JPH0616719A - Polyethylenic polymer for blow molding - Google Patents

Polyethylenic polymer for blow molding

Info

Publication number
JPH0616719A
JPH0616719A JP10112193A JP10112193A JPH0616719A JP H0616719 A JPH0616719 A JP H0616719A JP 10112193 A JP10112193 A JP 10112193A JP 10112193 A JP10112193 A JP 10112193A JP H0616719 A JPH0616719 A JP H0616719A
Authority
JP
Japan
Prior art keywords
polymer
ethylene
blow molding
polyethylene
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10112193A
Other languages
Japanese (ja)
Inventor
Motonori Ueda
基範 上田
Nobuyuki Shimizu
信之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP10112193A priority Critical patent/JPH0616719A/en
Publication of JPH0616719A publication Critical patent/JPH0616719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polyethylenic polymer for blow molding excellent in molding processing characteristics or low-temperature impact resistance. CONSTITUTION:The polyethylenic polymer is an ethylene homopolymer or a copolymer, composed of ethylene and a >=3C alpha-olefin and having 2-6 (dl/g) intrinsic viscosity, 0.94-0.97 (g/cm<3>) density and 2X10<7> to 1X10<8> (poises) zero- shear viscosity (eta0) at 190 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、中空成形用ポリエチレ
ン系重合体に関するものであり、特に、大型中空成形に
おいて、均一延伸性や耐ドローダウン性などの成形加工
特性、成形品の耐衝撃性(特に低温時)に優れた中空成
形用ポリエチレン系重合体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyethylene-based polymer for blow molding, and particularly, in large blow molding, molding processing characteristics such as uniform stretchability and drawdown resistance, and impact resistance of molded products. The present invention relates to a polyethylene polymer for blow molding which is excellent (especially at low temperature).

【0002】[0002]

【従来の技術】中空成形は、一般的な熱可塑性樹脂の成
形法であり、化粧瓶、洗剤瓶などの小型容器から灯油
缶、工業用薬品缶などの中型容器、自動車燃料タンク、
ドラム缶などの大型容器に至るまで広く使用されてい
る。中空成形は、環状のダイスから筒状の溶融樹脂(パ
リソン)を押し出す過程と金型でパリソンを挟み、圧空
を吹き込み賦形する過程から成る。
2. Description of the Related Art Hollow molding is a general thermoplastic resin molding method, and is used for small containers such as cosmetic bottles and detergent bottles to medium-sized containers such as kerosene cans and industrial chemical cans, automobile fuel tanks,
Widely used in large containers such as drums. Hollow molding includes a process of extruding a cylindrical molten resin (parison) from an annular die and a process of sandwiching a parison with a mold and blowing compressed air to shape it.

【0003】一般に、大型製品を中空成形する場合、パ
リソンが自重で垂れ下がる現象(ドローダウン)や賦形
時に偏肉が発生する傾向がある。ドローダウンや偏肉を
小さくするためには、溶融張力が十分高く、溶融延伸時
の応力増加が大きい樹脂を使用する方法が知られてい
る。また、中空成形品には、耐環境応力亀裂性(「ES
CR」言う)や耐衝撃性などの力学的強度が必要であ
る。特に自動車燃料タンクについては、運輸省技術基準
(自車第1327号)により、−40℃の耐衝撃試験が
規定されている。
Generally, when a large-sized product is hollow-molded, the parison tends to sag under its own weight (drawdown) and uneven thickness tends to occur during shaping. In order to reduce drawdown and uneven thickness, a method is known in which a resin having a sufficiently high melt tension and a large stress increase during melt drawing is used. In addition, the hollow molded product has environmental stress crack resistance (“ES
Mechanical strength such as impact resistance (CR) is required. Especially for automobile fuel tanks, the impact resistance test at −40 ° C. is defined by the Ministry of Transport technical standard (own vehicle No. 1327).

【0004】[0004]

【発明が解決しようとする課題】従来、成形加工特性
(均一延伸性や耐ドローダウン性など)と共に力学的強
度に優れたポリエチレンを得る方法としては、例えば、
チーグラー系触媒を使用した多段重合法(特開平2−5
3811号公報、特開平2−132109号公報)、ポ
リエチレン樹脂に少量のラジカル発生剤と架橋助剤を添
加する方法(特公平2−52654号公報)等が知られ
ている。しかしながら、上記の方法によるポリエチレン
は、大型中空成形品を得るには、成形加工特性や低温耐
衝撃性が不十分である。本発明は、上記実情に鑑みなさ
れたものであり、その目的は、従来のポリエチレンの持
つ欠点を克服し、成形加工特性や低温耐衝撃性に優れた
中空成形用ポリエチレン系重合体を提供することにあ
る。
Conventionally, as a method for obtaining polyethylene excellent in molding process characteristics (uniform stretchability, drawdown resistance, etc.) as well as mechanical strength, for example,
Multi-stage polymerization method using Ziegler type catalyst (Japanese Patent Laid-Open No. 2-5
No. 3811, JP-A-2-132109), a method of adding a small amount of a radical generator and a crosslinking aid to a polyethylene resin (Japanese Patent Publication No. 2-52654), and the like are known. However, the polyethylene produced by the above method is insufficient in molding processing characteristics and low temperature impact resistance in order to obtain a large hollow molded article. The present invention has been made in view of the above circumstances, and an object thereof is to overcome the drawbacks of conventional polyethylene and to provide a polyethylene polymer for blow molding which is excellent in molding processing characteristics and low temperature impact resistance. It is in.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の要旨
は、エチレン単独重合体またはエチレンと炭素数3以上
のα−オレフィンから成る共重合体であって、極限粘度
が2〜6(dl/g)、密度が0.94〜0.97(g/
cm3 )、190℃のゼロシアー粘度(η0 )が2×10
7 〜1×108 (poise)であることを特徴とする
中空成形用ポリエチレン系重合体に存する。
That is, the gist of the present invention is an ethylene homopolymer or a copolymer composed of ethylene and an α-olefin having 3 or more carbon atoms and having an intrinsic viscosity of 2 to 6 (dl / g) and the density is 0.94 to 0.97 (g /
cm 3 ), the zero shear viscosity (η 0 ) at 190 ° C. is 2 × 10
7 to 1 × 10 8 (poise), which is a polyethylene polymer for blow molding.

【0006】以下、本発明を詳細に説明する。本発明
は、エチレン単独重合体またはエチレンと炭素数3以上
のα−オレフィンから成る共重合体であって、ゼロシア
ー粘度(η0 )、極限粘度、密度が特定の範囲に調整さ
れたポリエチレン系重合体が、耐ドローダウン性、均一
延伸性などの成形加工特性や低温耐衝撃性に優れている
との知見に基づいて達成されたものである。
The present invention will be described in detail below. The present invention is an ethylene homopolymer or a copolymer composed of ethylene and an α-olefin having 3 or more carbon atoms, and is a polyethylene-based polymer having a zero shear viscosity (η 0 ), an intrinsic viscosity and a density adjusted to a specific range. This was achieved based on the finding that the coalescence is excellent in molding processing characteristics such as drawdown resistance and uniform stretchability, and low temperature impact resistance.

【0007】本発明の中空成形用ポリエチレン系重合体
(以下、単に「重合体」と略記する)は、エチレン単独
重合体またはエチレンと炭素数3以上のα−オレフィン
から成る共重合体である。炭素数3以上のα−オレフィ
ンとしては、例えば、プロピレン、ブテン、ペンテン、
ヘキセン、4−メチルペンテン−1、オクテン、デセン
等が挙げられる。
The polyethylene polymer for blow molding of the present invention (hereinafter simply referred to as "polymer") is an ethylene homopolymer or a copolymer of ethylene and an α-olefin having 3 or more carbon atoms. Examples of the α-olefin having 3 or more carbon atoms include propylene, butene, pentene,
Hexene, 4-methylpentene-1, octene, decene and the like can be mentioned.

【0008】本発明の重合体は、テトラリン中130℃
で測定した極限粘度が2〜6(dl/g)、好ましくは
2.3〜3.6(dl/g)の範囲内にあることが必要で
ある。極限粘度が2(dl/g)より小さい場合は、強度
が低下し、耐ドローダウン性などの成形加工特性も低下
する。一方、極限粘度が6(dl/g)より大きい場合
は、押出性が悪くなり、成形品にも肌あれが発生する。
The polymer of the present invention has a temperature of 130 ° C. in tetralin.
It is necessary that the intrinsic viscosity measured in step 2 is within the range of 2 to 6 (dl / g), preferably 2.3 to 3.6 (dl / g). When the intrinsic viscosity is less than 2 (dl / g), the strength is lowered and the molding processing characteristics such as drawdown resistance are also lowered. On the other hand, when the intrinsic viscosity is higher than 6 (dl / g), the extrudability becomes poor and the molded product also has rough skin.

【0009】また、本発明の重合体は、密度が0.94
〜0.97(g/cm3 )、好ましくは0.95〜0.9
65(g/cm3 )の範囲内にあることが必要である。密
度が0.94(g/cm3 )より小さい場合は、剛性が低
下する。一方、密度が0.97(g/cm3 )より大きい
場合は、衝撃強度が低下すると共にESCRが低下す
る。
The polymer of the present invention has a density of 0.94.
~0.97 (g / cm 3), preferably from 0.95 to 0.9
It must be within the range of 65 (g / cm 3 ). If the density is less than 0.94 (g / cm 3 ), the rigidity will decrease. On the other hand, when the density is higher than 0.97 (g / cm 3 ), the impact strength and the ESCR decrease.

【0010】更にまた、本発明の重合体は190℃のゼ
ロシアー粘度(η0 )が2×107〜1×108 (po
ise)、好ましくは2.5×107 〜6×107 (p
oise)の範囲内にあることが必要である。ゼロシア
ー粘度(η0 )が2×107(poise)より小さい
場合は、溶融延伸時の応力増加が小さく、均一延伸性が
低下すると共もに低温耐衝撃性が低下する。一方、ゼロ
シアー粘度(η0 )が1×108 (poise)より大
きい場合は、押出性などの成形性が低下する。
Furthermore, the polymer of the present invention has a zero shear viscosity (η 0 ) at 190 ° C. of 2 × 10 7 to 1 × 10 8 (po).
ise), preferably 2.5 × 10 7 to 6 × 10 7 (p
It must be within the range of (oise). When the zero shear viscosity (η 0 ) is smaller than 2 × 10 7 (poise), the stress increase during melt drawing is small, and the uniform drawability is lowered, and at the same time, the low temperature impact resistance is lowered. On the other hand, when the zero shear viscosity (η 0 ) is larger than 1 × 10 8 (poise), the moldability such as extrudability decreases.

【0011】本発明の重合体は、一般に、触媒成分の種
類に応じて、フィリップス型(クロム系)触媒またはチ
ーグラー型(チタン系)触媒と呼ばれる固体触媒と共触
媒の有機金属化合物との組合せから成る触媒系を使用し
て製造される。クロム系触媒の触媒成分としては、シリ
カ又はシリカ−アルミナにクロム化合物を担持した成分
が挙げられる。チタン系触媒の触媒成分としては、三塩
化チタン、三塩化バナジウム、四塩化チタン又はチタン
のハロアルコラートをマグネシウム化合物系単体に担持
した成分、または、マグネシウム化合物とチタン化合物
の共沈物もしくは共晶体などが挙げられる。
The polymer of the present invention generally comprises a combination of a solid catalyst called a Phillips type (chromium type) catalyst or a Ziegler type (titanium type) catalyst and a cocatalyst organometallic compound depending on the kind of the catalyst component. Manufactured using a catalytic system comprising: Examples of the catalyst component of the chromium-based catalyst include a component in which a chromium compound is supported on silica or silica-alumina. As the catalyst component of the titanium-based catalyst, titanium trichloride, vanadium trichloride, titanium tetrachloride, or a component in which a halo alcoholate of titanium is supported on a magnesium compound-based simple substance, or a coprecipitate or a eutectic of a magnesium compound and a titanium compound, etc. Is mentioned.

【0012】共触媒としては、通常、有機アルミニウム
化合物、例えば、一般式Al・Rm・X3-m (式中、R
は、炭素数20までの炭化水素基、Xはハロゲン原子、
mは1〜3の数を示す)で表わされる化合物が挙げられ
る。
[0012] As the co-catalyst is generally an organic aluminum compound, for example, the general formula Al · R m · X 3- m ( wherein, R
Is a hydrocarbon group having up to 20 carbon atoms, X is a halogen atom,
and m represents a number of 1 to 3).

【0013】本発明において、好ましい触媒の例として
は、シリカ若しくはシリカ−アルミナに担持した酸化ク
ロムと有機アルミニウム化合物とを組み合わせて成る触
媒、または、マグネシウムの酸素含有有機化合物とチタ
ンの酸素含有有機化合物とアルミニウムハロゲン化合物
との反応生成物と有機アルミニウム化合物とから成る触
媒が挙げられる。
In the present invention, examples of preferable catalysts include a catalyst obtained by combining chromium oxide supported on silica or silica-alumina and an organic aluminum compound, or an oxygen-containing organic compound of magnesium and an oxygen-containing organic compound of titanium. Examples of the catalyst include a reaction product of an aluminum halogen compound and an organoaluminum compound.

【0014】重合反応は、不活性炭化水素溶媒中で行う
スラリー重合法もしくは溶液重合法または実質的に液相
の存在しない気相下で行なう気相重合法などの通常行わ
れる方法に従って行なうことが出来る。また、重合反応
は、回分重合法、連続重合法いずれでもよく、更に、2
段階以上の多段重合法も行い得る。
The polymerization reaction can be carried out according to a commonly used method such as a slurry polymerization method or a solution polymerization method carried out in an inert hydrocarbon solvent, or a gas phase polymerization method carried out in a gas phase substantially free of a liquid phase. I can. The polymerization reaction may be either a batch polymerization method or a continuous polymerization method.
It is also possible to carry out a multistage polymerization method of more than one step.

【0015】[0015]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。なお、以下の諸例にお
いて、物性試験は、下記の方法に従って行なった。 (1)極限粘度[η] テトラリン中、130℃で測定した。 (2)密度 JIS K6760に準拠して測定した。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In the following examples, the physical property tests were conducted according to the following methods. (1) Intrinsic viscosity [η] Measured in tetralin at 130 ° C. (2) Density The density was measured according to JIS K6760.

【0016】(3)ゼロシアー粘度(η0 ) 測定装置は、レオメトリックス社製ストレスレオメータ
ー(「RSR−M」)を使用した。この装置は、クリー
プ特性から低剪断速度領域の溶融剪断粘度を求めること
が出来る。一般に、溶融ポリマーの剪断粘度は、低剪断
速度領域(10-3sec-1以下)で定常値をとり、剪断
速度が大きくなるに従って小さくなる。ゼロシアー粘度
(η0 )とは、上記の定常値を指す。フィクスチャー
は、円錐−平板型であり、直径が25mm、円錐と平板
のなす角度が0.1radのものを使用した。測定試料
は、ペレットをプレス成形機で厚さ約1mmのシートに
成形して使用した。測定温度は、190℃である。
(3) Zero Shear Viscosity (η 0 ) As a measuring device, a stress rheometer (“RSR-M”) manufactured by Rheometrics was used. This device can determine the melt shear viscosity in the low shear rate region from the creep characteristics. Generally, the shear viscosity of a molten polymer takes a steady value in a low shear rate region (10 −3 sec −1 or less), and decreases as the shear rate increases. Zero shear viscosity (η 0 ) refers to the above-mentioned steady value. The fixture was a cone-plate type, and had a diameter of 25 mm and an angle between the cone and the plate of 0.1 rad. As the measurement sample, pellets were molded into a sheet having a thickness of about 1 mm by a press molding machine and used. The measurement temperature is 190 ° C.

【0017】(4)溶融張力(MT) 東洋精機製の「メルトテンションテスター」を使用し
た。190℃で溶融した試料を直径1mm、長さ5m
m、流入角60°のオリフィスから一定速度:0.44
g/minで押し出し、0.94m/minで引き取っ
た時の張力を求めた。ドラフト率(引取り速度/ノズル
線速度)は1.25となった。 (5)アイゾット衝撃強度 JIS K7110に準拠して測定した。測定温度は2
3℃と−40℃である。
(4) Melt tension (MT) A "melt tension tester" manufactured by Toyo Seiki was used. Sample melted at 190 ° C, diameter 1mm, length 5m
m, constant velocity from an orifice with an inflow angle of 60 °: 0.44
The tension when extruded at g / min and taken out at 0.94 m / min was obtained. The draft rate (take-off speed / nozzle linear speed) was 1.25. (5) Izod impact strength It was measured in accordance with JIS K7110. Measurement temperature is 2
3 ° C and -40 ° C.

【0018】(6)耐ドローダウン性 アキュムレーター式大型ブロー成形機(スクリュー直
径:90mm、スクリューL/D:22、スクリュー圧
縮比:3.8、ダイ直径200mm、)を使用し、樹脂
温190℃、重量15kgの条件下に均一肉厚のパリソ
ンを押し出し、押し出し直後と押し出し40秒後のパリ
ソン長を比較した。 (7)均一延伸性 住友重機製ブロー成形機(「Bekum BA−2」)
を使用し、樹脂温を200℃とし、直径19mm、長さ
0〜40mmで可変可能な突き出しピンを持つ金型によ
り、成形した際に吹き破れを生じないピンの最大深さを
求めた。
(6) Drawdown resistance A large blow molding machine of accumulator type (screw diameter: 90 mm, screw L / D: 22, screw compression ratio: 3.8, die diameter 200 mm) was used, and a resin temperature of 190 was used. A parison having a uniform wall thickness was extruded under the conditions of ° C and a weight of 15 kg, and the parison length immediately after the extrusion and after 40 seconds from the extrusion were compared. (7) Uniform stretchability Sumitomo Heavy Industries blow molding machine ("Bekum BA-2")
Was used, the resin temperature was set to 200 ° C., and the maximum depth of the pin that did not cause blowout when molded was determined by a mold having a variable protruding pin with a diameter of 19 mm and a length of 0 to 40 mm.

【0019】実施例1 市販のシリカに三酸化クロム水溶液を含浸させて120
℃で乾燥した後、800℃乾燥空気下で活性化し、クロ
ムを1重量%含有する担体付触媒成分を得た。400リ
ットルの反応器に上記の担体付触媒成分を1000g、
トリエチルアルミニウムを21.9g、n−ヘキサンを
200リットル入れ、80℃で1時間かけて5kgのエ
チレンを供給し、反応器の水素/エチレンの圧力比を
1.0に保持しながら反応させて触媒−ポリエチレン混
合物を得た。n−ヘキサンを使用し、触媒−ポリエチレ
ン混合物をデカンテーションによって洗浄した。
Example 1 Commercially available silica was impregnated with an aqueous solution of chromium trioxide to obtain 120
After drying at ℃, activated at 800 ℃ dry air to obtain a catalyst component with a carrier containing 1% by weight of chromium. In a 400 liter reactor, 1000 g of the above-mentioned carrier-supported catalyst component,
Triethylaluminum (21.9 g) and n-hexane (200 liters) were charged, and 5 kg of ethylene was supplied at 80 ° C. for 1 hour to carry out reaction while maintaining the hydrogen / ethylene pressure ratio of the reactor at 1.0, thereby catalyzing the catalyst. A polyethylene mixture was obtained. The catalyst-polyethylene mixture was washed by decantation using n-hexane.

【0020】容量1m3 の反応器に上記で得られた触媒
−ポリエチレン混合物をn−ヘキサンスラリーの状態で
供給した。供給速度は、n−ヘキサンとして200L/
hr、触媒成分として約3.7g/hrとした。同時
に、ジエチルアルミニウムモノエトキシドを1.8g/
hrの速度で供給した。そして、気相の水素/エチレン
の分圧比を0.6、1−ブテン/エチレンの分圧比を
0.004に調節しながら、重合温度85℃でエチレン
と1−ブテンとの共重合を行った。得られたポリエチレ
ン系重合体の物性を測定し、その結果を表1に示した。
The catalyst-polyethylene mixture obtained above was fed to a reactor having a capacity of 1 m 3 in the form of n-hexane slurry. The supply rate is 200 L / n as n-hexane.
hr, and about 3.7 g / hr as a catalyst component. At the same time, 1.8 g of diethyl aluminum monoethoxide /
Feed at a rate of hr. Then, while adjusting the partial pressure ratio of hydrogen / ethylene in the gas phase to 0.6 and the partial pressure ratio of 1-butene / ethylene to 0.004, copolymerization of ethylene and 1-butene was carried out at a polymerization temperature of 85 ° C. .. The physical properties of the obtained polyethylene polymer were measured, and the results are shown in Table 1.

【0021】実施例2 実施例1において、気相の水素/エチレンの分圧比を
0.1、1−ブテン/エチレンの分圧比を0.005、
重合温度90℃に変更した以外は、実施例1と同様の操
作を行なった。得られたポリエチレン系重合体の物性を
測定し、その結果を表1に示した。
Example 2 In Example 1, the gas phase hydrogen / ethylene partial pressure ratio was 0.1, the 1-butene / ethylene partial pressure ratio was 0.005,
The same operation as in Example 1 was performed except that the polymerization temperature was changed to 90 ° C. The physical properties of the obtained polyethylene polymer were measured, and the results are shown in Table 1.

【0022】実施例3 実施例1と同一の条件を採用し、気相の水素/エチレン
の分圧比を0.3としてエチレンの単独重合を行った。
得られたポリエチレン重合体の物性を測定し、その結果
を表1に示した。
Example 3 The same conditions as in Example 1 were adopted, and homopolymerization of ethylene was carried out at a gas phase hydrogen / ethylene partial pressure ratio of 0.3.
The physical properties of the obtained polyethylene polymer were measured, and the results are shown in Table 1.

【0023】実施例4 115gのMg(OC252 と151gのTi(O
493 Clと37gのn−ブチルアルコールとを
150℃で6時間混合して均一化した後、冷却し、所定
量のベンゼンを加えて均一溶液にした。次いで、上記の
均一溶液に所定温度で457gのエチルアルミニウムセ
スキクロライドを滴下し、1時間攪拌を行なった。更
に、n−ヘキサンにて洗浄を繰り返して固体触媒220
gを得た。
Example 4 115 g of Mg (OC 2 H 5 ) 2 and 151 g of Ti (O
C 4 H 9 ) 3 Cl and 37 g of n-butyl alcohol were mixed at 150 ° C. for 6 hours for homogenization, then cooled, and a predetermined amount of benzene was added to obtain a uniform solution. Next, 457 g of ethylaluminum sesquichloride was added dropwise to the above homogeneous solution at a predetermined temperature, and the mixture was stirred for 1 hour. Further, the solid catalyst 220 is washed by repeating washing with n-hexane.
g was obtained.

【0024】上記で得られた固体触媒の5バッチ分(約
1kg)を使用し、0.6m3 の反応器を2基連続に接
続した装置を使用して連続重合を行った。第1重合槽に
おいては、n−ヘキサンを53kg/hr、ジエチルア
ルミニウムモノクロリドを4.5g/hr、固体触媒成
分を0.9g/hr、エチレンを31kg/hrの速度
で供給した。そして、同時に水素を連続的に供給し、温
度を90℃、気相の水素/エチレンモル比を0.8に保
持して連続重合を行った。
Using 5 batches (about 1 kg) of the solid catalyst obtained above, continuous polymerization was carried out using an apparatus in which two 0.6 m 3 reactors were connected in series. In the first polymerization tank, n-hexane was fed at a rate of 53 kg / hr, diethyl aluminum monochloride at 4.5 g / hr, a solid catalyst component at 0.9 g / hr, and ethylene at a rate of 31 kg / hr. At the same time, hydrogen was continuously supplied, the temperature was maintained at 90 ° C., and the hydrogen / ethylene molar ratio in the gas phase was maintained at 0.8 to carry out continuous polymerization.

【0025】第2重合槽においては、第1重合槽で得ら
れた重合体のスラリーを連続的に供給すると共にn−ヘ
キサンを33kg/hr、1−ブテンを7kg/hr、
エチレンを13kg/hrの速度で供給し、温度を50
℃に保持し、気相中の水素/エチレンモル比が0.03
に保持されるように、気相ガスを8.5kg/hrの速
度でパージしながら連続重合を行なった。そして、第1
段目と第2段目の重合体分率が85/15のポリエチレ
ン系重合体を得た。
In the second polymerization tank, the slurry of the polymer obtained in the first polymerization tank was continuously supplied, and n-hexane was 33 kg / hr, 1-butene was 7 kg / hr,
Ethylene was fed at a rate of 13 kg / hr and the temperature was adjusted to 50
Maintained at ℃, hydrogen / ethylene molar ratio in gas phase is 0.03
The continuous polymerization was carried out while purging the gas phase gas at a rate of 8.5 kg / hr so as to be maintained at. And the first
A polyethylene polymer having a polymer fraction of the second and second stages of 85/15 was obtained.

【0026】実施例5 実施例4において、1段目と2段目の重合体比を80/
20とした他は実施例4と同様に2段重合を行い、
[μ]=4.20の重合体を得た。物性測定結果は表1
に示した。
Example 5 In Example 4, the polymer ratio of the first stage and the second stage was 80 /.
Two-step polymerization was carried out in the same manner as in Example 4 except that the number was 20,
A polymer having a [μ] = 4.20 was obtained. The physical property measurement results are shown in Table 1.
It was shown to.

【0027】実施例6 実施例4において、1段目と2段目の重合体比を75/
25とした他は実施例4と同様に2段重合を行い、
[μ]=5.30の重合体を得た。物性測定結果は表1
に示した。
Example 6 In Example 4, the polymer ratio of the first stage and the second stage was 75 /
Two-step polymerization was carried out in the same manner as in Example 4 except that
A polymer having a [μ] = 5.30 was obtained. The physical property measurement results are shown in Table 1.
It was shown to.

【0028】比較例1 実施例1において、供給するジエチルアルミニウムモノ
エトキシドの量を0.3g/hr、気相水素/エチレン
の分圧比を4.0に変更した以外は、実施例1と同様に
操作した。得られたポリエチレン系重合体の物性を測定
し、その結果を表2に示した。
Comparative Example 1 The same as Example 1 except that the amount of diethylaluminum monoethoxide supplied was changed to 0.3 g / hr and the partial pressure ratio of vapor phase hydrogen / ethylene was changed to 4.0. Operated. The physical properties of the obtained polyethylene-based polymer were measured, and the results are shown in Table 2.

【0029】比較例2 実施例4におけるのと同じ触媒および装置を使用して連
続重合を行った。第1重合槽においては、温度を77℃
とし、n−ヘキサンを83kg/hr、ジエチルアルミ
ニウムを5.5kg/hr、固体触媒成分を1.5g/
hr、エチレンを28kg/hrの速度で供給した。そ
して、同時に水素を連続的に供給した。得られた重合体
スラリーは、連続的に第2重合槽に供給した。第2重合
槽においては、温度を65℃とし、n−ヘキサンを72
kg/hr、1−ブテンを5.5kg/hr、エチレン
を19kg/hrの速度で供給した。そして、第1段目
と第2段目の重合体分率が85/15のポリエチレン系
重合体を得た。
Comparative Example 2 Continuous polymerization was carried out using the same catalyst and equipment as in Example 4. In the first polymerization tank, the temperature is 77 ° C.
And n-hexane was 83 kg / hr, diethylaluminum was 5.5 kg / hr, and the solid catalyst component was 1.5 g / hr.
hr and ethylene were supplied at a rate of 28 kg / hr. Then, at the same time, hydrogen was continuously supplied. The obtained polymer slurry was continuously supplied to the second polymerization tank. In the second polymerization tank, the temperature was set to 65 ° C and n-hexane was adjusted to 72
kg / hr, 1-butene were fed at a rate of 5.5 kg / hr, and ethylene was fed at a rate of 19 kg / hr. Then, a polyethylene-based polymer having a polymer fraction of the first stage and the second stage of 85/15 was obtained.

【0030】比較例3 市販のポリエチレン系重合体(昭和電工(株)製「ショ
ーレックス4551H」)を使用した。
Comparative Example 3 A commercially available polyethylene-based polymer (“Showlex 4551H” manufactured by Showa Denko KK) was used.

【0031】[0031]

【表1】 実 施 例 1 2 3 4 5 6 ─────────────────────────────────── 極限粘度[η](dl/g) 2.41 2.35 3.10 3.56 4.20 5.30 密度(g/cm3 ) 0.953 0.954 0.957 0.954 0.954 0.954 ゼロシアー粘度η0 (×107 poise) 4.70 3.38 5.85 2.62 4.48 9.00 溶融張力(g) 10.2 10.8 13.0 8.3 11.0 15.0 アイゾット衝撃強度 (Kg・cm/cm) 23℃ 23 20 29 27 >50 N.B. −40℃ 19 18 24 23 N.B. N.B. ドローダウン性(cm) 25収縮 20収縮 28収縮 17収縮 23収縮 29収縮 均一延伸性(mm) 37 29 39 33 37 39 ────────────────────────────────────[Table 1] Example 1 2 3 4 5 6 ─────────────────────────────────── Intrinsic viscosity [Η] (dl / g) 2.41 2.35 3.10 3.56 4.20 5.30 Density (g / cm 3 ) 0.953 0.954 0.957 0.954 0.954 0.954 Zero shear viscosity η 0 (× 10 7 poise) 4.70 3.38 5.85 2.62 4.48 9.00 Melt tension (g) 10.2 10.8 13.0 8.3 11.0 15.0 Izod impact strength (Kg · cm / cm) 23 ℃ 23 20 29 27 > 50 NB -40 ℃ 19 18 24 23 NBNB Drawdown property (cm) 25 shrink 20 shrink 28 shrink 17 shrink 23 shrink 29 uniform Stretchability (mm) 37 29 39 33 37 39 ─────────────────────────────────────

【0032】[0032]

【表2】 比 較 例 1 2 3 ────────────────────────────── 極限粘度[η](dl/g) 2.64 2.95 2.33 密度(g/cm3 ) 0.951 0.954 0.951 ゼロシアー粘度η0 (×107 poise) 1.25 1.15 1.47 溶融張力(g) 8.5 5.4 9.7 アイゾット衝撃強度 (Kg・cm/cm) 23℃ 20 20 22 −40℃ 12 16 6 ドローダウン性(cm) 12伸び 5伸び 20収縮 均一延伸性(mm) 22 19 30 ──────────────────────────────[Table 2] Comparative Example 1 2 3 ────────────────────────────── Intrinsic viscosity [η] (dl / g) 2.64 2.95 2.33 Density (g / cm 3 ) 0.951 0.954 0.951 Zero shear viscosity η 0 (× 10 7 poise) 1.25 1.15 1.47 Melt tension (g) 8.5 5.4 9.7 Izod impact strength (Kg · cm / cm) 23 ° C. 20 20 22 − 40 ° C 12 16 6 Drawdown property (cm) 12 Elongation 5 Elongation 20 Shrinkage Uniform stretchability (mm) 22 19 30 ───────────────────────── ──────

【0033】[0033]

【発明の効果】以上説明した本発明によれば、均一延伸
性や耐ドローダウン性などの成形加工特性、特に、低温
時の耐衝撃性に優れた中空成形用ポリエチレン系重合体
が提供される。そして、本発明の中空成形用ポリエチレ
ン系重合体は、ガソリンタンクやドラム缶等の大型中空
用成形材料として好適に使用することが出来る。
According to the present invention described above, there is provided a polyethylene polymer for blow molding which is excellent in molding processing characteristics such as uniform stretchability and drawdown resistance, and particularly in impact resistance at low temperature. . The polyethylene polymer for hollow molding of the present invention can be suitably used as a large hollow molding material for gasoline tanks, drums and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エチレン単独重合体またはエチレンと炭
素数3以上のα−オレフィンから成る共重合体であっ
て、極限粘度が2〜6(dl/g)、密度が0.94〜
0.97(g/cm3 )、190℃のゼロシアー粘度(η
0 )が2×107〜1×108 (poise)であるこ
とを特徴とする中空成形用ポリエチレン系重合体。
1. An ethylene homopolymer or a copolymer composed of ethylene and an α-olefin having 3 or more carbon atoms, having an intrinsic viscosity of 2 to 6 (dl / g) and a density of 0.94 to.
0.97 (g / cm 3 ), 190 ° C zero shear viscosity (η
0 ) is 2 × 10 7 to 1 × 10 8 (poise), a polyethylene polymer for blow molding.
JP10112193A 1992-05-01 1993-04-27 Polyethylenic polymer for blow molding Pending JPH0616719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10112193A JPH0616719A (en) 1992-05-01 1993-04-27 Polyethylenic polymer for blow molding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-139715 1992-05-01
JP13971592 1992-05-01
JP10112193A JPH0616719A (en) 1992-05-01 1993-04-27 Polyethylenic polymer for blow molding

Publications (1)

Publication Number Publication Date
JPH0616719A true JPH0616719A (en) 1994-01-25

Family

ID=26442049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10112193A Pending JPH0616719A (en) 1992-05-01 1993-04-27 Polyethylenic polymer for blow molding

Country Status (1)

Country Link
JP (1) JPH0616719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515227A (en) * 2015-02-18 2019-06-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Composite bulletproof laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515227A (en) * 2015-02-18 2019-06-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Composite bulletproof laminate

Similar Documents

Publication Publication Date Title
JP5283292B2 (en) Production of multimodal polyethylene
AU704049B2 (en) Single reactor bimodal HMW-HDPE film resin with improved bubble stability
KR100502890B1 (en) Premium Pipe Resins
RU2326904C2 (en) Polymer compositions and process of tube production
EP1453911B1 (en) Physical blends of polyethylenes
CN1315919C (en) Polyethylene films with improved physical properties
US6242543B1 (en) Process for producing polyethylenes having a broad molecular weight distribution, and a catalyst system used thereby
KR101215189B1 (en) Multistage Process for Producing Ethylene Polymer Compositions
US6218472B1 (en) Production of multimodal polyethylene
CA2412814C (en) Injection moulding polymer
JP2008524389A (en) Rheology modified relative high melt strength polyethylene composition and method for producing pipes, films, sheets and blow molded articles
KR20040068937A (en) Physical blend of polyethylenes
US7569175B1 (en) Container production process
CA2063809A1 (en) Supported catalyst for 1-olefin and 1,4-diolefin copolmerization
JP2006241451A (en) Polyethylene composition
JP3752759B2 (en) Ethylene polymer and method for producing the same
JPWO2007094376A1 (en) Ethylene-based resin and blow molded article comprising the same
JP3803155B2 (en) Polyethylene molded body
US6255413B1 (en) Process to produce branched polymers from ethylene feedstock
WO2023124790A1 (en) Hollow container blow molding material, and preparation method therefor and use thereof
JPH0616719A (en) Polyethylenic polymer for blow molding
JP4596510B2 (en) Polyethylene composition
JPH11138618A (en) Blow-molded body
KR101926229B1 (en) Preparation method of metallocene catalyst for slurry process and preparation method of polyethylene copolymer for water pipe using the same
JP2003213053A (en) Polyethylene composition