JPH06167728A - Nonlinear optical material and its production - Google Patents

Nonlinear optical material and its production

Info

Publication number
JPH06167728A
JPH06167728A JP32157592A JP32157592A JPH06167728A JP H06167728 A JPH06167728 A JP H06167728A JP 32157592 A JP32157592 A JP 32157592A JP 32157592 A JP32157592 A JP 32157592A JP H06167728 A JPH06167728 A JP H06167728A
Authority
JP
Japan
Prior art keywords
fine particles
metal
particulates
oxide thin
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32157592A
Other languages
Japanese (ja)
Other versions
JP2795590B2 (en
Inventor
Yoshio Manabe
由雄 真鍋
Ayumi Tsujimura
歩 辻村
Ichiro Tanahashi
一郎 棚橋
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4321575A priority Critical patent/JP2795590B2/en
Publication of JPH06167728A publication Critical patent/JPH06167728A/en
Application granted granted Critical
Publication of JP2795590B2 publication Critical patent/JP2795590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a nonlinear optical material having the large value of a cubic nonlinear sensitivity (3) by separating metallic particulates of at least one of metals selected from copper (Cu) and silver (Aq) by the oxide thin films of the above-mentioned metals, thereby uniformly dispersing the metallic particulates at a high density into the thin films. CONSTITUTION:The Cu particulates 2 are formed on a quartz glass substrate 1. The Cu particulates 2 are oxidized to form the oxide thin films on the surfaces of the Cu particulates 2. Electron cyclotron resonance (ECR) plasma of gaseous oxygen is used as means for oxidizing the surfaces of the Cu particulates 2 in such a case. The Cu particulates 2 are again formed on the oxide thin films 3 and the surfaces of the Cu particulates 2 are oxidized by the ECR plasma. The nonlinear optical material is produced by alternately repeating plural times the formation of the Cu particulates 2 and the oxidation of the surfaces of the Cu particulates (the formation of the oxide thin films 2) in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学効果を利用
した光デバイスの素子として有用な金属微粒子が分散し
ている非線形光学材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical material in which fine metal particles useful as an element of an optical device utilizing the non-linear optical effect are dispersed, and a method for producing the same.

【0002】[0002]

【従来の技術】ガラス中に金属微粒子を分散させること
により、光学非線形性、特に3次の非線形感受率χ(3)
が大きくなることが、オプティクス レターズ第10巻
第511頁(Optics Letters,10,
p.511(1985))に記載されている。この場
合、金属微粒子としては、Au、Agが用いられてお
り、金属微粒子分散ガラスの製造方法としては、金属塩
の還元法が採用されている。また、溶融法を用いて金属
微粒子をガラスの原料に混入し、その後熱処理を施して
特定の金属を析出させることにより、金、銀、銅などの
金属コロイドが析出した「着色ガラス」と呼ばれる金属
微粒子分散ガラスも製造されている。
2. Description of the Related Art By dispersing fine metal particles in glass, optical nonlinearity, especially third-order nonlinear susceptibility χ (3)
Optics letters, vol. 10, p. 511 (Optics Letters, 10,
p. 511 (1985)). In this case, Au and Ag are used as the metal fine particles, and a metal salt reduction method is used as a method for producing the metal fine particle-dispersed glass. In addition, a metal called “colored glass” in which metal colloids such as gold, silver, and copper are deposited by mixing fine metal particles into a glass raw material using a melting method and then performing heat treatment to deposit a specific metal. Fine particle dispersed glass is also manufactured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うにして製造された金属微粒子分散ガラスの3次の非線
形感受率χ(3) は10-13 〜10-12 esuであり、他
の非線形光学材料に比べて非常に小さい。これは、金属
微粒子の分散量が5ppm以下であるため、3次の非線
形感受率χ(3) の値が小さくなっているものと考えられ
る。一方、従来の製造方法で分散量を増加させると、均
一に分散させることができなかった。
However, the third-order nonlinear susceptibility χ (3) of the metal fine particle-dispersed glass thus produced is 10 -13 to 10 -12 esu, and other nonlinear optical materials are used. Very small compared to. It is considered that this is because the value of the third-order nonlinear susceptibility χ (3) is small because the dispersion amount of the metal fine particles is 5 ppm or less. On the other hand, when the amount of dispersion was increased by the conventional manufacturing method, it was not possible to disperse uniformly.

【0004】また、金属微粒子とガラスの形成を独立に
制御した場合においても、金属微粒子の分散量を増加さ
せるには限界があった。なぜなら、金属微粒子どうしを
分離させるためには、どうしてもガラスの厚みを微粒子
の直径の数倍程度にしなくてはならないからである。
Further, even when the formation of the metal fine particles and the glass are controlled independently, there is a limit in increasing the dispersion amount of the metal fine particles. This is because in order to separate the metal fine particles from each other, the thickness of the glass must be about several times the diameter of the fine particles.

【0005】本発明は、前記従来技術の課題を解決する
ため、金属微粒子が薄膜中に高密度かつ均一に分散した
非線形光学材料及びその製造方法を提供することを目的
とする。
In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a non-linear optical material in which metal fine particles are uniformly dispersed in a thin film with high density and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る非線形光学材料は、銅(Cu)及び銀
(Ag)から選ばれる少なくとも一つの金属の微粒子ど
うしが前記金属の酸化物薄膜によって分離され、かつ、
前記金属微粒子が分散されて層状構造をなすことを特徴
とする。
In order to achieve the above object, the non-linear optical material according to the present invention is such that at least one metal fine particle selected from copper (Cu) and silver (Ag) is an oxide of the metal. Separated by a thin film, and
The metal fine particles are dispersed to form a layered structure.

【0007】前記構成においては、金属微粒子の大きさ
が0.5〜20nmの範囲であり、かつ、酸化物薄膜の
膜厚が0.5〜50nmの範囲であることが好ましい。
また、本発明に係る非線形光学材料の製造方法は、銅
(Cu)及び銀(Ag)から選ばれる少なくとも一つの
金属の微粒子どうしを前記金属の酸化物薄膜によって分
離して非線形光学材料を製造する方法であって、金属微
粒子を形成した後、前記金属微粒子の表面を酸化させる
工程を繰り返すことを特徴とする。
In the above structure, it is preferable that the size of the metal fine particles is in the range of 0.5 to 20 nm and the film thickness of the oxide thin film is in the range of 0.5 to 50 nm.
Further, in the method for producing a nonlinear optical material according to the present invention, fine particles of at least one metal selected from copper (Cu) and silver (Ag) are separated by the oxide thin film of the metal to produce the nonlinear optical material. The method is characterized in that after forming the metal fine particles, the step of oxidizing the surface of the metal fine particles is repeated.

【0008】前記本発明方法の構成においては、金属微
粒子の大きさが0.5〜20nmの範囲であり、かつ、
酸化物薄膜の膜厚が0.5〜50nmの範囲であること
が好ましい。
In the above-mentioned method of the present invention, the size of the metal fine particles is in the range of 0.5 to 20 nm, and
The film thickness of the oxide thin film is preferably in the range of 0.5 to 50 nm.

【0009】また、前記本発明方法の構成においては、
金属微粒子を酸化させる手段として、酸化性気体の電子
サイクロトロン共鳴(ECR)プラズマを用いることが
好ましい。
Further, in the constitution of the method of the present invention,
It is preferable to use electron cyclotron resonance (ECR) plasma of an oxidizing gas as a means for oxidizing the metal fine particles.

【0010】[0010]

【作用】前記本発明の構成によれば、銅(Cu)又は銀
(Ag)の酸化物であるCu2O又はAg2 Oが光学的
活性領域で透明であるために、銅(Cu)又は銀(A
g)の金属微粒子が高密度かつ均一に分散した非線形光
学材料を得ることができ、その結果、3次の非線形感受
率χ(3) の値を大きくすることができる。
According to the above-mentioned constitution of the present invention, since Cu 2 O or Ag 2 O which is an oxide of copper (Cu) or silver (Ag) is transparent in the optically active region, copper (Cu) or Silver (A
It is possible to obtain a non-linear optical material in which the metal fine particles of g) are densely and uniformly dispersed, and as a result, the value of the third-order non-linear susceptibility χ (3) can be increased.

【0011】また、本発明方法の構成によれば、金属微
粒子を形成した後、前記金属微粒子を酸化させるもので
あるため、銅(Cu)又は銀(Ag)の酸化物であるC
2O又はAg2 Oを容易に形成して、金属微粒子どう
しを分離することができる。また、金属微粒子の形成と
金属微粒子の表面の酸化(酸化物薄膜の形成)を行う工
程を繰り返すので、金属微粒子形成後に従来の合成方法
で酸化物薄膜を形成するのに比べて、酸化物薄膜を均一
にかつ薄く形成でき、その結果、金属微粒子を高密度に
分散させることができる。
Further, according to the constitution of the method of the present invention, since the metal fine particles are formed and then the metal fine particles are oxidized, C which is an oxide of copper (Cu) or silver (Ag) is used.
u 2 O or Ag 2 O can be easily formed to separate the metal fine particles from each other. In addition, since the steps of forming the metal fine particles and oxidizing the surface of the metal fine particles (formation of the oxide thin film) are repeated, the oxide thin film can be formed as compared with the case of forming the oxide thin film by the conventional synthesis method after the metal fine particles are formed. Can be formed uniformly and thinly, and as a result, the metal fine particles can be dispersed at a high density.

【0012】本発明方法の構成において、金属微粒子を
酸化させる手段として、酸化性気体の電子サイクロトロ
ン共鳴(ECR)プラズマを用いるという好ましい構成
によれば、酸化作用に重要な役割を果たす原子状酸素を
多量に発生でき、かつ、低圧(例えば、10-3〜10P
a)でプラズマを発生できるので、発生した原子状酸素
をCu又はAgの金属微粒子の表面まで他の粒子に衝突
させることなく輸送でき、その結果、金属微粒子の表面
を確実かつ容易に酸化することができる。
In the method of the present invention, according to a preferred structure in which electron cyclotron resonance (ECR) plasma of an oxidizing gas is used as a means for oxidizing the metal fine particles, atomic oxygen which plays an important role in the oxidizing action is removed. A large amount can be generated and low pressure (for example, 10 -3 to 10 P)
Since the plasma can be generated in a), the generated atomic oxygen can be transported to the surface of the Cu or Ag metal fine particles without colliding with other particles, and as a result, the surface of the metal fine particles can be reliably and easily oxidized. You can

【0013】[0013]

【実施例】金属微粒子分散ガラスにおける非線形光学効
果は、光照射によって金属微粒子とガラスとの界面に発
生する表面プラズモンの吸収によって発現する。この表
面プラズモンは、金属の誘電関数の実部が負となる光学
的活性領域において発生する。光学的活性領域は可視光
領域から赤外光領域に亘り、また、表面プラズモンの共
鳴吸収ピークは、金属の誘電関数の実部の絶対値が金属
微粒子の周辺の材料の誘電率(屈折率の2乗)の2倍に
等しい波長において現れる。この条件を満たすものであ
れば、金属微粒子の周辺の材料としてはガラスでなくて
も光学的活性領域において透明であれば何でもよく、表
面プラズモンの共鳴吸収ピーク波長が半導体のバンドギ
ャップ内にあれば、半導体を使用することもできる。
[Example] The nonlinear optical effect in the glass in which metal particles are dispersed is exhibited by the absorption of surface plasmons generated at the interface between the metal particles and the glass by light irradiation. This surface plasmon occurs in the optically active region where the real part of the dielectric function of metal is negative. The optically active region extends from the visible light region to the infrared light region, and the resonance absorption peak of the surface plasmon is such that the absolute value of the real part of the dielectric function of the metal is the dielectric constant (refractive index of the refractive index of the material around the metal fine particles. It appears at a wavelength equal to twice (squared). As long as the material around the metal fine particles is satisfied, any material may be used as long as it is not glass but transparent in the optically active region, and the resonance absorption peak wavelength of the surface plasmon is within the band gap of the semiconductor. Alternatively, a semiconductor may be used.

【0014】従って、金属微粒子自身の化合物、特に製
作が容易な酸化物が光学的活性領域で透明であれば、金
属微粒子どうしを容易に分離でき、金属微粒子を高密度
に分散させることができる。
Therefore, if the compound of the metal fine particles themselves, especially the oxide which is easy to manufacture, is transparent in the optically active region, the metal fine particles can be easily separated from each other and the metal fine particles can be dispersed at a high density.

【0015】ところで、銅(Cu)の光学的活性領域は
400nmから赤外線領域まで広がっている。Cuの酸
化物は酸化物半導体のCu2 Oであり、その屈折率、バ
ンドギャップはそれぞれ約2.17、約500nmであ
るため、光学的活性領域で透明であり、また表面プラズ
モンの共鳴ピーク波長は約610nmとなる。
By the way, the optically active region of copper (Cu) extends from 400 nm to the infrared region. The oxide of Cu is Cu 2 O, which is an oxide semiconductor, and its refractive index and band gap are about 2.17 and about 500 nm, respectively, so that it is transparent in the optically active region, and the resonance peak wavelength of the surface plasmon. Is about 610 nm.

【0016】また、光学的活性領域内において半導体等
の吸収があっても、半導体層を極端に薄く形成し、半導
体による吸収を抑えることによって、表面プラズモンの
共鳴吸収ピークを観測できるようになる。例えば、銀
(Ag)の場合、光学的活性領域は、Cuと同様に40
0nmから赤外線領域まで広がっている。Agの酸化物
であるAg2 Oのバンドギャップは約780nmである
が、Ag2 Oの膜厚を50nm以下にすることによっ
て、Ag微粒子まで光が透過し、Ag微粒子による表面
プラズモンの共鳴吸収ピークを観測できる。
Even if the semiconductor or the like is absorbed in the optically active region, the resonance absorption peak of the surface plasmon can be observed by forming the semiconductor layer extremely thin and suppressing the absorption by the semiconductor. For example, in the case of silver (Ag), the optically active area is 40% like Cu.
It extends from 0 nm to the infrared region. The band gap of Ag 2 O, which is an oxide of Ag, is about 780 nm, but when the film thickness of Ag 2 O is set to 50 nm or less, light penetrates to the Ag particles and the resonance absorption peak of the surface plasmon due to the Ag particles. Can be observed.

【0017】本発明者等は、以上の事実に着目し、本発
明をするに至った。すなわち、Cu又はAgの金属微粒
子どうしをこれらの酸化物であるCu2 O又はAg2
によって分離することにより、Cu又はAgの金属微粒
子が高密度かつ均一に分散した非線形光学材料を得るこ
とができた。
The present inventors have paid attention to the above facts and have completed the present invention. That is, Cu or Ag metal fine particles are mixed with each other to form Cu 2 O or Ag 2 O which is an oxide thereof.
By separating by, it was possible to obtain a non-linear optical material in which Cu or Ag metal fine particles were densely and uniformly dispersed.

【0018】尚、本発明の非線形光学材料における金属
微粒子の大きさとしては、0.5〜20nm程度である
ことが好ましく、また、金属酸化物(Cu2 O、Ag2
O)の膜厚としては、0.5〜40nm程度であること
が好ましい。
The size of the fine metal particles in the nonlinear optical material of the present invention is preferably about 0.5 to 20 nm, and metal oxides (Cu 2 O, Ag 2).
The film thickness of O) is preferably about 0.5 to 40 nm.

【0019】以下、実施例を用いて本発明をさらに具体
的に説明する。図1は本実施例で用いたスパッタ装置の
概略構成図であり、図2は本実施例の非線形光学材料の
製造方法を示す工程概略図である。
The present invention will be described in more detail below with reference to examples. FIG. 1 is a schematic configuration diagram of a sputtering apparatus used in this embodiment, and FIG. 2 is a process schematic diagram showing a method for manufacturing a nonlinear optical material of this embodiment.

【0020】図1に示すように、スパッタ装置4は、金
属ターゲット5、シャッタ6、原子状酸素発生用の電子
サイクロトロン共鳴(ECR)プラズマガン7、基板
1、及びターゲット5に電圧と電流を供給するための直
流電源8によって構成されている。基板1として石英ガ
ラス、金属ターゲット5としてCuが用いられている。
また、前記ECRプラズマガン7は、マイクロ波導入用
のマイクロ波導波管9、石英板10、ECRプラズマ発
生用の電磁石11、及び酸素ガス導入用の導入口12に
よって構成されている。
As shown in FIG. 1, the sputtering apparatus 4 supplies voltage and current to the metal target 5, the shutter 6, the electron cyclotron resonance (ECR) plasma gun 7 for generating atomic oxygen, the substrate 1, and the target 5. The DC power supply 8 is provided for the operation. Quartz glass is used as the substrate 1, and Cu is used as the metal target 5.
The ECR plasma gun 7 is composed of a microwave waveguide 9 for introducing microwaves, a quartz plate 10, an electromagnet 11 for generating ECR plasma, and an inlet 12 for introducing oxygen gas.

【0021】本実施例においては、基板1上にCu微粒
子を形成した後、このCu微粒子の表面を酸化させる工
程を繰り返すことによって、非線形光学材料を作製し
た。まず、基板1上にCu微粒子を形成する工程につい
て述べる。スパッタガスとしてアルゴンを用い、ガス圧
は5Pa、基板1の温度は150℃、Cuターゲット5
に供給する直流電圧と直流電流はそれぞれ500V、1
0mAとした。尚、この条件におけるCuの蒸着速度は
0.5nm/sec程度であるため、シャッタ6を40
秒間開けた。この段階で、電子顕微鏡を用いて観察した
結果、基板1上に直径約20nmのCu微粒子2が形成
されていることを確認した(図2(a))。
In this example, a nonlinear optical material was produced by repeating the steps of forming Cu fine particles on the substrate 1 and then oxidizing the surface of the Cu fine particles. First, the step of forming Cu fine particles on the substrate 1 will be described. Argon is used as the sputtering gas, the gas pressure is 5 Pa, the temperature of the substrate 1 is 150 ° C., and the Cu target 5 is used.
DC voltage and DC current supplied to
It was set to 0 mA. Since the deposition rate of Cu under these conditions is about 0.5 nm / sec, the shutter 6 is set to 40
Opened for a second. At this stage, as a result of observation using an electron microscope, it was confirmed that Cu fine particles 2 having a diameter of about 20 nm were formed on the substrate 1 (FIG. 2A).

【0022】次に、Cu微粒子の表面を酸化させる工程
について述べる。ECRプラズマガン7に導入口12か
ら酸素ガスを導入し、ガス圧を0.1Paとした。ま
た、2.45GHzのマイクロ波をマイクロ波導波管9
及び石英板10を通してECRプラズマガン7に導入し
た。尚、マイクロ波の周波数によって決まる電子サイク
ロトロン共鳴条件を満たす磁場強度は、2.45GHz
の場合0.0875Tであるため、このECR条件の磁
場強度を電磁石11によって発生させた。そして、EC
Rプラズマガン7中に発生した酸素ガスのECRプラズ
マをCu微粒子2に約10分間照射した。表面プラズモ
ンの共鳴吸収ピーク波長は、酸素ガスのECRプラズマ
を照射する前においては約560nmだけであったが、
照射後においては約560nmと約620nmのダブル
ピークとなった。このことは、Cu微粒子2に対して異
なった屈折率を有する層が接していることを意味してい
る。すなわち、照射前においてはCu微粒子2には石英
ガラス基板1しか接していなかったが、照射後において
はCu微粒子2に石英ガラス基板1とCuの酸化物薄膜
(Cu2 O)3との2層が接していることを意味してい
る。これにより、Cu微粒子2の表面に酸化物薄膜3が
形成されていることを確認した(図2(b))。
Next, the step of oxidizing the surface of the Cu fine particles will be described. Oxygen gas was introduced into the ECR plasma gun 7 through the inlet 12 and the gas pressure was set to 0.1 Pa. Further, the microwave of 2.45 GHz is converted into the microwave waveguide 9
Then, it was introduced into the ECR plasma gun 7 through the quartz plate 10. The magnetic field strength satisfying the electron cyclotron resonance condition determined by the microwave frequency is 2.45 GHz.
In the case of, since it is 0.0875T, the magnetic field strength under this ECR condition was generated by the electromagnet 11. And EC
The Cu fine particles 2 were irradiated with the ECR plasma of oxygen gas generated in the R plasma gun 7 for about 10 minutes. The resonance absorption peak wavelength of surface plasmon was only about 560 nm before irradiation with ECR plasma of oxygen gas.
After irradiation, double peaks of about 560 nm and about 620 nm were obtained. This means that the Cu fine particles 2 are in contact with layers having different refractive indexes. That is, before the irradiation, only the quartz glass substrate 1 was in contact with the Cu fine particles 2, but after the irradiation, the Cu fine particles 2 had two layers of the quartz glass substrate 1 and the Cu oxide thin film (Cu 2 O) 3. Means that they are in contact. Thus, it was confirmed that the oxide thin film 3 was formed on the surface of the Cu fine particles 2 (FIG. 2B).

【0023】ECRプラズマは、高励起、高密度である
ため、酸化作用に重要な役割を果たす原子状酸素を多量
に発生でき、かつ、低圧(例えば、10-3〜10Pa)
でプラズマを発生できるので、発生した原子状酸素を他
の粒子に衝突させることなくCu微粒子2の表面まで輸
送でき、その結果、Cu微粒子2の表面を確実かつ容易
に酸化することができる。
Since the ECR plasma is highly excited and has a high density, it can generate a large amount of atomic oxygen which plays an important role in the oxidation action, and also has a low pressure (for example, 10 -3 to 10 Pa).
Since the plasma can be generated by, the generated atomic oxygen can be transported to the surface of the Cu fine particles 2 without colliding with other particles, and as a result, the surface of the Cu fine particles 2 can be reliably and easily oxidized.

【0024】次いで、上述のようにして形成された酸化
物薄膜3の上に再びCu微粒子2を形成し(図2
(c))、このCu微粒子2の表面をECRプラズマに
よって酸化した。
Next, Cu fine particles 2 are formed again on the oxide thin film 3 formed as described above (see FIG. 2).
(C)), the surface of the Cu fine particles 2 was oxidized by ECR plasma.

【0025】以上のようにしてCu微粒子2の形成とC
u微粒子2の表面の酸化(酸化物薄膜3の形成)とを交
互に30回繰り返し、Cu微粒子2の層全体の厚さを4
00nmとした。その結果、表面プラズモンの共鳴吸収
ピーク波長は、殆ど620nmだけになり、Cu微粒子
2の分散量は約50%に達した。これにより、Cu微粒
子2どうしが酸化物薄膜(Cu2 O)3によって分離さ
れ、Cu微粒子2が高密度かつ均一に分散した非線形光
学材料を作製することができた。
As described above, the formation of Cu fine particles 2 and C
The oxidation of the surface of the u fine particles 2 (formation of the oxide thin film 3) is alternately repeated 30 times, and the thickness of the entire layer of the Cu fine particles 2 is set to 4
It was set to 00 nm. As a result, the resonance absorption peak wavelength of the surface plasmon was almost 620 nm, and the dispersion amount of the Cu fine particles 2 reached about 50%. As a result, the non-linear optical material in which the Cu particles 2 were separated from each other by the oxide thin film (Cu 2 O) 3 and the Cu particles 2 were uniformly dispersed at a high density could be manufactured.

【0026】以上のようにして非線形光学材料を作製
し、その非線形光学特性を窒素レーザ励起色素レーザの
縮退4光波混合法によって測定したところ、約10-6
suという非常に大きな3次の非線形感受率χ(3) が得
られた。
[0026] to produce a non-linear optical material as described above, when the nonlinear optical properties were measured by degenerate four wave mixing process of nitrogen laser excitation dye laser, about 10 -6 e
A very large third-order nonlinear susceptibility χ (3) called su was obtained.

【0027】また、Cuの代わりに銀(Ag)を用い、
Ag微粒子の形成を熱蒸着法(真空度;5×10-4
a、基板温度;100℃)によって行い、酸化物薄膜
(Ag2O)の形成をCuの場合と同様にECRプラズ
マを用いて行った。この場合、Ag微粒子の直径は約1
0nm、Agの酸化物薄膜(Ag2 O)の膜厚は約5n
mであり、Ag微粒子の形成とAg微粒子の表面の酸化
(酸化物薄膜の形成)とを交互に30回繰り返した結
果、膜厚が約400nmの非線形光学薄膜を得ることが
できた。この非線形光学薄膜において、Ag微粒子の分
散量は60%に達し、3次の非線形感受率χ(3) は約1
-6esuであった。これにより、Ag微粒子どうしが
Agの酸化物薄膜(Ag2 O)によって分離され、Ag
微粒子が高密度かつ均一に分散していることが確認でき
た。
Further, silver (Ag) is used instead of Cu,
The formation of Ag fine particles is performed by a thermal vapor deposition method (vacuum degree: 5 × 10 −4 P
a, substrate temperature: 100 ° C.), and an oxide thin film (Ag 2 O) was formed using ECR plasma as in the case of Cu. In this case, the diameter of the Ag particles is about 1
0 nm, Ag oxide thin film (Ag 2 O) film thickness is about 5 n
m, the formation of Ag fine particles and the oxidation of the surface of Ag fine particles (formation of an oxide thin film) were repeated 30 times, and as a result, a nonlinear optical thin film having a thickness of about 400 nm could be obtained. In this nonlinear optical thin film, the dispersion amount of Ag particles reached 60%, and the third-order nonlinear susceptibility χ (3) was about 1
It was 0 -6 esu. As a result, the Ag particles are separated from each other by the Ag oxide thin film (Ag 2 O).
It was confirmed that the fine particles were densely and uniformly dispersed.

【0028】尚、金属微粒子を形成する手段としては、
制御性等の点から、上述したようなスパッタ法や熱蒸着
法によるのが好ましいが、必ずしもこれらに限定される
ものではなく、例えば、熱CVD法やプラズマCVD法
を採用することもできる。
As a means for forming the metal fine particles,
From the viewpoint of controllability and the like, it is preferable to use the above-mentioned sputtering method or thermal evaporation method, but the method is not necessarily limited to these, and for example, a thermal CVD method or a plasma CVD method can be adopted.

【0029】また、ECRプラズマに用いる酸化性気体
としては、不純物が入り込む虞れが少ない点で、上述し
た酸素ガスを用いるのが好ましいが、必ずしもこれに限
定されるものではなく、酸化性を示す気体であれば、例
えば酸化窒素等を用いることもできる。
As the oxidizing gas used for the ECR plasma, it is preferable to use the above-mentioned oxygen gas from the viewpoint that impurities are less likely to enter, but the oxidizing gas is not necessarily limited to this and exhibits oxidizing properties. If it is a gas, for example, nitric oxide or the like can be used.

【0030】[0030]

【発明の効果】以上説明したように、本発明の非線形光
学材料によれば、銅(Cu)又は銀(Ag)の酸化物で
あるCu2 O又はAg2 Oが光学的活性領域で透明であ
るために、銅(Cu)又は銀(Ag)の金属微粒子が高
密度かつ均一に分散した非線形光学材料を得ることがで
き、その結果、3次の非線形感受率χ(3) の値を大きく
することができる。
As described above, according to the nonlinear optical material of the present invention, Cu 2 O or Ag 2 O which is an oxide of copper (Cu) or silver (Ag) is transparent in the optically active region. Because of this, it is possible to obtain a non-linear optical material in which metal fine particles of copper (Cu) or silver (Ag) are densely and uniformly dispersed, and as a result, the value of the third-order non-linear susceptibility χ (3) is increased. can do.

【0031】また、本発明方法によれば、金属微粒子を
形成した後、前記金属微粒子を酸化させるものであるた
め、銅(Cu)又は銀(Ag)の酸化物であるCu2
又はAg2 Oを容易に形成して、金属微粒子どうしを分
離することができる。また、金属微粒子の形成と金属微
粒子の表面の酸化(酸化物薄膜の形成)を行う一連の工
程を繰り返すので、金属微粒子形成後に従来の合成方法
で酸化物薄膜を形成するのに比べて、酸化物薄膜を均一
にかつ薄く形成でき、その結果、金属微粒子を高密度に
分散させることができる。
According to the method of the present invention, since the metal fine particles are formed and then the metal fine particles are oxidized, Cu 2 O which is an oxide of copper (Cu) or silver (Ag) is used.
Alternatively, Ag 2 O can be easily formed to separate the metal fine particles from each other. Further, since a series of steps of forming the metal fine particles and oxidizing the surface of the metal fine particles (formation of the oxide thin film) is repeated, the oxidation process is more difficult than forming the oxide thin film by the conventional synthesis method after forming the metal fine particles. The material thin film can be formed uniformly and thinly, and as a result, the metal fine particles can be dispersed at a high density.

【0032】本発明方法の構成において、金属微粒子を
酸化させる手段として、酸化性気体の電子サイクロトロ
ン共鳴(ECR)プラズマを用いるという好ましい構成
によれば、酸化作用に重要な役割を果たす原子状酸素を
多量に発生でき、かつ、低圧(例えば、10-3〜10P
a)でプラズマを発生できるので、発生した原子状酸素
をCu又はAgの金属微粒子の表面まで他の粒子に衝突
させることなく輸送でき、その結果、金属微粒子の表面
を確実かつ容易に酸化することができる。
In the method of the present invention, according to a preferred structure in which electron cyclotron resonance (ECR) plasma of an oxidizing gas is used as a means for oxidizing the fine metal particles, atomic oxygen which plays an important role in the oxidizing action is removed. A large amount can be generated and low pressure (for example, 10 -3 to 10 P)
Since the plasma can be generated in a), the generated atomic oxygen can be transported to the surface of the Cu or Ag metal fine particles without colliding with other particles, and as a result, the surface of the metal fine particles can be reliably and easily oxidized. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で用いたスパッタ装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a sputtering apparatus used in an embodiment of the present invention.

【図2】本発明の一実施例の非線形光学材料の製造方法
を示す工程概略図である。
FIG. 2 is a process schematic diagram showing a method for manufacturing a nonlinear optical material according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 Cu微粒子 3 酸化物薄膜 4 スパッタ装置 5 金属ターゲット 6 シャッタ 7 電子サイクロトロン共鳴(ECR)プラズマガン 8 直流電源 9 マイクロ波導波管 10 石英板 11 電磁石 12 導入口 1 Substrate 2 Cu Fine Particles 3 Oxide Thin Film 4 Sputtering Device 5 Metal Target 6 Shutter 7 Electron Cyclotron Resonance (ECR) Plasma Gun 8 DC Power Supply 9 Microwave Waveguide 10 Quartz Plate 11 Electromagnet 12 Inlet Port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三露 常男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuneo Mikuro 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銅(Cu)及び銀(Ag)から選ばれる
少なくとも一つの金属の微粒子どうしが前記金属の酸化
物薄膜によって分離され、かつ、前記金属微粒子が分散
されて層状構造をなす非線形光学材料。
1. Non-linear optics in which at least one metal fine particle selected from copper (Cu) and silver (Ag) is separated by the metal oxide thin film, and the metal fine particle is dispersed to form a layered structure. material.
【請求項2】 金属微粒子の大きさが0.5〜20nm
の範囲であり、かつ、酸化物薄膜の膜厚が0.5〜50
nmの範囲である請求項1に記載の非線形光学材料。
2. The size of the metal fine particles is 0.5 to 20 nm.
And the film thickness of the oxide thin film is 0.5 to 50.
The nonlinear optical material according to claim 1, which is in the range of nm.
【請求項3】 銅(Cu)及び銀(Ag)から選ばれる
少なくとも一つの金属の微粒子どうしを前記金属の酸化
物薄膜によって分離して非線形光学材料を製造する方法
であって、金属微粒子を形成した後、前記金属微粒子の
表面を酸化させる工程を繰り返すことを特徴とする非線
形光学材料の製造方法。
3. A method for producing a non-linear optical material by separating fine particles of at least one metal selected from copper (Cu) and silver (Ag) by an oxide thin film of the metal, and forming fine metal particles. And then repeating the step of oxidizing the surface of the metal fine particles.
【請求項4】 金属微粒子の大きさが0.5〜20nm
の範囲であり、かつ、酸化物薄膜の膜厚が0.5〜50
nmの範囲である請求項3に記載の非線形光学材料の製
造方法。
4. The size of the metal fine particles is 0.5 to 20 nm.
And the film thickness of the oxide thin film is 0.5 to 50.
The method for producing a non-linear optical material according to claim 3, wherein the range is nm.
【請求項5】 金属微粒子を酸化させる手段として、酸
化性気体の電子サイクロトロン共鳴(ECR)プラズマ
を用いる請求項2に記載の非線形光学材料の製造方法。
5. The method for producing a nonlinear optical material according to claim 2, wherein electron cyclotron resonance (ECR) plasma of an oxidizing gas is used as a means for oxidizing the metal fine particles.
JP4321575A 1992-12-01 1992-12-01 Nonlinear optical material and manufacturing method thereof Expired - Fee Related JP2795590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4321575A JP2795590B2 (en) 1992-12-01 1992-12-01 Nonlinear optical material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4321575A JP2795590B2 (en) 1992-12-01 1992-12-01 Nonlinear optical material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06167728A true JPH06167728A (en) 1994-06-14
JP2795590B2 JP2795590B2 (en) 1998-09-10

Family

ID=18134095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4321575A Expired - Fee Related JP2795590B2 (en) 1992-12-01 1992-12-01 Nonlinear optical material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2795590B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993701A (en) * 1996-11-27 1999-11-30 Industrial Science & Technology Third-order nonlinear optical material and method for production thereof
JP2008525635A (en) * 2004-12-23 2008-07-17 コミツサリア タ レネルジー アトミーク Method of preparing metal or metal alloy nanoparticles dispersed on a substrate by chemical vapor deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993701A (en) * 1996-11-27 1999-11-30 Industrial Science & Technology Third-order nonlinear optical material and method for production thereof
JP2008525635A (en) * 2004-12-23 2008-07-17 コミツサリア タ レネルジー アトミーク Method of preparing metal or metal alloy nanoparticles dispersed on a substrate by chemical vapor deposition

Also Published As

Publication number Publication date
JP2795590B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
Chen et al. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water
Liu et al. Effect of annealing temperature on the structure and properties of vanadium oxide films
JPS5984420A (en) Method of producing product including multicomponent material covering substrate
JPH06167728A (en) Nonlinear optical material and its production
JPH05224261A (en) Nonlinear optical material and production thereof
CN111338153A (en) Bistable quasi-photonic crystal structure for low-threshold all-optical switch
JP3465041B2 (en) YAG fifth harmonic pulse laser vapor deposition method and apparatus
Yang et al. Optical nonlinearities in Ag/BaTiO3 multi-layer nanocomposite films
JPH05224262A (en) Nonlinear optical material
Volpian et al. Magnetron technology of production of gradient optical coatings
Su et al. Microstructure and multiphoton luminescence of Au nanocrystals prepared by using glancing deposition method
JPH08146477A (en) Nonlinear optical thin film and its production
CN211698524U (en) Bistable quasi-photonic crystal structure for low-threshold all-optical switch
Xu et al. Wavelength multiplexing and tuning in nano-Ag/dielectric multilayers
CN113238426B (en) Optical limiting device based on quantum dot nonlinearity and nonlinear film preparation method thereof
JPH08313946A (en) Nonlinear optical thin film and its production
CN111175895B (en) Rare earth fluorescence enhanced antenna and preparation method thereof
JP4659517B2 (en) Photocatalyst production method
JPH06167729A (en) Nonlinear optical material and its production
JPH09203915A (en) Nonlinear optical thin film and its production
JPH0473720A (en) Manufacture of nonlinear optical material
JPH07281223A (en) Thin film containing of hyperfine particle of wo3 and its production
Zhu et al. Harmonic generation in wide bandgap oxide materials enhanced by quasi-bound states in the continuum
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material
Mu et al. Optical and structural characterization of zinc implanted silica under various thermal treatments

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees