JPH06167533A - Switching test circuit for self arc extinguishing element - Google Patents

Switching test circuit for self arc extinguishing element

Info

Publication number
JPH06167533A
JPH06167533A JP32032492A JP32032492A JPH06167533A JP H06167533 A JPH06167533 A JP H06167533A JP 32032492 A JP32032492 A JP 32032492A JP 32032492 A JP32032492 A JP 32032492A JP H06167533 A JPH06167533 A JP H06167533A
Authority
JP
Japan
Prior art keywords
self
current
extinguishing element
circuit
freewheeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32032492A
Other languages
Japanese (ja)
Inventor
Kinji Yoshioka
忻治 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP32032492A priority Critical patent/JPH06167533A/en
Publication of JPH06167533A publication Critical patent/JPH06167533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To improve difficulty in evaluation of a relationship with reverse restoration characteristic of a circulation diode by setting the current of the circulation diode for circulating a load current independently at an arbitrary value in the testing and evaluating a switching operation of a self arc extinguishing element under inductive load conditions. CONSTITUTION:A circulation diode 10 connected in series to a circulation power source capacitor 11 is set at both ends of a inductive load device 3 and a DC power source 12 for a circulation circuit is provided at both ends of the capacitor 11 to form a load circuit. A voltage of a DC power source 12 for the circulation circuit is adjusted with a testing circuit which has a DC power source 1, the load circuit and a self arc extinguishing type element 5 as a sample element connected in series individually. A circulation current value is set previously by adjusting the voltage of the DC power source 12 for the circulation circuit thereby evaluating the behavior of the self arc extinguishing element 5 under an inductive load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バイポーラトランジス
タ、絶縁ゲートトランジスタ、SIサイリスタおよびG
TOサイリスタなどの自己消弧形素子のスイッチング試
験回路に関するものである。
The present invention relates to a bipolar transistor, an insulated gate transistor, an SI thyristor and a G transistor.
The present invention relates to a switching test circuit for a self-extinguishing element such as a TO thyristor.

【0002】[0002]

【従来の技術】従来より自己消弧形素子のスイッチング
試験は、直流電源から負荷装置を純抵抗として自己消弧
形素子をスイッチングさせるか、もしくは、負荷装置を
誘導負荷として、負荷装置に並列接続した環流ダイオー
ドを設けて負荷電流を環流し得るよう構成して、自己消
弧形素子をスイッチングさせ、自己消弧形素子自体に印
加される電圧や負荷電流の大きさによる挙動を動作速度
やスイッチング損失等の特性値として計測し、自己消弧
形素子の評価を目的として試験が行われてきた。
2. Description of the Related Art Conventionally, a switching test of a self-arc-extinguishing element is performed by switching a self-arc-extinguishing element from a DC power source with a load device as a pure resistance or by connecting the load device as an inductive load in parallel with the load device. It is configured so that the load current can be circulated by providing a freewheeling diode to switch the self-extinguishing element, and the behavior depending on the magnitude of the voltage or load current applied to the self-extinguishing element itself can be changed to the operation speed or switching. Tests have been conducted for the purpose of evaluating self-extinguishing type devices by measuring characteristic values such as loss.

【0003】以下、この種従来技術の例を図面により説
明する。
An example of this type of prior art will be described below with reference to the drawings.

【0004】図7は従来技術による自己消弧形素子のス
イッチング試験回路の本願に係わる構成を示す試験回路
図である。
FIG. 7 is a test circuit diagram showing a configuration relating to the present application of a switching test circuit for a self-arc-extinguishing element according to the prior art.

【0005】図7において、直流電源1より逆流防止ダ
イオード2を経由して、ー般的には誘導性負荷として抵
抗器とリアクトルで構成される負荷装置3と、自己消弧
形素子のターンオン時の電流上昇率調整のために設けた
配線の浮遊インダクタンスを模擬した空心リアクトル
4、および自己消弧形素子5で形成される直列回路で構
成されている。ここで、ゲート駆動装置6は自己消弧形
素子5のゲート制御を行う装置であり、スナバダイオー
ド7、スナバコンデンサ8、スナバ抵抗器9は供試素子
の保護用のスナバ回路である。負荷装置3に並列に接続
された環流ダイオード10は、自己消弧形素子の応用上
想定される負荷装置のリアクトルに蓄えられたエネルギ
ーの環流時に自己消弧形素子5をターンオンする場合、
ダイオードの逆回復特性が影響する点を評価をする目的
で設けられている。
In FIG. 7, a direct current power supply 1 passes through a backflow prevention diode 2, a load device 3 which is generally composed of a resistor and a reactor as an inductive load, and a self-extinguishing element is turned on. It is composed of a series circuit formed by an air-core reactor 4 simulating the stray inductance of the wiring provided for adjusting the current increase rate and a self-arc-extinguishing element 5. Here, the gate driving device 6 is a device that controls the gate of the self-turn-off device 5, and the snubber diode 7, the snubber capacitor 8 and the snubber resistor 9 are snubber circuits for protecting the device under test. When the freewheeling diode 10 connected in parallel to the load device 3 turns on the self-extinguishing element 5 when the energy stored in the reactor of the load device that is assumed in the application of the self-extinguishing element is turned on,
It is provided for the purpose of evaluating the influence of the reverse recovery characteristics of the diode.

【0006】次に図7の動作について、負荷装置3の電
流波形を示す図3〜5の動作説明図を用いて、以下に説
明する。なお、図5は図3の期間t0 〜t1 の範囲を拡
大した図である。
The operation of FIG. 7 will be described below with reference to the operation explanatory diagrams of FIGS. 3 to 5 showing the current waveform of the load device 3. Note that FIG. 5 is an enlarged view of the range from the period t0 to t1 in FIG.

【0007】図7において、負荷装置3に含まれる抵抗
器の抵抗値とリアクトルのインダクタンスによる時定数
に対して、自己消弧形素子5のスイッチング動作周期が
充分に短い場合、負荷装置3の電流は図3に示す動作説
明図のようになる。
In FIG. 7, when the switching operation cycle of the self-arc-extinguishing element 5 is sufficiently short with respect to the time constant due to the resistance value of the resistor included in the load device 3 and the inductance of the reactor, the current of the load device 3 is reduced. Is as shown in the operation explanatory view of FIG.

【0008】すなわち、自己消弧形素子5がターンオン
すると、負荷電流の内、図3中の期間t0 〜t1 、t2
〜t3 、t4 〜t5 のように、記号Is で示した電流波
形部分が自己消弧形素子5の電流となる。この電流波形
の内、図5の期間t0 〜t01のピーク電流Ip 部を含む
部分は、直流電源1の正極から環流ダイオード10、空
心リアクトル4、自己消弧形素子5、直流電源1の負極
のルートで環流ダイオード10に逆電圧が印加され、環
流ダイオードの大きな逆回復電流が流れている期間であ
る。
That is, when the self-arc-extinguishing element 5 is turned on, among the load currents, the periods t0 to t1 and t2 in FIG.
.About.t3, t4 to t5, the current waveform portion indicated by the symbol Is becomes the current of the self-arc-extinguishing element 5. Of this current waveform, the portion including the peak current Ip portion in the period t0 to t01 in FIG. 5 is from the positive electrode of the DC power supply 1 to the freewheeling diode 10, the air-core reactor 4, the self-extinguishing element 5, and the negative electrode of the DC power supply 1. This is a period in which a reverse voltage is applied to the freewheeling diode 10 along the route and a large reverse recovery current of the freewheeling diode is flowing.

【0009】ー方、自己消弧形素子5がターンオフする
と、負荷装置3の電流は同3図中の陰影部の期間t1 〜
t2 、t3 〜t4 の記号Id で示す電流波形となり、負
荷電流が環流ダイオード10の電流として環流する。
On the other hand, when the self-arc-extinguishing element 5 is turned off, the current of the load device 3 is from the period t1 of the shaded portion in FIG.
The current waveform is represented by the symbol Id of t2, t3 to t4, and the load current circulates as the current of the freewheeling diode 10.

【0010】つまり、環流ダイオードが逆回復電流のな
い理想的な素子であったとすると、前述の記号Ip で示
す電流は流れず、記号Is の電流波形は初期値をIv 、
最終値をIm とする、図7の直流電源1の電源電圧と負
荷装置3のインダクタンスの比で電流の上昇率が決まる
電流波形となる。 また、記号Id の電流波形は、環流
ダイオード電流として負荷装置3と環流ダイオードで形
成される環流回路内の抵抗とインダクタンスによる減衰
時定数に従い電流が減少し、自己消弧形素子の点弧によ
り電流値Iv で環流ダイオードの順方向電流が終了する
波形となる。
That is, assuming that the freewheeling diode is an ideal element having no reverse recovery current, the current indicated by the above-mentioned symbol Ip does not flow, and the current waveform of the symbol Is has an initial value of Iv,
The current waveform has a final value Im, and the rate of increase in current is determined by the ratio of the power supply voltage of the DC power supply 1 and the inductance of the load device 3 in FIG. Further, the current waveform of the symbol Id decreases as the freewheeling diode current according to the damping time constant due to the resistance and the inductance in the freewheeling circuit formed by the load device 3 and the freewheeling diode, and the current is turned on by the self-extinguishing type element. At the value Iv, the forward current of the freewheeling diode ends.

【0011】従って、自己消弧形素子5のターンオン電
流の試験目標値はIv に環流ダイオードの逆回復電流を
加算した値のIp となり、ターンオフ電流試験目標値は
Imに、それぞれ設定される。
Accordingly, the test target value of the turn-on current of the self-extinguishing element 5 becomes Ip which is the value obtained by adding the reverse recovery current of the freewheeling diode to Iv, and the target value of the turn-off current test is set to Im.

【0012】しかしながら、図7の回路で自己消弧形素
子5のオン期間が短く、オフ期間が長い場合や負荷装置
3に含まれる抵抗器とリアクトルのインダクタンスによ
る時定数が短い場合については、自己消弧形素子5の環
流電流が持続的に流れずに減衰する。そのため、自己消
弧形素子5のターンオンのタイミングで負荷装置3の電
流は流れず、図4に示すような断続電流となり、ターン
オン電流は必ず零から立ち上がる波形となって、供試素
子のターンオン時に所定の電流値を与えた試験はできな
い。またこの場合、環流ダイオードの順方向電流が流れ
ていないタイミングで環流ダイオードに逆電圧が印加さ
れるため、環流ダイオードの逆回復電流は流れず、図3
や図5に示すピーク電流Ip を責務として与える条件の
試験も当然実施できない。
However, in the circuit of FIG. 7, when the self-extinguishing element 5 has a short ON period and a long OFF period and the time constant due to the inductance of the resistor and the reactor included in the load device 3 is short, The freewheeling current of the arc extinguishing element 5 does not flow continuously and is attenuated. Therefore, the current of the load device 3 does not flow at the turn-on timing of the self-extinguishing element 5, and it becomes an intermittent current as shown in FIG. 4, and the turn-on current always has a waveform rising from zero. It is not possible to conduct a test with a given current value. Further, in this case, since the reverse voltage is applied to the freewheeling diode at the timing when the forward current of the freewheeling diode does not flow, the reverse recovery current of the freewheeling diode does not flow.
Also, the test under the condition that the peak current Ip shown in FIG.

【0013】[0013]

【発明が解決しようとする課題】従って、以上の説明か
ら明確なように、図7の従来方式の試験回路の場合、供
試素子である自己消弧形素子5に、ターンオン時やター
ンオフ時の試験条件として所定の目標試験条件に合致し
た印加電圧、電流値を与えるためには、負荷装置内部の
時定数を変更すべく、抵抗器やリアクトルの定数切り替
えやスイッチング動作周期をその都度変更設定する必要
が生じるなど、試験装置として具備すべき試験条件の独
立設定性に乏しい試験装置となる。更に、ターンオン電
流値Iv を零でない所定の値に設定するためには、図4
のような断続波形では実現できないところから、供試素
子を繰り返し動作させるか、供試素子に並列に負荷電流
設定用の制御素子を別に設け、負荷装置3の電流を連続
電流とする必要がある。
Therefore, as is clear from the above description, in the case of the conventional test circuit shown in FIG. 7, the self-arc-extinguishing element 5, which is the device under test, is not turned on or off. In order to apply the applied voltage and current value that match the predetermined target test conditions as test conditions, the constants of resistors and reactors are switched and the switching operation cycle is changed and set each time in order to change the time constant inside the load device. As a result, the test equipment is poor in the independent setting of the test conditions that the test equipment should have. Furthermore, in order to set the turn-on current value Iv to a predetermined value other than zero,
Since it is not possible to realize such an intermittent waveform as described above, it is necessary to repeatedly operate the device under test or to separately provide a load current setting control device in parallel with the device under test to make the current of the load device 3 a continuous current. .

【0014】前者の場合は負荷電流で供試素子の損失に
より自己加熱を招き、試験接合温度を所定値に設定する
ことが困難となる。後者の場合は、試験装置として供試
素子以上で、繰り返し動作に耐える容量を持つ制御素子
の設置が必要となり試験装置の複雑、大形化となるなど
の欠点を有していた。
In the former case, the load current causes self-heating due to the loss of the device under test, making it difficult to set the test junction temperature to a predetermined value. In the latter case, there is a defect that the test device is more than the test device and it is necessary to install a control element having a capacity capable of withstanding repeated operations, which makes the test device complicated and large.

【0015】本発明の目的は、自己消弧形素子のスイッ
チング試験の際、供試素子に与える試験条件として、試
験接合温度を素子の自己加熱によらず外部加熱手段によ
り任意に設定しながら、印加電圧、電流の条件指定も任
意独立に設定でき、種種の条件変更に伴う供試素子の特
性変化を追求できる、簡易かつ便利な試験装置を提供す
ることにある。
An object of the present invention is to set a test junction temperature as a test condition to be given to a device under test in a switching test of a self-arc-extinguishing device while arbitrarily setting it by an external heating means without depending on self heating of the device. It is an object of the present invention to provide a simple and convenient test apparatus in which the conditions of applied voltage and current can be arbitrarily and independently set, and the characteristic changes of the device under test can be pursued due to changes in various conditions.

【0016】[0016]

【課題を解決するための手段】本発明によれば、前記目
的は、環流ダイオードと直列に環流電源コンデンサを挿
入して、同コンデンサ両電極に低圧の可変電源である環
流回路用直流電源を接続することにより、負荷装置、環
流ダイオードおよび環流コンデンサのループに持続的
に、かつ、任意の直流電流を与える構成とし、供試素子
である自己消弧形素子自体のスイッチング動作を単発化
するか、極低周波数の動作として達成することができ
る。
According to the present invention, the object is to insert a freewheeling power supply capacitor in series with a freewheeling diode and connect a DC power supply for a freewheeling circuit, which is a low voltage variable power supply, to both electrodes of the freewheeling diode. By doing so, the loop of the load device, the freewheeling diode, and the freewheeling capacitor is continuously and arbitrarily supplied with a direct current, and the switching operation of the self-arc-extinguishing element itself, which is the device under test, is single-shot, or It can be achieved as a very low frequency operation.

【0017】[0017]

【作用】環流電源コンデンサと環流回路用直流電源を設
けたことにより、同コンデンサを含む負荷装置と環流ダ
イオードの形成するループに、直流電源や負荷装置内の
抵抗値やインダクタンスによる時定数および供試素子の
動作周期との相互関係に殆ど影響されずに、環流回路用
直流電源の電圧調整のみにより、独立に環流電流を任意
の一定値に設定することができる。
[Function] By providing the circulating power supply capacitor and the DC power supply for the circulating circuit, the time constant due to the resistance value and the inductance in the DC power supply and the load device is provided in the loop formed by the load device and the circulating diode including the capacitor. The circulation current can be independently set to an arbitrary constant value only by adjusting the voltage of the DC power supply for the circulation circuit, without being affected by the mutual relation with the operation cycle of the element.

【0018】従って、供試素子の自己消弧形素子の動作
が単発的に駆動される場合や極低周波数の短通流期間の
駆動時には、供試素子の一回のスイッチング動作による
発熱が供試素子の外部加熱手段による接合温度の設定値
に殆ど影響されないため、接合温度の設定もほぼ独立に
設定できる。このため、自己消弧形素子のスイッチング
試験装置として、具備すべき試験条件の独立設定性と簡
便な試験装置を得ることができる。
Therefore, when the operation of the self-extinguishing element of the device under test is driven sporadically or during the driving of an extremely low frequency for a short period, heat is generated by one switching operation of the device under test. Since the setting value of the joining temperature by the external heating means of the test element is hardly affected, the setting of the joining temperature can be set almost independently. Therefore, as a switching test device for the self-extinguishing type element, it is possible to obtain a test device that can be independently set and a simple test device.

【0019】[0019]

【実施例】以下、本発明による自己消弧形素子のスイッ
チング試験装置の一実施例を図面により詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a switching test device for a self-extinguishing type element according to the present invention will be described in detail below with reference to the drawings.

【0020】図1は本発明の自己消弧形素子のスイッチ
ング試験装置の基本回路図である。図1において、1は
供試素子にターンオン直前の印加電圧や負荷電流を与え
る直流電源であり、3はごく電気抵抗の小さいリアクト
ルで構成された負荷装置、4は供試素子がターンオンす
る時の電流上昇率を調整するための空心リアクトルであ
り、ターンオフ時には図6に示す電圧のオーバシュート
量Vp を供試素子の試験条件として与えることができ
る。なお、このオーバシュート量Vp は空心リアクトル
4のインダクタンス、供試素子電流の増加により増加
し、スナバコンデンサ8の容量増や供試素子や試験回路
内の損失により減少し、大凡の量が決定されるので、空
心リアクトル4にタップを設けるなどとしてインダクタ
ンスを調整することにより、所定のオーバシュート量V
p とすることができる。
FIG. 1 is a basic circuit diagram of a switching tester for a self-extinguishing type element according to the present invention. In FIG. 1, reference numeral 1 is a DC power source for applying an applied voltage or load current to the device under test immediately before turn-on, 3 is a load device composed of a reactor having a very small electric resistance, and 4 is a load device when the device under test is turned on. It is an air-core reactor for adjusting the rate of current rise, and at turn-off, the overshoot amount Vp of the voltage shown in FIG. 6 can be given as a test condition for the device under test. The overshoot amount Vp increases due to an increase in the inductance of the air-core reactor 4 and the current of the device under test, and decreases due to the increase in the capacity of the snubber capacitor 8 and the loss in the device under test and the test circuit. Therefore, by adjusting the inductance by, for example, providing a tap on the air-core reactor 4, a predetermined overshoot amount V
It can be p.

【0021】5は供試素子である自己消弧形素子であ
り、7、8、9はそれぞれ供試素子5の保護用のスナバ
ダイオード、スナバコンデンサ、スナバ抵抗器であり、
10は環流ダイオード、13は直流電源である。
Reference numeral 5 is a self-arc-extinguishing element which is a test element, and 7, 8, and 9 are snubber diodes, snubber capacitors, and snubber resistors for protecting the test element 5, respectively.
Reference numeral 10 is a freewheeling diode, and 13 is a DC power supply.

【0022】図2は図1に基づいた一実施例を示す回路
図で、構成、作用は図2にて説明する。なお、図2にい
て、2は逆流防止ダイオード、6は自己消弧形素子5の
ゲート駆動装置である。また、図1の直流電源13の代
わりに、環流電源コンデンサ11と環流回路用直流電源
12とを並列配置して使用している。
FIG. 2 is a circuit diagram showing an embodiment based on FIG. 1, and the configuration and operation will be described with reference to FIG. In FIG. 2, reference numeral 2 is a backflow prevention diode, and 6 is a gate drive device for the self-turn-off element 5. Further, instead of the DC power supply 13 of FIG. 1, a circulating power supply capacitor 11 and a circulating circuit DC power supply 12 are arranged in parallel and used.

【0023】図2において、図3の試験電流波形を供試
素子の自己消弧形素子5に与えるために、環流回路用直
流電源12から環流電源コンデンサ11を充電し、この
コンデンサより環流ダイオード10を介して負荷装置3
に所定値の直流電流を持続的に予め流しておく。これに
より、図3の試験電流波形のように供試素子を単発的に
駆動しターンオンさせても、直流電源1より、逆流防止
ダイオード2を経由して、環流ダイオード10の逆方向
に電圧が印加され、環流ダイオードの逆回復電流となっ
て空心リアクトル4を介して、自己消弧形素子5にピー
ク値Ip なる試験電流を与えることができる。そのた
め、自己消弧形素子5の試験接合温度を自己加熱によら
ず、ほぼ外部的に与えた条件として評価することができ
る。
In FIG. 2, in order to apply the test current waveform of FIG. 3 to the self-arc-extinguishing element 5 of the device under test, the circulating power source capacitor 11 is charged from the circulating circuit DC power source 12, and the circulating diode 10 is charged from this capacitor. Through load device 3
A DC current of a predetermined value is continuously supplied to the device in advance. As a result, even if the device under test is driven and turned on by itself like the test current waveform of FIG. 3, a voltage is applied from the DC power supply 1 to the reverse direction of the freewheeling diode 10 via the reverse current prevention diode 2. As a result, it becomes a reverse recovery current of the freewheeling diode, and a test current having a peak value Ip can be applied to the self-arc-extinguishing element 5 via the air-core reactor 4. Therefore, the test junction temperature of the self-arc-extinguishing element 5 can be evaluated as a condition given almost externally, not by self-heating.

【0024】なお、もし環流ダイオードとして理想的な
逆回復電流のない素子を使用したとすれば、自己消弧形
素子5のターンオン直後の電流は、直流電源1の電圧と
空心リアクトル4のインダクタンスの比で決まる電流上
昇率で上昇し、Iv なる電流値に制限された電流波形が
供試素子である自己消弧形素子5に与えられので、種種
の電流値Iv に対して評価する場合には、環流回路用直
流電源12に出力電圧の調整手段を設けるなどして、電
流値Iv を任意に調整することにより、容易に自己消弧
形素子5のターンオン直後の電流値依存性の評価をする
ことができる。
If an ideal element having no reverse recovery current is used as the freewheeling diode, the current immediately after turning on the self-extinguishing element 5 depends on the voltage of the DC power supply 1 and the inductance of the air-core reactor 4. The self-arc-extinguishing element 5, which is the device under test, is given a current waveform that rises at a current increase rate determined by the ratio and is limited to the current value Iv. Therefore, when evaluating for various current values Iv By adjusting the output voltage of the DC power supply 12 for the free-wheeling circuit, the current value Iv can be adjusted arbitrarily to easily evaluate the current value dependency immediately after the self-turn-off element 5 is turned on. be able to.

【0025】また、当然ながら、自己消弧形素子5のタ
ーンオン特性の評価として、種種の逆回復特性を有する
環流ダイオード10の特性との関係を評価する場合に
は、環流ダイオードの入れ替えにより容易に評価するこ
ともできる。
Further, as a matter of course, when evaluating the relationship with the characteristics of the freewheeling diode 10 having various reverse recovery characteristics as the evaluation of the turn-on characteristics of the self-extinguishing element 5, it is easy to replace the freewheeling diode. It can also be evaluated.

【0026】次に、自己消弧形素子5がターンオンした
後は、直流電源1の電圧と負荷装置内のインダクタンス
の比でほぼ決定される電流上昇率で自己消弧形素子5の
オン期間中上昇し、電流値Im に達する。従って、自己
消弧形素子5のターンオフ試験電流値はIm となる。こ
の電流値は環流ダイオードにとっては、順方向電流の初
期値となり、負荷装置3を環流するので、自己消弧形素
子5のターンオフ条件に着目した試験条件とするには、
前述のターンオン時と同様に環流回路用直流電源12の
電圧を調整して、電流値Im を目標試験条件値とするこ
とでできる。
After the self-arc-extinguishing element 5 is turned on, the self-arc-extinguishing element 5 is turned on at a current increase rate substantially determined by the ratio of the voltage of the DC power source 1 to the inductance in the load device. It rises and reaches the current value Im. Therefore, the turn-off test current value of the self-extinguishing element 5 becomes Im. This current value becomes the initial value of the forward current for the freewheeling diode and causes the load device 3 to circulate. Therefore, in order to set the test condition focusing on the turn-off condition of the self-extinguishing element 5,
The current value Im can be set as the target test condition value by adjusting the voltage of the DC power supply 12 for the circulation circuit as in the case of the turn-on described above.

【0027】なお、図3や図5中の電流値Im をできる
限り電流値Iv に近い値として、矩形波的な波形を与え
て自己消弧形素子5を評価するには、負荷装置3内のイ
ンダクタンスを限りなく大きくして、自己消弧形素子5
の通電期間を動作繰り返し周期に比して充分短くするこ
とにより、負荷電流の上昇を抑えられ目的を達すること
もできる。
In order to evaluate the self-arc-extinguishing element 5 by giving a rectangular wave-like waveform with the current value Im in FIGS. 3 and 5 as close as possible to the current value Iv, the load device 3 must be evaluated. Self-extinguishing element 5 by increasing the inductance of
By sufficiently shortening the energization period of 2 compared to the operation repetition cycle, the increase of the load current can be suppressed and the purpose can be achieved.

【0028】また以上の説明から明確なように、自己消
弧形素子5の駆動回路として駆動周期を単発的に動作さ
せるか、例えば10ヘルツ程度以下の低周波数で駆動す
るようにして、自己消弧形素子5のオン期間が駆動周期
に比して充分短かくすれば、素子の自己加熱による接合
温度の変化は差ほど大きくなく、試験条件の独立性を損
なうこともない。
Further, as is clear from the above description, the self-extinguishing element 5 is driven by a single drive cycle or is driven at a low frequency of, for example, about 10 hertz or less. If the ON period of the arc-shaped element 5 is made sufficiently short as compared with the driving cycle, the change in the junction temperature due to self-heating of the element is not so large and the independence of test conditions is not impaired.

【0029】本発明は、自己消弧形素子5の効率的評価
を目的としており、少なくとも、自己消弧形素子5の両
端電圧、電流、およびベースまたは、ゲート電圧、電流
の計測手段を備え、前述の単発または低周波で駆動され
た任意の期間の波形を記憶させることにより、自己消弧
形素子のスイッチング試験により得られた各波形データ
を基に、動作速度の時間表示、損失の計算等の処理や供
試素子間の特性比較ができるなど、一層効果的である。
The present invention is intended for efficient evaluation of the self-arc-extinguishing element 5, and is provided with at least the voltage across the self-arc-extinguishing element 5, the current, and the base, or the gate voltage and the current measuring means. By storing the waveform of any period that is driven by a single shot or low frequency as described above, based on each waveform data obtained by the switching test of the self-extinguishing type element, time display of operating speed, calculation of loss, etc. It is even more effective in that it can be processed and the characteristics of the devices under test can be compared.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
試験条件を独立的に与えることができるので、トランジ
スタ、GTOサイリスタ、SIサイリスタ、IGBT
(絶縁ゲート形バイポーラトランジスタ)などの自己消
弧形素子の誘導性負荷に対する各種素子特性の挙動を単
一的に評価できるため、特に素子特性の改良に際し、簡
易で効率的な自己消弧形素子のスイッチング試験装置を
提供することができる。
As described above, according to the present invention,
Since test conditions can be given independently, transistors, GTO thyristors, SI thyristors, IGBTs
A simple and efficient self-extinguishing element, especially when improving the element characteristics, because the behavior of various element characteristics with respect to the inductive load of the self-extinguishing element such as (insulated gate bipolar transistor) can be evaluated. It is possible to provide the switching test device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の自己消弧形素子のスイッチング試験装
置の基本回路図である。
FIG. 1 is a basic circuit diagram of a switching test device for a self-arc-extinguishing element according to the present invention.

【図2】図1に基づいた一実施例を示す回路図である。FIG. 2 is a circuit diagram showing an embodiment based on FIG.

【図3】本発明の動作や従来の試験装置の動作を説明
し、自己消弧形素子のスイッチング試験のため供試素子
に与える試験電流波形である。
FIG. 3 is a test current waveform given to a device under test for explaining the operation of the present invention and the operation of a conventional test apparatus and for a switching test of a self-turn-off device.

【図4】従来および本発明の環流電流が零となる特別な
条件下の動作を説明するための動作波形の説明図であ
る。
FIG. 4 is an explanatory diagram of operation waveforms for explaining an operation under a special condition where the circulating current is zero according to the related art and the present invention.

【図5】図3の動作電流波形のうち供試素子電流部分の
拡大図である。
5 is an enlarged view of a current portion of a device under test in the operation current waveform of FIG.

【図6】図5に対応する供試素子電圧の波形図である。6 is a waveform diagram of the voltage of the device under test corresponding to FIG.

【図7】従来の自己消弧素子のスイッチング試験装置の
試験回路図である。 1 直流電源 2 逆流防止ダイオード 3 負荷装置 4 空心リアクトル 5 自己消弧形素子 6 ゲート駆動装置 7 スナバダイオード 8 スナバコンデンサ 9 スナバ抵抗器 10 環流ダイオード 11 環流電源コンデンサ 12 環流回路用直流電源 13 直流電源
FIG. 7 is a test circuit diagram of a conventional switching test device for a self-extinguishing element. 1 DC power supply 2 Backflow prevention diode 3 Load device 4 Air-core reactor 5 Self-extinguishing type element 6 Gate drive device 7 Snubber diode 8 Snubber capacitor 9 Snubber resistor 10 Freewheeling diode 11 Freewheeling power supply capacitor 12 DC power supply for freewheeling circuit 13 DC power supply

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】直流電源と、逆流防止ダイオードと、負荷
装置と、カソードを直流電源の正極に対抗させた環流ダ
イオードを負荷装置に並列に配したものと、空心リアク
トルと、自己消弧形素子とをそれぞれ直列に接続して、
該素子自体をオン、オフすることにより、自己消弧形素
子のスイッチング特性を試験する試験回路において、該
環流ダイオードと直列に環流コンデンサを配設して、該
環流コンデンサには、環流ダイオード、環流コンデン
サ、負荷装置で形成されるー周ループに、環流ダイオー
ドの整流方向に合致した循環電流を供給する環流回路用
直流電源を接続して構成したことを特徴とする自己消弧
形素子のスイッチング試験回路。
1. A direct current power supply, a backflow prevention diode, a load device, an arrangement in which a freewheeling diode having a cathode opposed to a positive electrode of a direct current power supply is arranged in parallel with the load device, an air-core reactor, and a self-extinguishing element. And are connected in series,
In a test circuit for testing the switching characteristics of a self-extinguishing element by turning on and off the element itself, a freewheeling capacitor is arranged in series with the freewheeling diode, and the freewheeling diode and the freewheeling diode are connected to the freewheeling capacitor. A switching test circuit for a self-extinguishing element, characterized in that it is configured by connecting a DC power supply for a circulating circuit that supplies a circulating current that matches the rectifying direction of the circulating diode to a loop loop formed by a capacitor and a load device. .
【請求項2】前記環流回路用電源に環流電流の調整手段
を設けたことを特徴とする請求項1記載の自己消弧形素
子のスイッチング試験回路。
2. A switching test circuit for a self-extinguishing element according to claim 1, wherein the power supply for the freewheeling circuit is provided with means for adjusting the freewheeling current.
【請求項3】前記自己消弧形素子の動作を単発、または
およそ10ヘルツ以下の低周波にて駆動するように構成
したゲート駆動装置を具備する自己消弧形素子のスイッ
チング試験回路。
3. A self-extinguishing element switching test circuit comprising a gate driver configured to drive the operation of said self-extinguishing element in a single shot or at a low frequency of about 10 hertz or less.
【請求項4】前記自己消弧形素子の少なくとも、両端電
圧、電流、ベースまたは、ゲート電圧、電流の計測手段
を備え、自己消弧形素子の動作を単発、またはおよそ1
0ヘルツ以下の低周波にて駆動された任意の期間の波形
を記憶させたことを特徴とする請求項1記載の自己消弧
形素子のスイッチング試験回路。
4. The self-extinguishing element is provided with at least a voltage across both ends, a current, a base or a gate voltage and a current measuring means, and the operation of the self-extinguishing element is performed once or about 1.
2. A switching test circuit for a self-arc-extinguishing element according to claim 1, wherein a waveform of an arbitrary period driven at a low frequency of 0 hertz or less is stored.
JP32032492A 1992-11-30 1992-11-30 Switching test circuit for self arc extinguishing element Pending JPH06167533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32032492A JPH06167533A (en) 1992-11-30 1992-11-30 Switching test circuit for self arc extinguishing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32032492A JPH06167533A (en) 1992-11-30 1992-11-30 Switching test circuit for self arc extinguishing element

Publications (1)

Publication Number Publication Date
JPH06167533A true JPH06167533A (en) 1994-06-14

Family

ID=18120219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32032492A Pending JPH06167533A (en) 1992-11-30 1992-11-30 Switching test circuit for self arc extinguishing element

Country Status (1)

Country Link
JP (1) JPH06167533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107432A (en) * 2008-10-31 2010-05-13 Fuji Electric Systems Co Ltd Method of integrated test of semiconductor and semiconductor testing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569068A (en) * 1978-11-20 1980-05-24 Mitsubishi Electric Corp Thyristor circuit
JPS61149869A (en) * 1984-12-25 1986-07-08 Canon Inc Waveform analytic system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569068A (en) * 1978-11-20 1980-05-24 Mitsubishi Electric Corp Thyristor circuit
JPS61149869A (en) * 1984-12-25 1986-07-08 Canon Inc Waveform analytic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107432A (en) * 2008-10-31 2010-05-13 Fuji Electric Systems Co Ltd Method of integrated test of semiconductor and semiconductor testing device

Similar Documents

Publication Publication Date Title
US5763962A (en) Semiconductor switch driving circuit
EP0086641B1 (en) Three phase square wave welding power supply
EP0079130B1 (en) Reactive snubber for inductive load clamp diodes
JPH0772851B2 (en) Phase control circuit multiplexer
US3412314A (en) Cyclically regulated power supply
JPH0628511B2 (en) Switchable power supply unit
US4970635A (en) Inverter with proportional base drive controlled by a current transformer
US4520279A (en) Series transistor chopper
JPS593892A (en) Power source for load of low voltage incandescent bulb or the like
JPH06167533A (en) Switching test circuit for self arc extinguishing element
US3600666A (en) Switching regulator power supply including fast turnoff means for switching transistor
US3879650A (en) DC to polyphase inverter utilizing a plurality of switching device and a transformer having a plurality of primary and feedback windings connected in circuit with the switching device
US4268779A (en) Circuit for controlling current flow from an A.C. source to a load
JPS61254070A (en) Electronic load device
JP2806929B2 (en) Motor drive control device
JPH07212207A (en) Rectangular wave constant current generating circuit
JPH1023754A (en) Dc power supply apparatus
JPS59148427A (en) Thyristor simulating circuit
SU1096751A1 (en) Control device for transistor inverter
JPS6214756Y2 (en)
US4066956A (en) Semiconductor switch device having means for supplying control current to a control electrode
SU951617A1 (en) Two-channel device for controlling two-phase ac motor
JPH06106023B2 (en) Switching device for switching power supply
SU1141388A1 (en) A.c.stabilizer
JP2000156967A (en) Turn-on test circuit for current driving type power semiconductor element