効果がなく、ドロンカップ型エバポレータのタ
ンク部及びラジエータのコアプレート部等はフィン接合
部と触れているため、フィンの効果がなく、孔食が発生
する。
External corrosion is a major problem in evaporators, capacitors, radiators and the like. It is considered that a zinc diffusion layer is formed on the outer surface of the tube to prevent corrosion by the sacrificial anode effect. When vacuum brazing is performed for assembling the heat exchanger, zinc having a low vapor pressure is evaporated and scattered, and the sacrificial anode effect is insufficient. It is also considered that the sacrificial anode effect of a fin material (Al-Zn system, Al-Sn system, etc.) having a lower electric potential than that of the pipe material protects the pipe material from corrosion. Since the tank portion of the mold evaporator, the core plate portion of the radiator, and the like are in contact with the fin joint portion, there is no fin effect and pitting corrosion occurs.

【0006】内面腐食はラジエータ、ヒータコア等にお
いて主として問題になる。3重クラッド材(Al−Si
/3003/7072等)の内皮材(7072等)の犠
牲陽極効果で芯材を防食することが考えられるが、真空
ろう付では7072合金中の亜鉛が蒸発するため、内皮
材の犠牲陽極効果が不充分となる。又、内皮材に犠牲陽
極効果を持たせるためにZn、Sn、In、Ga等を添
加させる場合、これら元素の含有により内皮材の自己腐
食が速くて消耗しやすく、内皮材の犠牲陽極効果を長期
的持続することが難しい。内皮材にAl−Sn系合金等
を用いる場合もあるが、Snは低融点元素であってAl
にほとんど固溶しないために、鋳造・熱間加工時に割れ
が発生して製造が難しい。
Internal corrosion is a major problem in radiators, heater cores and the like. Triple clad material (Al-Si
/ 3003/7072, etc.) may be used to prevent corrosion of the core material by the sacrificial anode effect of the endothelial material (7072 etc.), but since zinc in the 7072 alloy evaporates by vacuum brazing, the sacrificial anode effect of the endothelial material is Will be insufficient. Further, when Zn, Sn, In, Ga, etc. are added in order to give the sacrificial anode effect to the endothelial material, the self-corrosion of the endothelial material is fast and easily consumed due to the inclusion of these elements, and the sacrificial anode effect of the endothelial material is Difficult to sustain for a long time. Although an Al-Sn alloy or the like may be used as the endothelial material, Sn is a low melting point element and is Al.
Since it does not form a solid solution, it is difficult to manufacture because cracks occur during casting and hot working.

【0007】以上従来の熱交換器用材料には一長一短が
あり、強度と耐孔食性を共に満足する材料が望まれてい
る。
As described above, the conventional heat exchanger materials have advantages and disadvantages, and a material satisfying both strength and pitting corrosion resistance is desired.

【0008】[0008]

【課題を解決するための手段】本発明は、Cu:0.2
〜1.0wt%を含み、さらにMn:0.6〜1.4w
t%およびMg:0.1〜0.8wt%の1種あるいは
2種を含み、残部Alと不可避不純物よりなる合金を芯
材とし、該芯材の片面又は両面に純Al又はAl合金の
被覆層を設けた被覆材の内部から表面に向って漸次銅濃
度が減少する厚さ40〜300μmの拡散層を設け、か
つ内部と表面との銅濃度の差を0.15〜0.6wt%
とすることを特徴とする耐孔食性にすぐれた熱交換器用
アルミニウム合金材である。
The present invention provides Cu: 0.2.
~ 1.0 wt%, Mn: 0.6 ~ 1.4w
t% and Mg: 0.1 to 0.8 wt% of one type or two types, with the balance being an alloy consisting of Al and unavoidable impurities as a core material, and one or both surfaces of the core material being coated with pure Al or an Al alloy. A diffusion layer having a thickness of 40 to 300 μm in which the copper concentration gradually decreases from the inside to the surface of the coating material provided with the layer is provided, and the difference in copper concentration between the inside and the surface is 0.15 to 0.6 wt%.
The aluminum alloy material for heat exchangers has excellent pitting corrosion resistance.

【0009】本発明合金材における銅は材料表層部に犠
牲陽極効果に適した拡散層を形成するもので、内部の銅
濃度が0.2wt%より少ないと表層部に適切な銅の拡
散層が形成しにくく孔食が発生し、又、1.0wt%を
越えると材料の自己腐食が激しくなる。
Copper in the alloy material of the present invention forms a diffusion layer suitable for the sacrificial anode effect on the surface layer of the material. If the internal copper concentration is less than 0.2 wt%, a suitable copper diffusion layer will form on the surface layer. It is difficult to form and pitting occurs, and if it exceeds 1.0 wt%, the self-corrosion of the material becomes severe.

【0010】MnとMgは銅の拡散層の犠牲陽極効果を
害することなく強度を高める効果があり、両元素共に上
限値を越えて添加すると耐食性が劣化し、下限値より少
ない添加は強度を高める効果が少ない。
Mn and Mg have the effect of enhancing the strength without impairing the sacrificial anode effect of the copper diffusion layer. If both elements are added in excess of the upper limits, the corrosion resistance deteriorates. Addition of less than the lower limits enhances the strength. Less effective.

【0011】材料内部と表面の銅濃度の差が0.15wt%よ
り少ないと内部と表面との電位差が小さく、表層部の内
部に対する犠牲陽極効果が不十分で、深い孔食が発生
し、また銅濃度差が0.6wt%を越えると、内部と表
層との電位差が大きく、拡散層の自己腐食(消耗)速度
が速くなり、表層部の内部に対する犠牲陽極効果が長期
的に持続しない。
When the difference in copper concentration between the inside of the material and the surface is less than 0.15 wt%, the potential difference between the inside and the surface is small, the sacrificial anode effect on the inside of the surface layer portion is insufficient, and deep pitting corrosion occurs. If the concentration difference exceeds 0.6 wt%, the potential difference between the inside and the surface layer is large, the self-corrosion (consumption) rate of the diffusion layer is increased, and the sacrificial anode effect on the inside of the surface layer portion does not last for a long time.

【0012】銅の拡散層の厚さが40μmより薄いと、
拡散層が短期間で腐食するため十分な防食効果を示さ
ず、300μmを越えると拡散層はそれ以下のものと効
果が変らない。
If the thickness of the copper diffusion layer is less than 40 μm,
Since the diffusion layer corrodes in a short period of time, it does not exhibit a sufficient anticorrosion effect, and when it exceeds 300 μm, the diffusion layer has the same effect as that of the lower layer.

【0013】板材および管材の表層部に犠牲陽極効果に
適した銅の拡散層を形成させる方法は下記のとおりであ
る。
The method of forming a copper diffusion layer suitable for the sacrificial anode effect on the surface layers of the plate material and the tube material is as follows.

【0014】クラッド板の場合は、Al−Cu−(M
n、Mg)系合金の芯材の片面あるいは両面にAl−S
i系、Al−Si−Mg系等のろう材または純Al、A
l−Mn系等のAl合金をクラッドする。
In the case of a clad plate, Al-Cu- (M
n, Mg) -based alloy core material on one or both sides of Al-S
i-based, Al-Si-Mg-based brazing material or pure Al, A
An Al alloy such as 1-Mn is clad.

【0015】クラッド管の場合は上記クラッド板材を管
状に巻いて溶接する。あるいは上記芯材の内側あるいは
内・外両面にAl−Si、Al−Si−Mg系等のろう
材または純Al、Al−Mn系等のAl合金を鋳込んで
なる中空ビレットを用意し、これを押出してクラッド管
をつくる。
In the case of a clad tube, the clad plate material is rolled into a tubular shape and welded. Alternatively, a hollow billet is prepared by casting a brazing material such as Al-Si, Al-Si-Mg or the like, or pure Al, Al alloy such as Al-Mn-based on the inside or inside / outside of the core material. To produce a clad tube.

【0016】押出偏平多穴管の場合は、Al−Cu−
(Mn、Mg)系の押出偏平多穴管を、Al−Si、A
l−Si−Mg系等の溶融ろう材中に浸漬して表面にろ
う材を被覆する。
In the case of an extruded flat multi-hole tube, Al-Cu-
(Mn, Mg) -based extruded flat multi-hole tube
The surface is coated with the brazing material by immersing it in a molten brazing material such as 1-Si-Mg system.

【0017】上記は例示であって、他にも種々の方法を
用いることができるが、各々その製造工程およびろう付
加熱工程において芯材中の銅を拡散させて、表層部に犠
牲陽極効果を有する銅の拡散層を形成させる。
Although the above is just an example and various other methods can be used, copper in the core material is diffused in each of the manufacturing process and the brazing heat treatment process to give a sacrificial anode effect to the surface layer portion. A copper diffusion layer having is formed.

【0018】なお、詳細な拡散層厚さ、内部の銅濃度、
内部と表面との銅濃度差等の最適条件は、使用環境、許
される腐食深さ等でそれぞれ異なり、設計時に決定され
るべきものである。
The detailed diffusion layer thickness, internal copper concentration,
Optimum conditions such as the difference in copper concentration between the inside and the surface differ depending on the operating environment, the allowable corrosion depth, etc., and should be determined at the time of design.

【0019】本発明材のろう付法としては、真空ろう
付、不活性雰囲気ろう付、フラックスろう付等いずれの
方法を用いてもよい。
As a brazing method for the material of the present invention, any method such as vacuum brazing, inert atmosphere brazing, and flux brazing may be used.

【0020】本発明の合金材には、銅、Mn、Mgの他
に不純物としてSi、FeのほかCr、Zn、Ti、Z
r、V等が銅の拡散層の犠牲陽極効果を害さない範囲で
含有されていても良い。
In addition to copper, Mn, and Mg, the alloy material of the present invention contains impurities such as Si, Fe, Cr, Zn, Ti, and Z.
r, V, etc. may be contained in a range that does not impair the sacrificial anode effect of the copper diffusion layer.

【0021】[0021]

【実施例】【Example】

実施例1 表1の試料No.1〜11の各例合金の鋳塊片それぞれに
対して、500℃×8時間の均質化処理を行った後、こ
れを芯材として一方の片面にろう材4104合金片を、
他の片面に1050合金片を最終製品の板で各クラッド
率が10%となるように重合して熱間加工と冷間加工を
加えて厚さ0.4mmの軟質板材を製作した。
Example 1 Each ingot piece of each alloy of Samples No. 1 to 11 in Table 1 was homogenized at 500 ° C. for 8 hours and then used as a core material on one surface of the brazing material. 4104 alloy pieces,
A 1050 alloy piece was polymerized on the other surface of the plate of the final product so that each clad ratio was 10%, and hot working and cold working were applied to manufacture a soft plate material having a thickness of 0.4 mm.

【0022】この板材を5×10~5Torrの真空中で
600℃に5分間加熱後、各板材の4104合金面側と
1050合金面側を別々にシリコンゴムにてシールし
て、それぞれの面について腐食試験を行った。1050
合金面に対しては(ASTM×10+10ppm C
u)水溶液を用いて、交互に80℃×8hrと室温×1
6hrのサイクルで1カ月浸漬による試験とし、410
4合金に対しては2週間のCASS試験(JIS−D−
0201)とした。これら試験による各面の最大孔食深
さを表1に併せて示す。
After heating this plate material at 600 ° C. for 5 minutes in a vacuum of 5 × 10 to 5 Torr, the 4104 alloy surface side and the 1050 alloy surface side of each plate material are separately sealed with silicone rubber, and each surface is sealed. A corrosion test was conducted on the. 1050
For alloy surface (ASTM × 10 + 10ppm C
u) Using an aqueous solution, alternately 80 ° C. × 8 hr and room temperature × 1
The test was conducted by immersion for 1 month in a cycle of 6 hours, 410
2 weeks CASS test (JIS-D-
0201). Table 1 also shows the maximum pitting depth of each surface by these tests.

【0023】又、シリコーンゴムシールを施す前に引張
試験を行った。その結果も表1に示す。
A tensile test was conducted before the silicone rubber seal was applied. The results are also shown in Table 1.

【0024】表1に示した4104合金側及び1050
合金側表層部における銅の拡散層の厚さは、本供試材の
最終軟化処理及びろう付加熱処理を種々変えることによ
り調整した。また、供試材内部と表面の銅濃度差(上記
真空加熱後)も表1に示す。試料No.12は4343/
3003/7072なる三重クラッド材で厚さ0.4m
mの軟質板であり、この板の7072合金面を試料No.
1〜11の1050合金面に対して行った腐食試験と同
じ条件の腐食試験を行った。拡散層厚、銅濃度差、最大
孔食深さを表1に示す。
4104 alloy side and 1050 shown in Table 1
The thickness of the copper diffusion layer in the alloy side surface layer was adjusted by variously changing the final softening treatment and the brazing addition heat treatment of the sample material. Table 1 also shows the difference in copper concentration between the inside and the surface of the test material (after the above vacuum heating). Sample No. 12 is 4343 /
Triple clad material 3003/7072 with a thickness of 0.4 m
It is a soft plate of m, and the 7072 alloy surface of this plate is a sample No.
Corrosion tests were performed under the same conditions as the corrosion tests performed on the 1050 alloy surfaces 1 to 11. Table 1 shows the diffusion layer thickness, copper concentration difference, and maximum pit depth.

【0025】表1の結果から明らかなように、本発明に
よる材料は、比較例及び従来例に比べてすぐれた耐孔食
性を有しており、熱交換器用アルミニウム材として適し
ている。
As is clear from the results of Table 1, the material according to the present invention has excellent pitting corrosion resistance as compared with the comparative example and the conventional example, and is suitable as an aluminum material for heat exchangers.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の材料は、材料表層部に犠牲陽極
効果に適した銅の拡散層を有することにより、従来材料
に比べて極めてすぐれた耐孔食性を有しており、特に熱
交換器用構造材としての強度もすぐれている。
EFFECTS OF THE INVENTION The material of the present invention has a copper diffusion layer suitable for the sacrificial anode effect in the surface layer of the material, and therefore has excellent pitting corrosion resistance as compared with conventional materials, and particularly heat exchange. It also has excellent strength as a dexterous structural material.

【0028】したがって、本発明材料は、特に自動車用
の熱交換器用アルミニウム材料として有用であり、材料
の薄肉化ひいては熱交換器の軽量化に対応できるもので
ある。
Therefore, the material of the present invention is particularly useful as an aluminum material for heat exchangers for automobiles, and can be used for thinning the material and thus for reducing the weight of the heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Cu:0.2〜1.0wt%を含み、さ
らにMn:0.6〜1.4wt%およびMg:0.1〜
0.8wt%の1種あるいは2種を含み、残部Alと不
可避不純物よりなる合金を芯材とし、該芯材の片面又は
両面に純Al又はAl合金の被覆層を設けた被覆材の内
部から表面に向って漸次銅濃度が減少する厚さ40〜3
00μmの拡散層を設け、かつ内部と表面との銅濃度の
差を0.15〜0.6wt%とすることを特徴とする耐
孔食性にすぐれた熱交換器用アルミニウム合金材。
1. Cu: 0.2-1.0 wt%, Mn: 0.6-1.4 wt% and Mg: 0.1-
From the inside of a covering material containing 0.8 wt% of one or two kinds and a balance of Al and an unavoidable impurity as a core material and providing a coating layer of pure Al or Al alloy on one or both sides of the core material Thickness 40 to 3 in which the copper concentration gradually decreases toward the surface
An aluminum alloy material for a heat exchanger having excellent pitting corrosion resistance, which is provided with a diffusion layer of 00 μm and has a difference in copper concentration between the inside and the surface of 0.15 to 0.6 wt%.
JP5156804A 1987-10-13 1993-06-28 Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance Pending JPH06172905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156804A JPH06172905A (en) 1987-10-13 1993-06-28 Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25640287A JPH01100237A (en) 1987-10-13 1987-10-13 Aluminum alloy material for heat exchanger having excellent corrosion resistance
JP5156804A JPH06172905A (en) 1987-10-13 1993-06-28 Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25640287A Division JPH01100237A (en) 1987-10-13 1987-10-13 Aluminum alloy material for heat exchanger having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
JPH06172905A true JPH06172905A (en) 1994-06-21

Family

ID=26484460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156804A Pending JPH06172905A (en) 1987-10-13 1993-06-28 Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance

Country Status (1)

Country Link
JP (1) JPH06172905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221244A (en) * 2009-03-23 2010-10-07 Nippon Light Metal Co Ltd Aluminum alloy composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188638A (en) * 1981-04-10 1982-11-19 Kobe Steel Ltd Aluminum tube for heat exchanger
JPS5835589A (en) * 1981-08-26 1983-03-02 倉富 康郎 Smooth rotation apparatus for rotor by magnetic effect
JPS59205445A (en) * 1983-05-02 1984-11-21 Furukawa Alum Co Ltd Aluminium alloy clad material for heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188638A (en) * 1981-04-10 1982-11-19 Kobe Steel Ltd Aluminum tube for heat exchanger
JPS5835589A (en) * 1981-08-26 1983-03-02 倉富 康郎 Smooth rotation apparatus for rotor by magnetic effect
JPS59205445A (en) * 1983-05-02 1984-11-21 Furukawa Alum Co Ltd Aluminium alloy clad material for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221244A (en) * 2009-03-23 2010-10-07 Nippon Light Metal Co Ltd Aluminum alloy composite material

Similar Documents

Publication Publication Date Title
JP5049488B2 (en) Method for producing aluminum alloy brazing sheet
KR101193364B1 (en) Aluminum alloy brazing sheet
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
JP2011202285A (en) Brazing sheet
JPS6245301B2 (en)
JPS59100251A (en) Corrosion resistant aluminum alloy with high strength for brazing
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JPS6248743B2 (en)
JP2000212668A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JPH09291328A (en) Aluminum alloy multiple member for brazing, and brazing method
JPH06172905A (en) Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance
JPH02129333A (en) Aluminum brazing sheet for heat exchanger
JP2753634B2 (en) Aluminum alloy composite sheet for tube material
JP2000084661A (en) Manufacture of heat exchanger excellent in corrosion resistance
JPS6261104B2 (en)
JPH08260085A (en) Aluminum alloy composite material for vacuum brazing excellent in corrosion resistance
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPS63303027A (en) Aluminum brazing sheet for heat exchanger
JP2607245B2 (en) High strength aluminum alloy composite thin fin material with excellent sacrificial anode effect for heat exchangers
JP2001226729A (en) Aluminum alloy for heat exchanger excellent in corrosion resistance
JPS63186846A (en) Fin material for aluminum alloyed heat exchanger
JPS63262439A (en) Aluminum alloy material for heat exchanger
JPH0258333B2 (en)
JP2006037137A (en) Highly corrosion resistant aluminum clad material for heat exchanger
JP2000297339A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment