JPH06172283A - Production of alpha-hydroxyisobutyric acid amide - Google Patents

Production of alpha-hydroxyisobutyric acid amide

Info

Publication number
JPH06172283A
JPH06172283A JP4323427A JP32342792A JPH06172283A JP H06172283 A JPH06172283 A JP H06172283A JP 4323427 A JP4323427 A JP 4323427A JP 32342792 A JP32342792 A JP 32342792A JP H06172283 A JPH06172283 A JP H06172283A
Authority
JP
Japan
Prior art keywords
reactor
acetone
ach
liquid
ham
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4323427A
Other languages
Japanese (ja)
Inventor
Minahito Karasawa
皆人 唐澤
Masasane Inomata
将実 猪俣
Hiroharu Kageyama
弘春 景山
Kanemitsu Miyama
兼光 深山
Shinji Tokuno
伸司 得能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP4323427A priority Critical patent/JPH06172283A/en
Publication of JPH06172283A publication Critical patent/JPH06172283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the subject compound in high purity on an industrial scale at a low cost by continuously hydrating acetone cyanhydrin in the presence of a Mn oxide catalyst, thermally decomposing the produced solution of alpha-hydroxyisobutyric acid amide and distilling out the formed acetone and cyanic acid. CONSTITUTION:A reactor is charged with acetone and 2% aqueous solution of sodium hydroxide. Liquid cyanic acid is poured into the reactor while keeping the temperature of the reactor at 20 deg.C and made to react with the reactants. The pH of the liquid is adjusted to 3.0 by adding sulfuric acid and the unreacted cyanic acid and acetone are distilled away under reduced pressure to obtain acetone cyanhydrin. The obtained acetone cyanhydrin 1 is continuously supplied to a hydration reactor 4 charged with a manganese oxide catalyst such as manganese dioxide powder and water 2 and subjected to hydration reaction at 60 deg.C. The produced alpha-hydroxyisobutyric acid amide solution 5 flowed out of the reactor 4 is transferred to a thermal decomposition reactor 6 and retained in the reactor at 80-100 deg.C for 2-30hr. Acetone and cyanic acid formed by the decomposition of acetone cyanhydrin are distilled out and the mixed gas 7 is separated and recovered by a distillation column to obtain the objective compound 11 on an industrial scale at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、α−ヒドロキシイソ酪
酸アミド(以下、HAMと略する。)の精製方法、更に
詳しくは、アセトンシアンヒドリン(以下、ACHと略
する。)と水とを液相で連続的に反応させて得られるH
AM生成液の精製方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for purifying α-hydroxyisobutyric acid amide (hereinafter abbreviated as HAM), more specifically, acetone cyanohydrin (hereinafter abbreviated as ACH), and water. H obtained by continuously reacting in the liquid phase
The present invention relates to a method for purifying an AM product solution.

【0002】[0002]

【従来の技術とその問題点】従来、アミド化合物は、英
国特許第1,351,530 号に開示されているように、二酸化
マンガン触媒の固定床型反応器にニトリル化合物と水と
を連続的に供給し、水和反応によって得られるアミド化
合物溶液を濃縮器で適当な濃度まで濃縮し、結晶槽で結
晶化した後、遠心分離機でアミド化合物の結晶を採取す
ることにより製造される。
2. Description of the Related Art Conventionally, as disclosed in British Patent No. 1,351,530, amide compounds have been used to continuously supply a nitrile compound and water to a fixed bed reactor of a manganese dioxide catalyst, It is produced by concentrating the amide compound solution obtained by the hydration reaction to an appropriate concentration with a concentrator, crystallizing it in a crystallizing tank, and collecting the amide compound crystals with a centrifuge.

【0003】ところで、ACHの水和によるHAMの連
続製造方法においても、上記の製造法は基本的な工程と
しては有意義なものであるが、この方法におけるアミド
化合物溶液の濃縮からその結晶の分離までが一般的であ
る反面、アミド化合物の一つであるHAMの精製法とし
ては不十分である。
By the way, even in the continuous production method of HAM by hydration of ACH, the above-mentioned production method is meaningful as a basic step, but from the concentration of the amide compound solution to the separation of the crystals in this method. However, it is insufficient as a method for purifying HAM, which is one of the amide compounds.

【0004】すなわち、英国特許第1,351,530 号には、
アミド化合物溶液から熱安定性の良好な未反応ニトリル
化合物を分解しないまま回収し、水和反応器に循環使用
することが開示されている。しかし、高沸点でかつ熱安
定性の悪いニトリル化合物であるACHでは、この方法
のようにACHを分解せず回収することは不可能であ
る。ACHは、一般にその液性が弱酸性からアルカリ性
になるに伴ない、安定性が悪くなり分解しやすくなると
いうことはよく知られている。しかし、ACHを数%含
むHAM水溶液中、ACHの安定性、その分解条件、そ
れを回収するための適切な条件等は全く知られていな
い。ACHの水和反応によるHAM生成液中、未反応の
ACHを分離除去しない場合や分離不十分である場合に
は、後続するHAMの晶析工程で、有毒なACHが水と
ともにHAM結晶に残存し、保安上非常に危険である。
That is, British Patent No. 1,351,530
It is disclosed that the unreacted nitrile compound having good thermal stability is recovered from the amide compound solution without being decomposed and is recycled to the hydration reactor. However, with ACH, which is a nitrile compound having a high boiling point and poor thermal stability, it is impossible to recover ACH without decomposing it as in this method. It is well known that ACH generally has poor stability and is easily decomposed as its liquidity changes from weakly acidic to alkaline. However, the stability of ACH in an HAM aqueous solution containing several% of ACH, its decomposition conditions, and the appropriate conditions for recovering it are not known at all. If the unreacted ACH is not separated or removed in the HAM production liquid by the hydration reaction of ACH, or if the separation is insufficient, toxic ACH remains in the HAM crystals along with water in the subsequent HAM crystallization step. It is very dangerous for security.

【0005】また、一般的に、所望の反応を転化率100
モル%で完結させる場合には、未反応原料の回収は不要
であるが、実際に反応を100 モル%完結させる時間は転
化率50〜60モル%までの時間のおよそ2〜3倍以上必要
となる。したがって、転化率100 モル%における反応器
の生産性は転化率50〜60モル%の半分以下となり、反応
器の生産性が最も高い中位転化率での未反応原料の回収
が非常に重要となる。以上のように、工業的にACHの
水和によりHAMを連続製造する上では、HAM生成液
中の未反応ACHの分離除去とその回収が大きな課題と
なっている。
Also, in general, the desired reaction is converted to 100% conversion.
When the reaction is completed at mol%, it is not necessary to recover the unreacted raw material, but the time required to actually complete the reaction at 100 mol% is approximately 2 to 3 times or more the time required for the conversion of 50 to 60 mol%. Become. Therefore, the productivity of the reactor at a conversion rate of 100 mol% is less than half of the conversion rate of 50 to 60 mol%, and it is very important to recover the unreacted raw material at the medium conversion rate, which has the highest productivity of the reactor. Become. As described above, in the industrial continuous production of HAM by hydration of ACH, the separation and removal of unreacted ACH in the HAM production liquid and its recovery are major problems.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、これら
の課題を解決するためには、水和反応器から流出するH
AM生成液中の未反応ACHを高温で熱処理し、その分
解副生物をアセトンとともに蒸留分離する方法が有効で
あることを見出し、本発明に至った。
In order to solve these problems, the present inventors have decided to solve the problem of H flowing out from the hydration reactor.
The present invention has been found to be effective by a method in which unreacted ACH in the AM product solution is heat-treated at a high temperature and the decomposition by-product is separated by distillation together with acetone.

【0007】すなわち、本発明は、マンガン酸化物触媒
の反応器にアセトンシアンヒドリンと水とを連続的に供
給し水和反応させ、反応器から流出するα−ヒドロキシ
イソ酪酸アミド生成液を熱分解反応器に導入し、該熱分
解反応器中、α−ヒドロキシイソ酪酸アミド生成液を 8
0 〜100 ℃で2〜30時間の範囲で滞留させ、アセトンシ
アンヒドリンの分解したアセトンと青酸とを留去させる
ことを特徴とするα−ヒドロキシイソ酪酸アミドの製造
方法である。
That is, according to the present invention, acetone cyanohydrin and water are continuously supplied to a reactor of a manganese oxide catalyst to cause a hydration reaction, and an α-hydroxyisobutyric acid amide product liquid flowing out from the reactor is heated. It is introduced into the decomposition reactor, and the α-hydroxyisobutyric acid amide product solution is introduced into the decomposition reactor.
It is a method for producing an α-hydroxyisobutyric acid amide, which is characterized in that it is retained at a temperature of 0 to 100 ° C. for 2 to 30 hours to distill off the acetone cyanohydrin-decomposed acetone and hydrocyanic acid.

【0008】本発明に使用されるマンガン酸化物は、無
水又は水和された物のどちらでもよい。マンガン酸化物
は、公知の方法、例えば、中性ないしアルカリ性の領域
で7価マンガン化合物を 20 〜100 ℃で還元する方法
( Zeit. Anorg. Allg. Chem.,309, p. 1〜32及びp.12
1 〜150 (1961))、酸性で過マンガン酸カリウムと硫酸
マンガンを処理する方法(Biochem. J.,50, p.43,(19
51) 、及び、J. Chem.Soc.,1953 ,p.2189,(1953)
)、7価マンガン塩をハロゲン化水素酸で還元する方
法(特開昭63-57535号公報)、及び、硫酸マンガン水溶
液を電解酸化する方法などによって得られる二酸化マン
ガンが用いられる。特に、硫酸存在下、過マンガン酸塩
と硫酸マンガンより調製される二酸化マンガン、及び、
電解二酸化マンガンが好ましい。触媒は、通常適当な粒
度の粉末として使用される。
The manganese oxide used in the present invention may be either anhydrous or hydrated. The manganese oxide can be produced by a known method, for example, a method of reducing a 7-valent manganese compound in a neutral to alkaline region at 20 to 100 ° C (Zeit. Anorg. Allg. Chem., 309, p. 1 to 32 and p. .12
1 to 150 (1961)), a method of treating potassium permanganate and manganese sulfate under acidic conditions (Biochem. J., 50 , p.43, (19
51) and J. Chem. Soc., 1953 , p. 2189, (1953).
), A method of reducing a 7-valent manganese salt with hydrohalic acid (Japanese Patent Laid-Open No. 63-57535), and a method of electrolytically oxidizing an aqueous solution of manganese sulfate. In particular, manganese dioxide prepared from permanganate and manganese sulfate in the presence of sulfuric acid, and
Electrolytic manganese dioxide is preferred. The catalyst is usually used as a powder of suitable particle size.

【0009】本発明において使用される水の量は、AC
Hの1モルに対し、通常1モル以上、好ましくは 2〜20
モル、特に好ましくは 4〜10モルである。反応溶媒とし
て水のほかに、新たに反応に不活性な溶媒を用いること
ができる。例えば、特開昭52-222号公報(米国特許第4,
018,829 号)に開示されているアセトンなどが好適に用
いられる。アセトンの量は、ACHの1モルに対し通常
0.1〜6.0 モルの範囲で用いるのがよい。
The amount of water used in the present invention is AC.
It is usually 1 mol or more, preferably 2 to 20 mol, relative to 1 mol of H.
The molar amount is particularly preferably 4 to 10 mol. As the reaction solvent, in addition to water, a solvent inert to the reaction can be newly used. For example, JP-A-52-222 (US Pat. No. 4,
Acetone disclosed in No. 018,829) is preferably used. The amount of acetone is usually 1 mol of ACH
It is preferable to use it in the range of 0.1 to 6.0 mol.

【0010】本発明における水和反応の温度は、通常 1
0 〜150 ℃、好ましくは 20 〜100℃、特に好ましくは
30 〜80℃の範囲である。この温度が 10 ℃未満では、
触媒の活性が低くなり実用的でない。また、150 ℃を越
えると、触媒活性は高いもののHAMの収率が急激に低
くなるため、好ましくない。
The temperature of the hydration reaction in the present invention is usually 1
0 to 150 ° C, preferably 20 to 100 ° C, particularly preferably
It is in the range of 30-80 ° C. If this temperature is below 10 ° C,
The activity of the catalyst is low and not practical. On the other hand, if the temperature exceeds 150 ° C., the catalytic activity is high but the HAM yield is drastically reduced, which is not preferable.

【0011】本発明に使用される水和反応器としては、
固定床型触媒反応器又は懸濁型触媒反応器である。固定
床型反応器は、適当な大きさと形状に成型された二酸化
マンガン触媒を円筒容器に充填したものである。懸濁型
反応器を用いる場合、触媒溶液中の触媒濃度は特に限定
されないが、通常2重量%以上、好ましくは5〜50重量
%にするのがよい。懸濁型反応器への原料液の供給速度
は、触媒1重量部及び1時間当り、ACHを 0.05 〜1.
0 重量部の割合にするのがよい。この懸濁型反応器は触
媒活性を最大限に発揮するように運転され、懸濁する触
媒の粒度の小さいものを系外に流出しないように、HA
M生成液の反応器からの出口には、金属製やガラス製等
のフィルターを備える。
The hydration reactor used in the present invention includes:
It is a fixed bed type catalytic reactor or a suspension type catalytic reactor. The fixed bed reactor is a cylindrical container filled with a manganese dioxide catalyst molded into an appropriate size and shape. When a suspension type reactor is used, the catalyst concentration in the catalyst solution is not particularly limited, but it is usually 2% by weight or more, preferably 5 to 50% by weight. The feed rate of the raw material liquid to the suspension reactor is 0.05 to 1.1 ACH per 1 part by weight of the catalyst and 1 hour.
It is preferable that the ratio is 0 part by weight. This suspension type reactor is operated so as to maximize the catalytic activity, and the suspended catalyst having a small particle size is prevented from flowing out of the system.
The outlet of the M product solution from the reactor is equipped with a filter made of metal or glass.

【0012】本発明における水和反応器は、ACHの転
化率を最高にするため、通常1基だけでなく、2ないし
3基直列に連結される。しかし、本発明においては、水
和反応器からのHAM生成液は後続する下記の熱分解反
応器に導入され、未反応のACHはほぼ全量熱分解され
分解副生物として回収することができるため、水和反応
器でのACHの転化率は自由に設定することが可能であ
る。ただ、水和反応器におけるHAM生産性の面からす
ると、ACHの転化率は通常 10 〜90モル%、好ましく
は 20 〜80モル%の範囲に設定するのがよい。
The hydration reactor according to the present invention is usually connected in series with not only one but two or three in order to maximize the conversion of ACH. However, in the present invention, the HAM production liquid from the hydration reactor is introduced into the following thermal decomposition reactor, and unreacted ACH is almost entirely thermally decomposed and can be recovered as a decomposition by-product. The conversion rate of ACH in the hydration reactor can be freely set. However, from the viewpoint of HAM productivity in the hydration reactor, the conversion rate of ACH is usually set in the range of 10 to 90 mol%, preferably 20 to 80 mol%.

【0013】水和反応器から流出するHAM生成液に
は、未反応のACHと反応溶媒のアセトンのほかに微量
の青酸が含有している。従来、このHAM生成液は、そ
の中のアセトンや青酸のような低沸点物を除去し回収す
るため、蒸留塔で処理される。蒸留塔の操作条件は、塔
頂で圧力200 〜760 Torr及び温度20〜57℃の範囲がよ
く、この操作により蒸留塔の缶出からHAM水溶液が得
られる。しかし、この蒸留操作では、HAM生成液中、
未反応のACHは分解されず、その大部分が缶出からの
HAM水溶液に残存する。そこで、この問題を解決する
ために、本発明では、未反応のACHをアセトンと青酸
に分解させる熱分解反応操作を新たに加え、これと蒸留
操作を組み合わせ、熱分解・蒸留操作として最適化させ
た。本発明においては、従来の蒸留操作で得られる缶出
液を下記の熱分解反応器に導入することもできるが、水
和反応器から流出するHAM生成液を熱分解反応器に直
接導入し、アセトンの留去と未反応ACHの分解・留去
を同時に行なう方が装置的に好ましい。
The HAM production liquid flowing out from the hydration reactor contains a trace amount of hydrocyanic acid in addition to unreacted ACH and reaction solvent acetone. Conventionally, this HAM production liquid is processed in a distillation column in order to remove and recover low boiling substances such as acetone and hydrocyanic acid therein. The operating conditions of the distillation column are such that the pressure at the top of the distillation column is 200 to 760 Torr and the temperature is 20 to 57 ° C., and the HAM aqueous solution is obtained from the bottom of the distillation column by this operation. However, in this distillation operation, in the HAM production liquid,
Unreacted ACH is not decomposed and most of it remains in the HAM aqueous solution from the bottom. Therefore, in order to solve this problem, in the present invention, a pyrolysis reaction operation for decomposing unreacted ACH into acetone and hydrocyanic acid is newly added, and this is combined with distillation operation to optimize the pyrolysis / distillation operation. It was In the present invention, the bottom liquid obtained by the conventional distillation operation can be introduced into the following thermal decomposition reactor, but the HAM product liquid flowing out from the hydration reactor is directly introduced into the thermal decomposition reactor, It is preferable in terms of equipment that the acetone is distilled off and the unreacted ACH is decomposed and distilled off at the same time.

【0014】本発明の熱分解・蒸留操作に用いられる装
置としては、HAM生成液中に含有するACHを熱分解
するための熱分解反応器と、アセトン及びACH分解副
生物と水を蒸留分離するための蒸留塔から構成される。
これらは別々に設けてもよいし、一体物であってもよ
い。熱分解反応器は、内容液が均一になるように撹拌さ
れ、また、熱分解中に副生するアセトンと青酸が速やか
に系外に除去されるように、その系内を常圧、好ましく
は減圧にする。
The apparatus used for the thermal decomposition / distillation operation of the present invention is a thermal decomposition reactor for thermally decomposing ACH contained in the HAM product solution, and acetone and ACH decomposition by-products and water are separated by distillation. It consists of a distillation column for.
These may be provided separately or may be integrated. The thermal decomposition reactor is agitated so that the content liquid is uniform, and the inside of the system is kept at atmospheric pressure, preferably, so that acetone and hydrocyanic acid, which are by-products during the thermal decomposition, can be rapidly removed. Depressurize.

【0015】熱分解・蒸留の操作条件として、熱分解反
応器内は温度60〜110 ℃で圧力 100〜1200Torr、好まし
くは 80 〜100 ℃で圧力100 〜760 Torrに維持されるの
がよい。この温度が80℃未満では、100 Torr程度の低圧
でもACHを分解・留去するのに非常に長時間を要す
る。また、100 ℃を越えると、ACHの分解と分解副生
物の留去は短時間で完結するため、操作的には何ら問題
はないが、留出又は還流する水の量が多くなるため、熱
効率の面で望ましいとは言えない。HAM生成液は熱分
解反応器に連続的に導入されるが、その流量は熱分解反
応器の内容量、実際には液の滞留時間に依存する。この
滞留時間は熱分解反応器内の温度と圧力によって変わる
が、通常1時間以上、好ましくは2〜30時間である。こ
れが1時間未満では、ACHの分解率が低くて好ましく
なく、また、30時間を越えても時間の増加に比しACH
分解率の顕著な向上は見られない。熱分解反応器から流
出する精HAM水溶液は、常法にしたがい更に濃縮し、
晶析、遠心分離によりHAMの結晶を得ることができ
る。
As an operating condition for the thermal decomposition / distillation, it is preferable that the inside of the thermal decomposition reactor is maintained at a temperature of 60 to 110 ° C. and a pressure of 100 to 1200 Torr, preferably 80 to 100 ° C. and a pressure of 100 to 760 Torr. If this temperature is lower than 80 ° C, it takes a very long time to decompose and distill off ACH even at a low pressure of about 100 Torr. If the temperature exceeds 100 ° C, the decomposition of ACH and the removal of the decomposition by-products will be completed in a short time, so there will be no problem in operation, but the amount of water to be distilled or refluxed will be large, and the thermal efficiency will be high. It is not desirable in terms of The HAM product liquid is continuously introduced into the pyrolysis reactor, and the flow rate thereof depends on the internal volume of the pyrolysis reactor, actually, the residence time of the liquid. The residence time varies depending on the temperature and pressure in the pyrolysis reactor, but is usually 1 hour or longer, preferably 2 to 30 hours. If it is less than 1 hour, the decomposition rate of ACH is low, which is not preferable.
No significant improvement in decomposition rate is observed. The purified HAM aqueous solution flowing out from the thermal decomposition reactor is further concentrated according to a conventional method,
Crystals of HAM can be obtained by crystallization and centrifugation.

【0016】以下、本発明について、代表的な工程を図
1にしたがって説明する。水和反応の原料のACH1と
水2、及び、反応溶媒のアセトン3が水和反応器4に連
続的に供給される。HAM生成液5は水和反応器4の内
部フィルターを通って、熱分解反応器6に導入される。
水和反応で共存するアセトン、ACHの分解で副生する
アセトンと青酸、及び、水からなる混合ガス7は、熱分
解反応器6から蒸留塔8に入る。蒸留塔8で水は分離さ
れ、残りのアセトンと青酸はガスとして上昇し、凝縮器
9で液に凝縮され、アセトン・青酸混合液10として回収
される。アセトン・青酸混合液10は元のACH製造工程
に戻される。一方、熱分解反応器6から目的物の精HA
M水溶液11が得られる。
Representative steps of the present invention will be described below with reference to FIG. ACH1 and water 2, which are raw materials for the hydration reaction, and acetone 3, which is a reaction solvent, are continuously supplied to the hydration reactor 4. The HAM production liquid 5 is introduced into the thermal decomposition reactor 6 through the internal filter of the hydration reactor 4.
A mixed gas 7 consisting of acetone coexisting in the hydration reaction, acetone and hydrocyanic acid by-produced by the decomposition of ACH, and water enters the distillation column 8 from the thermal decomposition reactor 6. Water is separated in the distillation column 8, the remaining acetone and hydrocyanic acid rise as gas, are condensed into a liquid in the condenser 9, and are recovered as the acetone / hydrocyanic acid mixed liquid 10. The acetone / hydrocyanic acid mixture 10 is returned to the original ACH manufacturing process. On the other hand, from the pyrolysis reactor 6 the target purified HA
An M aqueous solution 11 is obtained.

【0017】[0017]

【実施例】以下、製造例及び実施例により本発明を詳細
に説明する。ここで、「%」は特記する以外は重量基準
である。なお、製造例中、HAMの生成は、本発明の効
果をより迅速に評価するために、触媒に対し供給するA
CHの量を多くする、いわゆる触媒の高負荷で行なっ
た。また、ACH、アセトン及びHAMの液中濃度は液
体クロマトグラフィー、青酸の液中濃度は硝酸銀法滴定
により測定した。
EXAMPLES The present invention will be described in detail below with reference to production examples and examples. Here, "%" is based on weight, unless otherwise specified. In the production examples, HAM is supplied to the catalyst in order to evaluate the effect of the present invention more quickly.
The so-called high load of the catalyst was used to increase the amount of CH. The liquid concentrations of ACH, acetone and HAM were measured by liquid chromatography, and the concentration of hydrocyanic acid was measured by silver nitrate titration.

【0018】製造例 ・ACHの調製 反応器(ガラス製丸底フラスコ、内容量2 lit;還流冷
却器、撹拌機、温度計及び液導入部付き)にアセトン 5
80gと2%水酸化ナトリウム水溶液 10 gを仕込み、20
℃を維持しながら液体青酸 284gを注入した。反応後、
硫酸を添加し液のpHを 3.0に調製した。次に、未反応
の青酸とアセトンを減圧留去し、99.8%ACH 843gを
得た。
Production Example-Preparation of ACH Acetone was added to a reactor (glass round bottom flask, content 2 lit; reflux condenser, stirrer, thermometer and liquid introduction part).
Charge 80g and 10g of 2% sodium hydroxide solution,
284 g of liquid hydrocyanic acid was injected while maintaining the temperature. After the reaction
Sulfuric acid was added to adjust the pH of the solution to 3.0. Next, unreacted hydrocyanic acid and acetone were distilled off under reduced pressure to obtain 843 g of 99.8% ACH.

【0019】・HAMの生成(連続水和反応、触媒の高
負荷) 懸濁型反応器(ガラス製丸底フラスコ、内容量 500 ml
;ガラス撹拌棒、水銀温度計、原料供給口、及び、ガ
ラスボールフィルター付きの液出口を備える)に、電解
二酸化マンガンの粉末触媒 50 gと水 300gを充填した
後、内温を 60 ℃まで上げ、この温度に攪拌下保持し
た。次に、上記で得たACHを用い、17.1%ACHのア
セトン水溶液(ACH:アセトン:水=1:1.5 :18モ
ル比)を定量ポンプによって 37 g/hr の流量で反応器
に連続的に供給した。反応器内は 58 〜62℃に維持し、
また、反応器内の液量は 290〜310 mlの範囲に調整し、
1週間連続運転した。得られるHAM生成液中、各成分
の濃度は、1週間の平均値では次のとおりである。 ACH・・11.5% ,アセトン・・18.4% ,HAM・・5.
3 % ,青酸・・0.4 % 水・・64.4% したがって、ACH転化率は 33 モル%、HAM選択率
は 78 モル%、及び、青酸選択率は 22 モル%であっ
た。
Production of HAM (continuous hydration reaction, high load of catalyst) Suspension type reactor (glass round bottom flask, internal capacity 500 ml)
A glass stirring bar, a mercury thermometer, a raw material supply port, and a liquid outlet equipped with a glass ball filter) are charged with 50 g of electrolytic manganese dioxide powder catalyst and 300 g of water, and then the internal temperature is raised to 60 ° C. , Kept at this temperature with stirring. Next, using the ACH obtained above, an acetone aqueous solution of 17.1% ACH (ACH: acetone: water = 1: 1.5: 18 molar ratio) was continuously supplied to the reactor at a flow rate of 37 g / hr by a metering pump. did. Keep the temperature in the reactor at 58-62 ℃,
Also, adjust the liquid volume in the reactor to the range of 290-310 ml,
It was operated continuously for one week. The concentration of each component in the obtained HAM-producing solution is as follows, as an average value for one week. ACH ... 11.5%, Acetone ... 18.4%, HAM ... 5.
Therefore, the ACH conversion was 33 mol%, the HAM selectivity was 78 mol%, and the hydrocyanic acid selectivity was 22 mol%.

【0020】実施例 蒸留カラム(理論段数=3)を備えた熱分解反応器(容
量 500ml)に、上記で得たHAM生成液を 25 〜500 ml
/hr の流量で供給した。熱分解反応器の圧力、温度及び
液滞留時間と出口液のACH濃度及びACH分解率の関
係を表1(表1)に示した。なお、液の滞留時間は反応
器内の液量と入口液流量により、また、ACH分解率は
次の式により求めた。 ACH分解率(%)={(入口ACH流量−出口ACH
流量)/ (入口ACH流量)}×100
Example In a pyrolysis reactor (capacity 500 ml) equipped with a distillation column (theoretical plate number = 3), 25 to 500 ml of the HAM product solution obtained above was added.
It was supplied at a flow rate of / hr. Table 1 (Table 1) shows the relationship between the pressure, temperature and liquid retention time of the thermal decomposition reactor and the ACH concentration and ACH decomposition rate of the outlet liquid. The residence time of the liquid was determined by the amount of liquid in the reactor and the flow rate of the inlet liquid, and the ACH decomposition rate was determined by the following formula. ACH decomposition rate (%) = {(inlet ACH flow rate-outlet ACH
Flow rate) / (inlet ACH flow rate)} x 100

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明は、従来のマンガン酸化物触媒を
用いるACHの水和反応によるHAMの工業的連続製造
法において、水和反応器からのHAM生成液を熱分解反
応器に導入することにより、未反応のACHをほとんど
分解除去し、有毒なACHを含まない精HAM水溶液を
得、ひいては高純度のHAM結晶を得ることが可能にな
るばかりでなく、水和反応器でのACH転化率を自由に
設定できるため、非常に有効な方法である。
INDUSTRIAL APPLICABILITY The present invention is to introduce a HAM product solution from a hydration reactor into a thermal decomposition reactor in an industrial continuous production method of HAM by hydration reaction of ACH using a conventional manganese oxide catalyst. As a result, almost all unreacted ACH is decomposed and removed, and a toxic ACH-free purified HAM aqueous solution can be obtained, which in turn makes it possible to obtain high-purity HAM crystals, as well as the ACH conversion rate in the hydration reactor. This is a very effective method because you can freely set.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明する代表的なHAMの製造工程図
である。
FIG. 1 is a manufacturing process diagram of a typical HAM illustrating the present invention.

【符号の説明】[Explanation of symbols]

1;ACH 2;水 3;アセトン 4;水和反応器 5;HAM生成液 6;熱分解反応器 7;混合ガス 8;蒸留塔 9;凝縮器 10;アセトン・青酸混合液 11;精HAM水溶液 1; ACH 2; water 3; acetone 4; hydration reactor 5; HAM production liquid 6; thermal decomposition reactor 7; mixed gas 8; distillation column 9; condenser 10; acetone / hydrocyanic acid mixed liquid 11; pure HAM aqueous solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深山 兼光 千葉県茂原市東郷1900番地 三井東圧化学 株式会社内 (72)発明者 得能 伸司 千葉県茂原市東郷1900番地 三井東圧化学 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kanemitsu Miyama 1900, Togo, Mobara-shi, Chiba Mitsui Toatsu Chemical Co., Ltd. (72) Inventor Shinji Tokuno, 1900, Togo, Mobara-shi, Chiba Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マンガン酸化物触媒の反応器にアセトン
シアンヒドリンと水とを連続的に供給し水和反応させ、
反応器から流出するα−ヒドロキシイソ酪酸アミド生成
液を熱分解反応器に導入し、該熱分解反応器中、α−ヒ
ドロキシイソ酪酸アミド生成液を 80 〜100 ℃で2〜30
時間の範囲で滞留させ、アセトンシアンヒドリンの分解
したアセトンと青酸とを留去させることを特徴とするα
−ヒドロキシイソ酪酸アミドの製造方法。
1. A manganese oxide catalyst reactor is continuously supplied with acetone cyanohydrin and water for hydration reaction,
The α-hydroxyisobutyric acid amide product liquid flowing out of the reactor is introduced into the thermal decomposition reactor, and the α-hydroxyisobutyric acid amide product liquid is introduced into the thermal decomposition reactor at 80 to 100 ° C. for 2 to 30 ° C.
Α, which is characterized in that it is allowed to stay in the range of time to distill off the acetone and cyanic acid from which acetone cyanohydrin is decomposed.
-Method for producing hydroxyisobutyric acid amide.
JP4323427A 1992-12-02 1992-12-02 Production of alpha-hydroxyisobutyric acid amide Pending JPH06172283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4323427A JPH06172283A (en) 1992-12-02 1992-12-02 Production of alpha-hydroxyisobutyric acid amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323427A JPH06172283A (en) 1992-12-02 1992-12-02 Production of alpha-hydroxyisobutyric acid amide

Publications (1)

Publication Number Publication Date
JPH06172283A true JPH06172283A (en) 1994-06-21

Family

ID=18154563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323427A Pending JPH06172283A (en) 1992-12-02 1992-12-02 Production of alpha-hydroxyisobutyric acid amide

Country Status (1)

Country Link
JP (1) JPH06172283A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352720A1 (en) 2008-12-01 2011-08-10 Evonik Röhm GmbH Method for producing a carboxylic acid amide from a carbonyl compound and hydrocyanic acid
WO2015008740A1 (en) 2013-07-16 2015-01-22 三菱瓦斯化学株式会社 METHOD FOR PRODUCING α-HYDROXYISOBUTYRIC ACID AMIDE AND REACTOR

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352720A1 (en) 2008-12-01 2011-08-10 Evonik Röhm GmbH Method for producing a carboxylic acid amide from a carbonyl compound and hydrocyanic acid
KR20110090993A (en) * 2008-12-01 2011-08-10 에보니크 룀 게엠베하 Method for producing a carboxylic acid amide from a carbonyl compound and hydrocyanic acid
JP2012510485A (en) * 2008-12-01 2012-05-10 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing carboxylic acid amide from carbonyl compound and hydrogen cyanide
TWI471291B (en) * 2008-12-01 2015-02-01 Evonik Roehm Gmbh Process for preparing a carboxamide from a carbonyl compound and hydrogen cyanide
US8975440B2 (en) 2008-12-01 2015-03-10 Evonik Roehm Gmbh Method for producing a carboxylic acid amide from a carbonyl compound and hydrocyanic acid
EP2352720B1 (en) * 2008-12-01 2017-12-20 Evonik Röhm GmbH Method for producing a carboxylic acid amide from a carbonyl compound and hydrocyanic acid
WO2015008740A1 (en) 2013-07-16 2015-01-22 三菱瓦斯化学株式会社 METHOD FOR PRODUCING α-HYDROXYISOBUTYRIC ACID AMIDE AND REACTOR
KR20160032094A (en) 2013-07-16 2016-03-23 미츠비시 가스 가가쿠 가부시키가이샤 METHOD FOR PRODUCING α-HYDROXYISOBUTYRIC ACID AMIDE AND REACTOR
US9718761B2 (en) 2013-07-16 2017-08-01 Mitsubishi Gas Chemical Company, Inc Method for producing A-hydroxyisobutyric acid amide and reactor
US10364213B2 (en) 2013-07-16 2019-07-30 Mitsubishi Gas Chemical Company, Inc. Method for producing α-hydroxyisobutyric acid amide and reactor

Similar Documents

Publication Publication Date Title
US4308108A (en) Process for purification of crude acetonitrile
EP0686623A1 (en) Process for producing methyl methacrylate
JP2859395B2 (en) Continuous production of dialkyl carbonate
US4387082A (en) Removal of nitrous oxide from exit gases containing this compound during the production of hydroxylammonium salts
US3956387A (en) Manufacture of concentrated aqueous (meth)acrylamide solutions by catalytic addition of water to (meth)acrylonitrile
JP3394981B2 (en) Method for producing free hydroxylamine aqueous solution
JPH06172283A (en) Production of alpha-hydroxyisobutyric acid amide
KR100390079B1 (en) Preparation of benzophennone imines
JP3318992B2 (en) Method for producing N- (α-alkoxyethyl) formamide
US3007853A (en) Process for purifying acrylonitrile
JPH0853393A (en) Continuous production of methyl methacrylate
JPH06184072A (en) Method for purifying alpha-hydroxyisobutyramide
US3803206A (en) Process for purifying adiponitrile containing oxidizable impurities
EP0625519B1 (en) Method for the production of alkylene carbonates
JPH0239502B2 (en) MONOMECHIRUHIDORAJINNOKAISHUHOHO
US5523472A (en) Process for the preparation of 5-fluoroanthranilic acid
US5093510A (en) Process for producing copper formate
CA2040109A1 (en) Process for producing potassium sulfate and hydrochloric acid
JPH0324021A (en) Production of 5-tert-butyl-m-xylene
JP3865577B2 (en) Method for producing trifluoromethanesulfonic anhydride
JPS58120507A (en) Continuous manufacture of hydrazine
JP2729219B2 (en) Method for producing 2,2,6,6-tetramethyl-4-oxopiperidine
US2953435A (en) Method of preparing cyanogen
JPH04149164A (en) Production of alpha-hydroxyisobutylamide
JPH072709B2 (en) Method for producing chlorosulfonyl isocyanate