JPH06168887A - Thermal oxidation of semiconductor wafer - Google Patents

Thermal oxidation of semiconductor wafer

Info

Publication number
JPH06168887A
JPH06168887A JP32004192A JP32004192A JPH06168887A JP H06168887 A JPH06168887 A JP H06168887A JP 32004192 A JP32004192 A JP 32004192A JP 32004192 A JP32004192 A JP 32004192A JP H06168887 A JPH06168887 A JP H06168887A
Authority
JP
Japan
Prior art keywords
wafer
thermal oxidation
semiconductor wafer
cvd
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32004192A
Other languages
Japanese (ja)
Inventor
Tetsuji Kai
哲治 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32004192A priority Critical patent/JPH06168887A/en
Publication of JPH06168887A publication Critical patent/JPH06168887A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a thermal oxidation method for semiconductor wafer in which a constant resistance can be attained over the entire surface of wafer while preventing n-type contamination by depositing a silicon based film on the surface of a semiconductor wafer by CVD prior to thermal oxidation processing. CONSTITUTION:Cleaning step proceeds in the order of light etching - SC-1 (ammonium hydrogen peroxide) cleaning for removing organic dust-SC-2 (sulfuric acid hydrogen peroxide) cleaning for removing metallic dust - light etching. SiO2 is then deposited on the surface of a silicon wafer by CVD. The silicon wafer is then cleaned and placed in a thermal oxidation furnace into which HCl, O2, N2 gases are introduced thus forming an oxide through thermal oxidation. This method provides a substantially constant sheet resistivity without causing n-type contamination of wafer regardless of the set position of wafer in the furnace or flow rate of oxidation gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体ウェハの熱酸
化方法に関し、特に半導体ウェハの抵抗値の変動を防止
する熱処理技術に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for thermally oxidizing a semiconductor wafer, and more particularly to a heat treatment technique for preventing fluctuations in the resistance value of the semiconductor wafer.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
シリコンベアウェハに酸化膜を成長させる方法として
は、シリコンウェハをSC−1(アンモニア過水),S
C−2(硫酸過水)で洗浄して、有機系ダスト,金属系
ダストを除去した後、炉に入れて熱酸化によりSiO膜
を成長させる方法がとられている。その際、クリーンル
ームがn型化物質(例えばリン)で汚染され易いことは
周知の通りである。このため、酸化炉周辺の雰囲気,炉
材からシリコンウェハに汚染が及びこの汚染物のウェハ
内拡散が生じたり、ウェハ自身が持ち込む汚染物質等が
原因でウェハのシート抵抗値が、熱酸化炉のウェハ出し
入れ用のシャッタ側で急激に低下する問題がある。これ
は、熱酸化炉が、奥行き方向に複数の平行配置されたウ
ェハを入れるようになっているため、炉の入口側のウェ
ハは炉に挿入される際に炉周辺の雰囲気に長い時間晒さ
れるためである。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a method of growing an oxide film on a silicon bare wafer, a silicon wafer is SC-1 (ammonia hydrogen peroxide), S
After cleaning with C-2 (sulfuric acid / hydrogen peroxide) to remove organic dust and metal dust, a method is used in which the dust is put into a furnace to grow a SiO film by thermal oxidation. At that time, it is well known that the clean room is easily contaminated with an n-type substance (for example, phosphorus). Therefore, due to the atmosphere around the oxidation furnace, the contamination of the silicon wafer from the furnace material, the diffusion of this contaminant within the wafer, and the contaminants brought into the wafer itself, the sheet resistance value of the wafer is There is a problem that the shutter for wafer loading / unloading drops sharply. This is because the thermal oxidation furnace is designed to accommodate a plurality of wafers arranged in parallel in the depth direction, so that the wafer on the inlet side of the furnace is exposed to the atmosphere around the furnace for a long time when it is inserted into the furnace. This is because.

【0003】このような問題の対策として、主熱酸化の
前の段階(例えばウェハのロード中)に薄い(20Å程
度)熱酸化膜を形成させ、n型化物質がウェハ内に拡散
するのを阻止したN型化を防止しようとする試みもある
が、このような薄い膜ではn型化物質の拡散を阻止する
ことはできず、電荷結合形撮像素子(CCD)のような
不純物プロファイルに敏感なデバイスでは不十分である
し、高集積化した次世代メモリでも同様である。
As a measure against such a problem, a thin (about 20 Å) thermal oxide film is formed before the main thermal oxidation (for example, during wafer loading) so that the n-type material diffuses into the wafer. Some attempts have been made to prevent the blocked N-type, but such a thin film cannot prevent the diffusion of the n-type substance, and is sensitive to the impurity profile of the charge-coupled image sensor (CCD). Such devices are not enough, and the same is true for highly integrated next-generation memories.

【0004】本発明は、このような従来の問題点に着目
して創案されたものであって、n型化汚染を防止すると
共に、一定の抵抗値をウェハ全面で得られる半導体ウェ
ハの熱酸化方法を提供することを、その目的としてい
る。
The present invention was devised in view of such conventional problems, and prevents thermal contamination of n-type and thermal oxidation of a semiconductor wafer capable of obtaining a constant resistance value over the entire surface of the wafer. Its purpose is to provide a method.

【0005】[0005]

【課題を解決するための手段】本出願の請求項1記載の
発明は、半導体ウェハの表面に熱酸化処理を施して酸化
膜を形成する半導体ウェハの熱酸化方法において、前記
熱酸化処理を施す前に、前記半導体ウェハ表面にCVD
法にてシリコン系膜を堆積させておくことを、その解決
手段としている。
The invention according to claim 1 of the present application is a method of thermally oxidizing a semiconductor wafer, wherein the surface of the semiconductor wafer is thermally oxidized to form an oxide film. Before the CVD on the surface of the semiconductor wafer
A method of solving this is to deposit a silicon-based film by the method.

【0006】本出願の請求項2記載の発明は、半導体ウ
ェハ表面にCVD法にて形成されるシリコン系膜はSi
2膜であることを特徴とする。
According to the second aspect of the present invention, the silicon-based film formed on the surface of the semiconductor wafer by the CVD method is Si.
It is an O 2 film.

【0007】[0007]

【作用】本出願の請求項1記載の発明は、CVD法によ
りシリコン系膜と半導体ウェハ表面に堆積させることに
より、後工程である熱酸化処理の際に、例えばリン
(P)などのウェハをn型化させる物質のウェハ内への
拡散を阻止する作用を奏する。このため、汚染雰囲気等
に晒される時間の異なるウェハ間での抵抗値の一定化を
図ることが可能となる。
The invention according to claim 1 of the present application deposits a silicon-based film on the surface of a semiconductor wafer by the CVD method, so that a wafer of, for example, phosphorus (P) is removed during the subsequent thermal oxidation treatment. It has an effect of preventing diffusion of a substance to be n-type into the wafer. Therefore, it is possible to make the resistance value constant between the wafers that are exposed to the contaminated atmosphere or the like for different times.

【0008】本出願の請求項2記載の発明は、熱酸化処
理の際にCVD−SiO膜が汚染物質の侵入を防止す
る。このCVD−SiO2におけるリン(P)の拡散係
数は、1100℃で0.1と小さいため、CVD−Si
2膜内をリン(P)が拡散しにくく、半導体ウェハへ
のリン(P)の到達を阻止する作用が高い。
According to the second aspect of the present invention, the CVD-SiO film prevents the entry of contaminants during the thermal oxidation process. Since the diffusion coefficient of phosphorus (P) in this CVD-SiO 2 is as small as 0.1 at 1100 ° C., the CVD-Si
Phosphorus (P) is less likely to diffuse in the O 2 film and has a high effect of preventing the arrival of phosphorus (P) to the semiconductor wafer.

【0009】[0009]

【実施例】以下、本発明に係る半導体ウェハの熱酸化方
法の詳細を図面に示す。実施例に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the method for thermally oxidizing a semiconductor wafer according to the present invention are shown in the drawings below. A description will be given based on examples.

【0010】本実施例は、シリコンベアウェハを用意
し、図1のフローチャートに示すようなプロセスを行っ
た。
In this example, a silicon bare wafer was prepared and the process shown in the flow chart of FIG. 1 was performed.

【0011】先ず、洗浄は、ライトエッチ→有機系ダク
トを除去するSC−1(アンモニア過水)洗浄→金属系
ダクトを除去するSC−2(硫酸過水)洗浄→ライトエ
ッチの順で行った。
First, the cleaning was carried out in the order of light etching → SC-1 (ammonia / hydrogen peroxide) cleaning for removing the organic duct → SC-2 (sulfuric acid / hydrogen peroxide) cleaning for removing the metal duct → light etch. .

【0012】次に、シリコンウェハの表面にCVD法に
よりSiO2膜を膜厚500Åに堆積させる。このCV
D条件は、以下に示す通りである。
Next, a SiO 2 film is deposited on the surface of the silicon wafer by the CVD method so as to have a film thickness of 500 Å. This CV
The D condition is as shown below.

【0013】(CVDの条件) ・常圧CVD ・CVDガス−SiH4,O2、SiH4:O2=1:11 ・キャリアガス−N2 ・温度−410℃ 次に、洗浄を施した後、シシリコンウェハを熱酸化炉に
入れ、Hcl,O2,N2ガスを導入し、熱酸化して膜厚
1800Åの酸化膜を形成する。このようにして熱酸化
されたシリコンウェハは、汚染物質がCVD−SiO2
膜でブロックされるため、ウェハ内に不純物が拡散され
るため、ウェハ内に不純物が拡散されることがない。
[0013] (CVD conditions) and normal pressure CVD, CVD gas -SiH 4, O 2, SiH 4 : O 2 = 1: 11 · carrier gas -N 2 - Temperature -410 ° C. Then, after performing cleaning , SiSi wafer is put into a thermal oxidation furnace, Hcl, O 2 and N 2 gases are introduced and thermally oxidized to form an oxide film with a thickness of 1800Å. In the silicon wafer thermally oxidized in this manner, contaminants are CVD-SiO 2
Since the film is blocked, the impurities are diffused in the wafer, so that the impurities are not diffused in the wafer.

【0014】次に、このような方法で処理されたウェハ
の評価をするため、以下に示す評価方法でシート抵抗測
定を行った。
Next, in order to evaluate the wafer processed by such a method, the sheet resistance was measured by the following evaluation method.

【0015】(1)シリコンウェハは、高抵抗Psub
>1000Ω・cmを用いる。
(1) The silicon wafer has a high resistance Psub.
> 1000 Ω · cm is used.

【0016】(2)前洗浄(ライトエッチ→SC−1→
SC−2→ライトエッチ) (3)CVD−SiO2膜を膜厚500Åと1000Å
のサンプルを作る。
(2) Pre-cleaning (light etch → SC-1 →
(SC-2 → light etch) (3) CVD-SiO 2 film thickness of 500Å and 1000Å
Make a sample of.

【0017】(4)塩酸酸化で膜厚1800Åの酸化膜
プルを作る。このとき、微O2140ccと650cc
とした条件のサンプルを作る。
(4) An oxide film pull having a film thickness of 1800Å is formed by hydrochloric acid oxidation. At this time, slight O 2 140cc and 650cc
Make a sample of the conditions.

【0018】(5)酸化膜をバッファフッ酸で除去す
る。
(5) The oxide film is removed with buffer hydrofluoric acid.

【0019】(6)シート抵抗測定(オムニマップVR
−30) この測定結果を図2〜図6のグラフに示している。図2
及び図3は、シート抵抗のバラツキ及び最小値を示して
いる。
(6) Sheet resistance measurement (Omnimap VR
-30) The measurement results are shown in the graphs of FIGS. Figure 2
3 and FIG. 3 show the variation and the minimum value of the sheet resistance.

【0020】また、図4〜図6は、ウェハ内のシート抵
抗(ソース側,センター,炉入口側)を示している。
4 to 6 show the sheet resistance (source side, center, furnace inlet side) in the wafer.

【0021】図2に示すシート抵抗のバラツキ度を示す
グラフでは、CVD−SiO2膜を500Åの膜厚で覆
ったウェハが最もシート抵抗値が高くなることが判る。
しかし、比較例に対しては、大幅にシート抵抗値の上昇
を抑えることが判る。また、炉ソース側(S),炉セン
ター(C),炉入口側(H)での抵抗値のバラツキは小
さい。さらに、微O2の流量は、650ccよりも14
0ccの方がn型化に寄与しないことが判った。
From the graph showing the variation of the sheet resistance shown in FIG. 2, it can be seen that the wafer having the CVD-SiO 2 film covered with a film thickness of 500 Å has the highest sheet resistance value.
However, it can be seen that the increase in the sheet resistance value is significantly suppressed as compared with the comparative example. In addition, the variations in the resistance values on the furnace source side (S), the furnace center (C), and the furnace inlet side (H) are small. Furthermore, the flow rate of slight O 2 is 14 rather than 650 cc.
It was found that 0 cc did not contribute to n-type conversion.

【0022】図3に示すシート抵抗最小値を示すグラフ
からは、比較例の抵抗値のバラツキが大きいことが判
る。また、CVD−SiO2膜を500Å膜厚で覆った
ウェハは、熱酸化炉内のセット位置に関係なく、抵抗値
の面内のバラツキ度は小さく、良好な結果であった。
From the graph showing the minimum sheet resistance value shown in FIG. 3, it can be seen that there is a large variation in the resistance value of the comparative example. Further, the wafer in which the CVD-SiO 2 film was covered with a film thickness of 500 Å had a small in-plane variation of the resistance value regardless of the setting position in the thermal oxidation furnace, which was a good result.

【0023】図4〜図6のグラフからは、比較例でシー
ト抵抗値はかなり高い値である(一部測定不可能)オリ
エンテーションフラット側で急激な抵抗値の低下を示
し、n型化していることが判る。しかし、CVD−Si
2膜を覆ったウェハでは、面内で大きな抵抗値の変化
はなく、均一値であり、オリエンテーションフラット側
での抵抗値の低下はみられなかった。よって、n型化し
ていないことが判る。
From the graphs of FIGS. 4 to 6, in the comparative example, the sheet resistance value is considerably high (partially unmeasurable), which shows a sharp decrease in the resistance value on the orientation flat side, which is an n-type. I understand. However, CVD-Si
In the wafer covered with the O 2 film, there was no large change in the resistance value in the plane, the resistance value was uniform, and the resistance value on the orientation flat side did not decrease. Therefore, it is understood that it is not n-type.

【0024】以上、実施例について説明したが、本発明
は、これに限定されるものではなく、構成の要旨に付随
する各種の設計変更が可能である。
Although the embodiment has been described above, the present invention is not limited to this, and various design changes accompanying the gist of the configuration can be made.

【0025】例えば、上記実施例においては、CVD−
SiO2を500Åに設定したが、不純物の侵入をブロ
ックする作用を考慮すると、その膜厚は200Å〜20
00Åの範囲で可能であろう。
For example, in the above embodiment, the CVD-
Although SiO 2 was set to 500Å, the film thickness is 200Å to 20 considering the effect of blocking the invasion of impurities.
It will be possible in the range of 00Å.

【0026】また、上記実施例においては、常圧CVD
法にてSiO2膜を堆積させたが、この他ECR−CV
D法等の手段で堆積させてもよい。
In the above embodiment, atmospheric pressure CVD is used.
A SiO 2 film was deposited by the method of ECR-CV.
It may be deposited by means such as the D method.

【0027】さらに、上記実施例においては、シリコン
系膜としてSiO2膜を用いたが、CVD法によるポリ
シリコン膜を用いることも可能である。しかし、ポリシ
リコンにおけるリン(P)の拡散係数は1100℃で
0.6とSiO2よりは大きいため、不純物の侵入を阻
止する効果はやや薄い。
Further, in the above embodiment, the SiO 2 film is used as the silicon-based film, but it is also possible to use a polysilicon film by the CVD method. However, since the diffusion coefficient of phosphorus (P) in polysilicon is 0.6 at 1100 ° C., which is larger than that of SiO 2 , the effect of preventing the intrusion of impurities is slightly small.

【0028】また、ウェハの熱酸化炉は上記したもので
なくてもよく、熱酸化の各種類に本発明を適用し得るこ
とは言うまでもない。
Further, it goes without saying that the thermal oxidation furnace for the wafer may not be the one described above, and the present invention can be applied to each type of thermal oxidation.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、請求項
1及び請求項2記載の発明によれば、炉内のウェハセッ
ト位置,酸化ガス流量に影響されず、ウェハがn型化汚
染されずに、ほぼ一定の面内抵抗値を得るようにできる
効果がある。このように、酸化膜形成時のウェハへの不
純物拡散を抑えたことにより、素子特性の良好な半導体
装置を作製できる効果を奏する。
As is apparent from the above description, according to the inventions of claims 1 and 2, the wafer is n-type contaminated without being influenced by the wafer set position in the furnace and the flow rate of the oxidizing gas. The effect is that a substantially constant in-plane resistance value can be obtained. As described above, by suppressing the diffusion of impurities into the wafer when the oxide film is formed, it is possible to produce a semiconductor device having good element characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のフローチャート。FIG. 1 is a flowchart of an embodiment of the present invention.

【図2】シート抵抗のバラツキ度を示すグラフ。FIG. 2 is a graph showing the degree of variation in sheet resistance.

【図3】シート抵抗最小値を示すグラフ。FIG. 3 is a graph showing the minimum sheet resistance value.

【図4】炉ソース側にセットしたウェハのウェハ内シー
ト抵抗を示すグラフ。
FIG. 4 is a graph showing in-wafer sheet resistance of a wafer set on the furnace source side.

【図5】炉センターにセットしたウェハのウェハ内シー
ト抵抗を示すグラフ。
FIG. 5 is a graph showing in-wafer sheet resistance of a wafer set in a furnace center.

【図6】炉入口側にセットしたウェハのウェハ内シート
抵抗を示すグラフ。
FIG. 6 is a graph showing the in-wafer sheet resistance of a wafer set on the furnace inlet side.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウェハの表面に熱酸化処理を施し
て酸化膜を形成する半導体ウェハの熱酸化方法におい
て、 前記熱酸化処理を施す前に、前記半導体ウェハ表面にC
VD法にてシリコン系膜を堆積させておくことを特徴と
する半導体ウェハの熱酸化方法。
1. A method for thermal oxidation of a semiconductor wafer, which comprises subjecting a surface of a semiconductor wafer to a thermal oxidation treatment to form an oxide film, wherein the surface of the semiconductor wafer is subjected to C oxidation before the thermal oxidation treatment.
A thermal oxidation method for a semiconductor wafer, which comprises depositing a silicon-based film by a VD method.
【請求項2】 前記シリコン系膜は、SiO2膜である
請求項1記載に係る半導体ウェハの熱酸化方法。
2. The thermal oxidation method for a semiconductor wafer according to claim 1, wherein the silicon-based film is a SiO 2 film.
JP32004192A 1992-11-30 1992-11-30 Thermal oxidation of semiconductor wafer Pending JPH06168887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32004192A JPH06168887A (en) 1992-11-30 1992-11-30 Thermal oxidation of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32004192A JPH06168887A (en) 1992-11-30 1992-11-30 Thermal oxidation of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH06168887A true JPH06168887A (en) 1994-06-14

Family

ID=18117084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32004192A Pending JPH06168887A (en) 1992-11-30 1992-11-30 Thermal oxidation of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH06168887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411344A (en) * 2017-08-18 2019-03-01 英飞凌科技股份有限公司 Semiconductor devices and manufacture including CZ semiconductor body include the method for the semiconductor devices of CZ semiconductor body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411344A (en) * 2017-08-18 2019-03-01 英飞凌科技股份有限公司 Semiconductor devices and manufacture including CZ semiconductor body include the method for the semiconductor devices of CZ semiconductor body
JP2019062189A (en) * 2017-08-18 2019-04-18 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device including cz semiconductor body and manufacturing method thereof
CN109411344B (en) * 2017-08-18 2024-01-02 英飞凌科技股份有限公司 Semiconductor device comprising a CZ semiconductor body and method for manufacturing a semiconductor device comprising a CZ semiconductor body

Similar Documents

Publication Publication Date Title
US20050148162A1 (en) Method of preventing surface roughening during hydrogen pre-bake of SiGe substrates using chlorine containing gases
JPH0715889B2 (en) Method for controlling interfacial oxide at polycrystalline / single crystalline silicon interface and device derived therefrom
US5637528A (en) Semiconductor device manufacturing method including dry oxidation
KR20100005126A (en) Process for producing semiconductor device
US5894037A (en) Silicon semiconductor substrate and method of fabricating the same
US5956570A (en) Method of manufacturing semiconductor substrate and method of manufacturing solid state imaging device
JPH06168887A (en) Thermal oxidation of semiconductor wafer
JP5336070B2 (en) Improved method of selective epitaxial growth process.
US5928786A (en) Monocrystalline silicon wafer and method of thermally oxidizing a surface thereof
US6800538B2 (en) Semiconductor device fabrication method and semiconductor fabrication control method
US6806202B2 (en) Method of removing silicon oxide from a surface of a substrate
JP3578063B2 (en) Pretreatment method for Si wafer and semiconductor wafer
US6569695B1 (en) Method for monitoring particles and defects on wafer surface and in process
JPH11297689A (en) Heat treatment of silicon insulating film and manufacture of semiconductor device
JPH07221034A (en) Manufacture of semiconductor device
JPH11176828A (en) Forming method for silicon oxide film
JP4305800B2 (en) Method for evaluating nitride on silicon wafer surface
JPS5927529A (en) Fabrication of semiconductor device wafer
JPH0513395A (en) Silicon wafer and cleaning method
JP3512179B2 (en) Temperature measuring method and temperature measuring substrate used therefor
JPH04258115A (en) Manufacture of semiconductor substrate
JPH05235006A (en) Epitaxial wafer forming method
JPH05206145A (en) Manufacture of semiconductor device
JPS60175417A (en) Manufacture of semiconductor device
JPH0684865A (en) Dry cleaning of semiconductor device