JPH0616694A - Reproduction of calcitonin - Google Patents

Reproduction of calcitonin

Info

Publication number
JPH0616694A
JPH0616694A JP4174236A JP17423692A JPH0616694A JP H0616694 A JPH0616694 A JP H0616694A JP 4174236 A JP4174236 A JP 4174236A JP 17423692 A JP17423692 A JP 17423692A JP H0616694 A JPH0616694 A JP H0616694A
Authority
JP
Japan
Prior art keywords
tbu
thr
ome
leu
protected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4174236A
Other languages
Japanese (ja)
Inventor
Haa Kooto Yotsuto
ヨット、ハー、コート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Pharmaceutical Co Ltd
Original Assignee
Sato Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Pharmaceutical Co Ltd filed Critical Sato Pharmaceutical Co Ltd
Priority to JP4174236A priority Critical patent/JPH0616694A/en
Publication of JPH0616694A publication Critical patent/JPH0616694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain calcitonin having high quality and useful as an agent for treating steoporosis, etc., in high yield by synthesizing plural osubfragments, condensing the subfragments to synthesize a plurality of protected salmon calcitonin fragments having specific amino acid sequences and condensing the obtained fragments. CONSTITUTION:A C-terminal amino acid having protected carboxyl group is condensed to a protected amino acid positioned next to the C-terminal and having protected alpha-amino group by a process for the liquid-phase synthesis of peptide, the alpha-amino-protecting group is removed, the product is made to react with the next amino-protected amino acid and the procedures are repeated. If necessary, a disulfide bond is formed in the molecule by oxidation to synthesize four kinds of protected salmon calcitonin fragments of formula I (Boc is t-butyloxycarbonyl; tBn is t-butyl), formula II (Fmoc is fluorenylmethyloxycarbonyl), formula III and formula IV, the four kinds of fragments are successively condensed with each other and the protecting groups are removed to obtain the objective calcitonin having high quality in high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カルシトニンの製造法
に関し、特に高品質で収率の高いカルシトニンの製造法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing calcitonin, and more particularly to a method for producing calcitonin with high quality and high yield.

【0002】医薬品グレードのサケカルシトニンに対す
る需要は世界的に拡大を続けている。現在の製造法は自
動化固相法に基づいているが、この方法には利点と欠点
がある。利点は迅速性である。欠点は、製造中、縮合工
程におけるエラーが分かりにくいということと、現在の
装置では反応容器の容量でバッチサイズが限定されると
いうことである(すなわち、生産単位を大きくするため
には、同時に稼働する装置の数を多くしなければならな
い)。この容量問題に対する一つの解決策は組換えDN
A法であろう。しかし、この方法には別の問題、すなわ
ち、純度の証明及び残存微生物由来の微量不純物の除去
等の問題がともなう。
Demand for pharmaceutical grade salmon calcitonin continues to grow worldwide. Although current manufacturing methods are based on automated solid-phase methods, this method has advantages and disadvantages. The advantage is speed. The disadvantages are that errors in the condensation process are difficult to see during production and that current equipment limits the batch size with the capacity of the reaction vessel (ie, to increase the production unit, run at the same time). You have to increase the number of devices). One solution to this capacity problem is recombinant DN
Probably method A. However, this method is accompanied by other problems such as proof of purity and removal of trace impurities derived from residual microorganisms.

【0003】これらの理由により、古くは4ー保護−フ
ラグメント液相合成法が開発されたが、この方法ではフ
ラグメントが5℃で保存されフラグメント縮合の原料と
して使用される。保護フラグメント法はヒトカルシトニ
ンの液相合成法に応用された(B. Kamber、H. Brueckne
r et al、Helv.Chim. Acta 、53、556〜564頁
及び同 P. Sieber、 B. Riniker et al、53、2135
〜2150頁)。従来のヒトカルシトニンの合成法は、
まずサブフラグメントを11箇調製し、それらをフラグ
メント縮合して6箇のフラグメントにし、またそれらフ
ラグメント間でフラグメント縮合を5回行って合成する
方法である。
For these reasons, a 4-protection-fragment liquid phase synthesis method has been developed for a long time. In this method, fragments are stored at 5 ° C. and used as a raw material for fragment condensation. The protected fragment method was applied to the liquid phase synthesis of human calcitonin (B. Kamber, H. Brueckne.
r et al, Helv. Chim. Acta, 53 , 556-564 and P. Sieber, B. Riniker et al, 53 , 2135.
~ 2150). The conventional synthetic method of human calcitonin is
First, 11 sub-fragments are prepared, they are fragment-condensed into 6 fragments, and fragment-condensation is performed 5 times between these fragments to synthesize.

【0004】[0004]

【発明の要約】サケカルシトニンに関する本発明によれ
ば、サブフラグメントを7箇調製し、それらをフラグメ
ント縮合して4 箇のフラグメントにし、またそれらフラ
グメント間でフラグメント縮合を3回行って合成するこ
とが出来ることが分かった。一般的には、フラグメント
縮合の回数が少ないほど最終製品のラセミ化の危険性が
少なくなり、従って活性損失も少なくなる。本発明によ
れば、従来より大きなバッチサイズで合成を行い、99
%以上の純度で高い酵素活性の製品が得られる。
SUMMARY OF THE INVENTION According to the present invention for salmon calcitonin, it is possible to prepare 7 sub-fragments, fragment-condense them into 4 fragments and synthesize them by performing fragment-condensation 3 times between the fragments. I knew I could do it. In general, the lower the number of fragment condensations, the less the risk of racemization of the final product and thus the less activity loss. According to the present invention, synthesis is performed with a larger batch size than the conventional method, and
A product with high enzyme activity is obtained with a purity of not less than%.

【0005】本発明の液相合成法には4箇の保護フラグ
メント(1ー10、11ー16、17ー23及び24ー
32)の調製が含まれるが、これらのフラグメントは5
℃で安定に貯蔵するとことができ、フラグメント縮合の
原料として使用することにより、ラセミ化を起こすこと
なく純度が99%以上で活性が約5500 IU/mgの製品
をより大きなバッチサイズで製造することが出来る。な
お、本発明で用いられた縮合反応は、E.Schroeder 及び
K.Luebke 著、The Peptides、第1巻(1965)、ア
カデミックプレス社刊(ニューヨーク)に記載された方
法に似た方法で行った。
The solution phase synthesis method of the present invention involves the preparation of four protected fragments (1-10, 11-16, 17-23 and 24-32), which are 5 fragments.
It can be stored stably at ℃ and can be used as a raw material for fragment condensation to produce a product with a purity of 99% or more and an activity of about 5500 IU / mg in a larger batch size without racemization. Can be done. Incidentally, the condensation reaction used in the present invention, E. Schroeder and
The procedure was similar to that described by K. Luebke, The Peptides, Volume 1 (1965), Academic Press, New York.

【0006】以下に具体例を挙げながら本発明を説明す
る。 1.保護フラグメント(1−10)の調製[C(Boc-Cys-
Ser(tBu)-Asn-Leu-Ser(tBu)-Thr(tBu)-Cys)-Val-Leu-Gl
y-OH] 図1は合成経路を図示したものである。サブフラグメント(1−4) :PyBOP 試薬を使って Z-A
sn-OH とH-Leu-OMe ・HCl を縮合させて Z-Asn-Leu-OMe
とし、これを接触還元でZ 基を脱保護して H- Asn-Leu-
OMe ・HCl とする。次にこのジペプチドに Z-Ser(tBu)-
OH を反応させてZ-Ser(tBu)-Asn-Leu-OMe とし、 これを
接触還元でZ 基を除き、 H-Ser(tBu)-Asn-Leu-OMe とす
る。更にこのトリペプチドを Boc-Cys(Trt)-OHと縮合さ
せてBoc-Cys(Trt)-Ser(tBu)-Asn-Leu-OMe とする。この
保護テトラペプチドをヒドラジン水和物で処理して Boc
-Cys(Trt)-Ser(tBu)-Asn-Leu-N2H3 とする。サブフラグメント( 5−10) :Z-Leu-OHとH-Gly-OMe
・HCl を縮合させて Z-Leu-Gly-OMe とし、 これを接触
還元によりH-Leu-Gly-OMe ・HCl を得る。次にこのジペ
プチドに Z-Val-OH を縮合させてZ-Val-Leu-Gly-OMe と
し、これを接触還元により H-Val-Leu-Gly-OMe・HCl と
する。更にこのトリペプチドに Boc-Cys(Acm)-OHを縮合
させて Boc-Cys(Acm)-Val-Leu-Gly-OMe とする。TFC を
使って Boc基を除去して H-Cys(Acm)-Val-Leu-Gly-OMe
・TFA を得る。
The present invention will be described below with reference to specific examples. 1. Preparation of protected fragment (1-10) [C (Boc-Cys-
Ser (tBu) -Asn-Leu-Ser (tBu) -Thr (tBu) -Cys) -Val-Leu-Gl
y-OH] FIG. 1 illustrates a synthetic route. Subfragment (1-4) : ZA using PyBOP reagent
Z-Asn-Leu-OMe is condensed by condensing sn-OH and H-Leu-OMe.HCl.
And deprotecting the Z group by catalytic reduction to give H- Asn-Leu-
Use OMe and HCl. Next, add Z-Ser (tBu)-to this dipeptide.
OH is reacted to form Z-Ser (tBu) -Asn-Leu-OMe, which is removed by catalytic reduction to remove the Z group to form H-Ser (tBu) -Asn-Leu-OMe. Further, this tripeptide is condensed with Boc-Cys (Trt) -OH to give Boc-Cys (Trt) -Ser (tBu) -Asn-Leu-OMe. This protected tetrapeptide was treated with hydrazine hydrate to give Boc
And -Cys (Trt) -Ser (tBu) -Asn-Leu-N 2 H 3. Subfragment (5-10) : Z-Leu-OH and H-Gly-OMe
-HCI is condensed to Z-Leu-Gly-OMe-H, which is catalytically reduced to obtain H-Leu-Gly-OMe-HCl. Next, Z-Val-OH is condensed with this dipeptide to give Z-Val-Leu-Gly-OMe, which is catalytically reduced to H-Val-Leu-Gly-OMe.HCl. Further, Boc-Cys (Acm) -OH is condensed with this tripeptide to give Boc-Cys (Acm) -Val-Leu-Gly-OMe. H-Cys (Acm) -Val-Leu-Gly-OMe after removal of Boc group using TFC
・ Get TFA.

【0007】次に、Fmoc-Thr(tBu)-OHを上記保護テトラ
ペプチドと反応させて Fmoc-Thr(tBu)-Cys(Acm)-Val-Le
u-Gly-OMeとする。ジエチルアミンを使って塩基に不安
定な Fmoc を脱保護して H-Thr(tBu)-Cys(Acm)-Val-Leu
-Gly-OMeを得る。Fmoc-Ser(tBu)-OHを上記保護ペンタペ
プチドと縮合させて、Fmoc-Ser(tBu)-Thr(tBu)-Cys(Ac
m)-Val-Leu-Gly-OMe とする。ジエチルアミンを使って
塩基に不安定なFmocを脱保護して H-Ser(tBu)-Thr(tBu)
-Cys(Acm)-Val-Leu-Gly-OMe を得る。
Next, Fmoc-Thr (tBu) -OH is reacted with the above protected tetrapeptide to produce Fmoc-Thr (tBu) -Cys (Acm) -Val-Le.
u-Gly-OMe. H-Thr (tBu) -Cys (Acm) -Val-Leu was deprotected using diethylamine to deprotect the base-labile Fmoc.
-Get Gly-OMe. Fmoc-Ser (tBu) -OH was condensed with the protected pentapeptide to give Fmoc-Ser (tBu) -Thr (tBu) -Cys (Ac
m) -Val-Leu-Gly-OMe. Deprotection of the base-labile Fmoc with diethylamine to remove H-Ser (tBu) -Thr (tBu)
-Cys (Acm) -Val-Leu-Gly-OMe is obtained.

【0008】上記2つのサブフラグメントをアジドカッ
プリングにより縮合させて、デカペプチド Boc-Cys(Tr
t)-Ser(tBu)-Asn-Leu-Ser(tBu)-Thr(tBu)-Cys(Acm)-Val
-Leu-Gly-OMe とする。C-末端のメチルエステルをトリ
フロロエタノール中、カセイソーダで鹸化して除去す
る。この保護デカペプチドをI2を用いて環化(ジスルフ
ィド結合の形式)を行い
The above two subfragments are condensed by azide coupling to give the decapeptide Boc-Cys (Tr
t) -Ser (tBu) -Asn-Leu-Ser (tBu) -Thr (tBu) -Cys (Acm) -Val
-Leu-Gly-OMe. The C-terminal methyl ester is saponified and removed with caustic soda in trifluoroethanol. Cyclization of this protected decapeptide with I 2 (in the form of disulfide bonds)

【0009】[0009]

【化2】 とする。純粋で均質な化合物はシリカゲルクロマトグラ
フィ−により得られる。
[Chemical 2] And The pure and homogeneous compound is obtained by silica gel chromatography.

【0010】[0010]

【表1】 [Table 1]

【0011】2.保護フラグメント(11−16)の調
製[Fmoc-Lys(BOC)-Leu-Ser(tBu)-Gln-Glu(OtBu)-Leu-O
H] 合成経路を図2に示す。Z-Glu(OtBu) と H-Leu-OMe・HC
l を縮合させてZ-Glu(OtBu)-Leu-OMeとし、これを接触
還元して H-Glu(OtBu)-Leu-OMe・HCl を得る。次にこの
ジペプチドを縮合剤として PyBOPを使ってZ-Gln-OHと縮
合させて、Z-Gln-Glu(OtBu)-Leu-OMe とし、これを接触
還元して H-Gln-Glu(OtBu)-Leu-OMe・HCl を得る。更
に、上記トリペプチドと Z-Ser(tBu)-OHを縮合させて Z
-Ser(tBu)-Gln-Glu(OtBu)-Leu-OMe とし、これを接触還
元して H-Ser(tBu)-Gln-Glu (OtBu)-Leu-OMe・HCl とす
る。
2. Preparation of protected fragment (11-16) [Fmoc-Lys (BOC) -Leu-Ser (tBu) -Gln-Glu (OtBu) -Leu-O
H] synthetic route is shown in FIG. Z-Glu (OtBu) and H-Leu-OMe ・ HC
l is condensed to Z-Glu (OtBu) -Leu-OMe, which is catalytically reduced to give H-Glu (OtBu) -Leu-OMe.HCl. This dipeptide was then condensed with Z-Gln-OH using PyBOP as a condensing agent to give Z-Gln-Glu (OtBu) -Leu-OMe, which was catalytically reduced to give H-Gln-Glu (OtBu). -Leu-OMe.HCl is obtained. Further, the above tripeptide is condensed with Z-Ser (tBu) -OH to form Z
-Ser (tBu) -Gln-Glu (OtBu) -Leu-OMe is catalytically reduced to H-Ser (tBu) -Gln-Glu (OtBu) -Leu-OMe.HCl.

【0012】Z-Leu-OHを上記テトラペプチドと縮合させ
て Z-Leu-Ser(tBu)-Gln-Glu(OtBu)-Leu-OMe とする。次
いでメチルエステルを加水分解により除去し、アミノ保
護基を接触還元により除去して H-Leu-Ser(tBu)-Gln-Gl
u(OtBu)-Leu-OHとする。このペンタペプチドのナトリウ
ム塩を Fmoc-Lys(BOC)-OSuと反応させて中和後、ヘプタ
ペプチド Fmoc-Lys(BOC)-Leu-Ser(tBu)-Gln-Glu(OtBu)-
Leu-OHとする。
Z-Leu-OH is condensed with the above tetrapeptide to give Z-Leu-Ser (tBu) -Gln-Glu (OtBu) -Leu-OMe. The methyl ester was then removed by hydrolysis and the amino protecting group was removed by catalytic reduction to remove H-Leu-Ser (tBu) -Gln-Gl.
u (OtBu) -Leu-OH. The sodium salt of this pentapeptide is reacted with Fmoc-Lys (BOC) -OSu to neutralize it, and then the heptapeptide Fmoc-Lys (BOC) -Leu-Ser (tBu) -Gln-Glu (OtBu)-
Leu-OH.

【0013】 表2.11−16工程のデータ 構 成 フ ラ グ メ ン ト [α]D 純度(%) 収率(%) Z-Glu(OtBu)-Leu-OMe −22.6° 65 (Videl-Gomez et al, J.H.Chem. 12:273, 1975 ) H-Glu(OtBu)-Leu-OMe ・HCl −4.3 99< 82 Z-Gln-Glu(OtBu)-Leu-OMe −39 99< 80 H-Gln-Glu(OtBu)-Leu-OMe ・HCl −29 95 Z-Ser(tBu)-Gln-Glu(OtBu)- −32.8 99< 91 Leu-OMe H-Ser(tBu)-Gln-Glu(OtBu)- −36.8 99.6 100 Leu-OMe ・HCl Z-Leu-Ser(tBu)-Gln-Glu(OtBu)- 100 88 Leu-OMe Z-Leu-Ser(tBu)-Gln-Glu(OtBu)- 98 Leu-OH H-Leu-Ser(tBu)-Gln-Glu(OtBu)- 80 Leu-OH・HCl Fmoc-Lys(Boc)-Leu-Ser(tBu)-Gln-Glu(OtBu)-Leu-OH [α]25 D : −12.2° 純度 : 98% 水分含有量: 0.62% *純度は薄相クロマトグラフィ−により求めた。Table 2.11-16 data structure of process Fragment [α] D Purity (%) Yield (%) Z-Glu (OtBu) -Leu-OMe −22.6 ° 65 ( Videl-Gomez et al, JHChem. 12: 273, 1975) H-Glu (OtBu) -Leu-OMe.HCl-4.3 99 <82 Z-Gln-Glu (OtBu) -Leu-OMe-3999 <80. H-Gln-Glu (OtBu) -Leu-OMe.HCl -2995 Z-Ser (tBu) -Gln-Glu (OtBu)-32.8 99 <91 Leu-OMe H-Ser (tBu) -Gln- Glu (OtBu)-36.8 99.6 100 Leu-OMe-HCl Z-Leu-Ser (tBu) -Gln-Glu (OtBu)-100 88 Leu-OMe Z-Leu-Ser (tBu) -Gln- Glu (OtBu)-98 Leu-OH H-Leu-Ser (tBu) -Gln-Glu (OtBu) -80 Leu-OH.HCl Fmoc-Lys (Boc) -Leu-Ser (tBu) -Gln-Glu (OtBu ) -Leu-OH [α] 25 D : -12.2 ° Purity: 98% Moisture content: 0.62% * Purity was determined by thin-layer chromatography.

【0014】3.保護フラグメント(17−23)の調
製(His-Lys-Leu-Gln-Thr-Tyr-Pro-OH) 合成経路を図3に示す。サブフラグメント(19−23) :Z-Tyr(tBu)をH-Pro-
OMe ・HCl と縮合させてジペプチド Z-Tyr(tBu)-Pro-OM
e とし、接触還元により H-Tyr(tBu)-Pro-OMe ・HCl を
得る。このジペプチドに Z-Thr(tBu)-OHを反応させて Z
-Thr(tBu)-Tyr(tBu)-Pro-OMe とし、これの接触還元に
より H-Thr(tBu)-Tyr(tBu)-Pro-OMe・HCl を得る。
3. Preparation of protected fragment (17-23) (His-Lys-Leu-Gln-Thr-Tyr-Pro-OH) The synthetic route is shown in FIG. Subfragment (19-23) : Z-Tyr (tBu) was added to H-Pro-
Dipeptide Z-Tyr (tBu) -Pro-OM condensed with OMe ・ HCl
Then, H-Tyr (tBu) -Pro-OMe.HCl is obtained by catalytic reduction. This dipeptide is reacted with Z-Thr (tBu) -OH to give Z
-Thr (tBu) -Tyr (tBu) -Pro-OMe and catalytic reduction of this give H-Thr (tBu) -Tyr (tBu) -Pro-OMe.HCl.

【0015】更に、上記トリペプチドを縮合剤として P
yBOPを用いて Z-Gln-OH と縮合させて Z-Gln-Thr(tBu)-
Tyr(tBu)-Pro-OMeとし、これの接触還元により H-Gln-T
hr(tBu)-Tyr(tBu)-Pro-OMe・HCl を得る。
Further, the above tripeptide is used as a condensing agent in P
Condensed with Z-Gln-OH using yBOP to produce Z-Gln-Thr (tBu)-
Tyr (tBu) -Pro-OMe was prepared by catalytic reduction of H-Gln-T
Obtain hr (tBu) -Tyr (tBu) -Pro-OMe.HCl.

【0016】次に、上記テトラペプチドに Z-Leu-OH を
反応させて Z-Leu-Gln-Thr(tBu)-Tyr(tBu)-Pro-OMeとす
る。メチルエステルを加水分解で除去し、次いで接触還
元によりアミノ保護基を除去して H-Leu-Gln-Thr(tBu)-
Tyr(tBu)-Pro-OH とする。サブフラグメント(17−18) :PyBOP 試薬を使って
Z-His(Bum) と H-Lys(BOC)-OMe ・HCl を縮合させて Z
-His(Bum)-Lys(Boc)-OMeとする。これをメタノ−ル中で
ヒドラジン水和物で処理してヒドラジド化合物とし、こ
れをアジド化して上記サブフラグメント(19−23)
と反応させて Z-His(Bum)-Lys(Boc)-Leu-Gln-Thr(tBu)-
Tyr(tBu)-Pro-OHを得る。
Next, Z-Leu-OH is reacted with the above tetrapeptide to obtain Z-Leu-Gln-Thr (tBu) -Tyr (tBu) -Pro-OMe. The methyl ester was removed by hydrolysis and then the amino protecting group was removed by catalytic reduction to remove H-Leu-Gln-Thr (tBu)-
Tyr (tBu) -Pro-OH. Subfragment (17-18) : Using PyBOP reagent
Z-His (Bum) and H-Lys (BOC) -OMe
-His (Bum) -Lys (Boc) -OMe. This was treated with hydrazine hydrate in methanol to give a hydrazide compound, which was then azidated to form the above subfragment (19-23).
Z-His (Bum) -Lys (Boc) -Leu-Gln-Thr (tBu)-
Obtain Tyr (tBu) -Pro-OH.

【0017】 表3 17ー23工程のデータ 構 成 フ ラ グ メ ン ト 収率(%) Z-Tyr(tBu)-Pro-OMe 98 H-Tyr(tBu)-Pro-OMe・HCl 93 Z-Thr(tBu)-Tyr(tBu)-Pro-OMe 96 H-Thr(tBu)-Tyr(tBu)-Pro-OMe ・HCl 100 Z-Gln-Thr(tBu)-Tyr(tBu)-Pro-OMe 74 H-Gln-Thr(tBu)-Tyr(tBu)-Pro-OMe・HCl 98 Z-Leu-Gln-Thr(tBu)-Tyr(tBu)-Pro-OMe 91 H-Leu-Gln-Thr(tBu)-Tyr(tBu)-Pro-OH・AcOH 100 Z-His(Bum)-Lys(Boc)-OMe 100 Z-His(Bum)-Lys(Boc)-N2H3 91 Z-His(Bum)-Lys(BOC)-Leu-Gln-Thr(Bu)- 58 Tyr(tBu)-Pro-OH [α]25 D : −41.4° 純度(薄相クロマトグラフィ−) : 95%[0017] Table 3 17 over 23 steps of the data configuration Flag e n t Yield (%) Z-Tyr (tBu ) -Pro-OMe 98 H-Tyr (tBu) -Pro-OMe · HCl 93 Z- Thr (tBu) -Tyr (tBu) -Pro-OMe 96 H-Thr (tBu) -Tyr (tBu) -Pro-OMe ・ HCl 100 Z-Gln-Thr (tBu) -Tyr (tBu) -Pro-OMe 74 H-Gln-Thr (tBu) -Tyr (tBu) -Pro-OMe.HCl 98 Z-Leu-Gln-Thr (tBu) -Tyr (tBu) -Pro-OMe 91 H-Leu-Gln-Thr (tBu) -Tyr (tBu) -Pro-OH / AcOH 100 Z-His (Bum) -Lys (Boc) -OMe 100 Z-His (Bum) -Lys (Boc) -N 2 H 3 91 Z-His (Bum)- Lys (BOC) -Leu-Gln-Thr (Bu)-58 Tyr (tBu) -Pro-OH [α] 25 D : -41.4 ° Purity (thin-phase chromatography): 95%

【0018】4.保護フラグメント(24−32)の調
製(Arg-Thr-Asn-Thr-Gly-Ser-Gly-Thr-Pro-NH2) 合成経路を図4に示す。サブフラグメント29−32 :活性エステル Z-Gly-OSu
をH-Thr(tBu)-OH と反応させてジペプチド Z-Gly-Thr(t
Bu)-OH とし、結晶化によりシクロヘキシルアンモニウ
ム塩として単離する。単離したジペプチドを接触還元し
て H-Gly-Thr(tBu)-OHとする。更に、これを活性エステ
ル Fmoc-Ser(tBu)-OSu と反応させてトリペプチド Fmoc
-Ser(tBu)-Gly-Thr(tBu)-OH とする。
4. Preparation of protection fragment (24-32) to (Arg-Thr-Asn-Thr -Gly-Ser-Gly-Thr-Pro-NH 2) synthesis pathway shown in FIG. Subfragment 29-32 : active ester Z-Gly-OSu
Reacts with H-Thr (tBu) -OH to dipeptide Z-Gly-Thr (t
Bu) -OH and isolated as a cyclohexyl ammonium salt by crystallization. The isolated dipeptide is catalytically reduced to H-Gly-Thr (tBu) -OH. Furthermore, this was reacted with the active ester Fmoc-Ser (tBu) -OSu to give the tripeptide Fmoc
-Ser (tBu) -Gly-Thr (tBu) -OH.

【0019】次に、縮合剤として DCCと HOBT を用いて
このトリペプチドとH-Pro-NH2 を縮合させて Fmoc-Ser
(tBu)-Gly-Thr(tBu)-Pro-NH2 とする。更に、これをジ
アミンで処理して Fmoc 基を除去して H-Ser(tBu)-Gly-
Thr(tBu)-Pro-NH2とする。サブフラグメント25−28 :Z-Thr(tBu)-OH をH-Gly-
OMe と反応させてZ-Thr(tBu)-Gly-OMe とし、これを接
触還元して H-Thr(tBu)-Gly-OMe ・HCl を得る。このジ
ペプチドを Z-Asn-ONpと反応させて Z-Asn-Thr(tBu)-Gl
y-OMe とし、これの接触還元により H-Asn-Thr(tBu)-Gl
y-OMe ・HCl を得る。
Next, using DCC and HOBT as a condensing agent, this tripeptide is condensed with H-Pro-NH 2 to produce Fmoc-Ser.
(tBu) -Gly-Thr (tBu) -Pro-NH 2 . Further, this was treated with diamine to remove the Fmoc group, and H-Ser (tBu) -Gly-
Thr (tBu) -Pro-NH 2 . Subfragment 25-28 : Z-Thr (tBu) -OH to H-Gly-
It is reacted with OMe to give Z-Thr (tBu) -Gly-OMe, which is catalytically reduced to give H-Thr (tBu) -Gly-OMe.HCl. This dipeptide was reacted with Z-Asn-ONp to produce Z-Asn-Thr (tBu) -Gl.
y-OMe and catalytic reduction of H-Asn-Thr (tBu) -Gl
Obtain y-OMe.HCl.

【0020】更に、Z-Thr(tBu)-OH を上記トリペプチド
と反応させて Z-Thr(tBu)-Asn-Thr(tBu)-Gly-OMe とす
る。このテトラペプチドメチルエステルを加水分解する
ことにより Z-Thr(tBu)-Asn-Thr(tBu)-Gly-OH を得る。
Further, Z-Thr (tBu) -OH is reacted with the above tripeptide to give Z-Thr (tBu) -Asn-Thr (tBu) -Gly-OMe. Z-Thr (tBu) -Asn-Thr (tBu) -Gly-OH is obtained by hydrolyzing the tetrapeptide methyl ester.

【0021】サブフラグメント25ー28と29ー32
を PyBOP試薬を用いて縮合させてオクタペプチド Z-Thr
(tBu)-Asn-Thr(tBu)-Gly-Ser(tBu)-Gly-Thr(tBu)-Pro-N
H2とし、これの接触還元により H-Thr(tBu)-Asn-Thr(tB
u)-Gly-Ser(tBu)-Gly-Thr(tBu)-Pro-NH2 とする。
Subfragments 25-28 and 29-32
Was condensed with PyBOP reagent to give octapeptide Z-Thr
(tBu) -Asn-Thr (tBu) -Gly-Ser (tBu) -Gly-Thr (tBu) -Pro-N
H 2 and H-Thr (tBu) -Asn-Thr (tB
u) -Gly-Ser (tBu) -Gly-Thr (tBu) -Pro-NH 2 .

【0022】縮合剤としてDCC/HOBTを用いて Z
-Arg(Pmc)-OHを上記オクタペプチドと縮合させて Z-Arg
(Pmc)-Thr(tBu)-Asn-Thr(tBu)-Gly-Ser(tBu)-Gly-Thr(t
Bu)-Pro-NH2・HCl とする。
Using DCC / HOBT as the condensing agent Z
-Arg (Pmc) -OH is condensed with the above octapeptide to give Z-Arg
(Pmc) -Thr (tBu) -Asn-Thr (tBu) -Gly-Ser (tBu) -Gly-Thr (t
Bu) -Pro-NH 2 · HCl.

【0023】 表4 24ー32工程のデータ 構 成 フ ラ グ メ ン ト 収率(%) Z-Gly-Thr(tBu)-OH ・CHA 83 H-Gly-Thr(tBu)-OH ・H2O 91 Fmoc-Ser(tBu)-OSu 81 Fmoc-Ser(tBu)-Gly-Thr(tBu)-OH 100 Fmoc-Ser(tBu)-Gly-Thr(tBu)-Pro-NH2 98 H-Ser(tBu)-Gly-Thr(tBu)-Pro-NH2 96 Z-Thr(tBu)-Gly-OMe 90 H-Thr(tBu)-Gly-OMe・HCl 100 Z-Asn-Thr(tBu)-Gly-OMe 98 H-Asn-Thr(tBu)-Gly-OMe・HCl 91 Z-Thr(tBu)-Asn-Thr(tBu)-Gly-OMe 89 Z-Thr(tBu)-Asn-Thr(tBu)-Gly-OH 93 Z-Thr(tBu)-Asn-Thr(tBu)-Gly-Ser(tBu)- 86 Gly-Thr(tBu)-Pro-NH2 H-Thr(tBu)-Asn-Thr(tBu)-Gly-Ser(tBu)- 100 Gly-Thr(tBu)-Pro-NH2・HCl Z-Arg(Pmc)-Thr(tBu)-Asn-Thr(tBu)-Gly- 86 Ser(tBu)-Gly-Thr(tBu)-Pro-NH2 H-Arg(Pmc)-Thr(tBu)-Asn-Thr(tBu)-Gly- 96 Ser(tBu)-Gly-Thr(tBu)-Pro-NH2・HCl フラグメント(29−32) 白色粉末、170−190℃で分解 [α]25 D :−8.0°±1.5 元素分析により確認 純度/HPLC(AUC):95%フラグメント(24−32) 融点:191℃(分解をともなう) [α]25 D =−4.8(c=1% MeOH) 元素分析により確認 純度:95% 水分:1.1% *純度は薄相クロマトグラフィにより求めた。[0023] Table 4 24 over 32 data configuration Flag main emission step preparative yield (%) Z-Gly-Thr (tBu) -OH · CHA 83 H-Gly-Thr (tBu) -OH · H 2 O 91 Fmoc-Ser (tBu) -OSu 81 Fmoc-Ser (tBu) -Gly-Thr (tBu) -OH 100 Fmoc-Ser (tBu) -Gly-Thr (tBu) -Pro-NH 2 98 H-Ser ( tBu) -Gly-Thr (tBu) -Pro-NH 2 96 Z-Thr (tBu) -Gly-OMe 90 H-Thr (tBu) -Gly-OMe · HCl 100 Z-Asn-Thr (tBu) -Gly- OMe 98 H-Asn-Thr (tBu) -Gly-OMe.HCl 91 Z-Thr (tBu) -Asn-Thr (tBu) -Gly-OMe 89 Z-Thr (tBu) -Asn-Thr (tBu) -Gly -OH 93 Z-Thr (tBu) -Asn-Thr (tBu) -Gly-Ser (tBu)-86 Gly-Thr (tBu) -Pro-NH 2 H-Thr (tBu) -Asn-Thr (tBu)- Gly-Ser (tBu)-100 Gly-Thr (tBu) -Pro-NH 2 · HCl Z-Arg (Pmc) -Thr (tBu) -Asn-Thr (tBu) -Gly- 86 Ser (tBu) -Gly- Thr (tBu) -Pro-NH 2 H-Arg (Pmc) -Thr (tBu) -Asn-Thr (tBu) -Gly- 96 Ser (tBu) -Gly-Thr (tBu) -Pro-NH 2 HCl fragment (29-32) white powder, decomposing at 170-190 ℃ [α] 25 D: -8.0 confirmed by ° ± 1.5 elemental analysis purity / HP C (AUC): 95% fragments (24-32) mp: 191 ° C. (with decomposition) [α] 25 D = -4.8 (c = 1% MeOH) confirmed by elemental analysis purity: 95% Moisture: 1 .1% * Purity was determined by thin layer chromatography.

【0024】5.フラグメント縮合によるサケカルシト
ニンの生成 基本縮合経路:
5. Production of salmon calcitonin by fragment condensation Basic condensation pathway:

【0025】[0025]

【表2】 [Table 2]

【0026】保護(1−32)の分析デ−タ: 融点:170℃(分解をともなう) [α]25 D :−46.7(c=1% TFE) 元素分析により確認 純度:93%(純度は薄相クロマトグラフィにより求め
た) 水分:1.74% (1−32)サケカルシトニンの分析データ: 融点:220℃< [α]25 D :−18.2(c=1% TFE) 元素分析により確認 純度:99%(純度は薄相クロマトグラフィにより求め
た) 水分:1.32% 英国局方(1988)による活性は約5500IU/m
gであった。
Analysis data of protection (1-32): Melting point: 170 ° C. (with decomposition) [α] 25 D : -46.7 (c = 1% TFE) Confirmed by elemental analysis Purity: 93% ( Purity was determined by thin-layer chromatography) Moisture content: 1.74% Analytical data for (1-32) salmon calcitonin: Melting point: 220 ° C. <[α] 25 D : -18.2 (c = 1% TFE) Elemental analysis Confirmed by: Purity: 99% (Purity was determined by thin phase chromatography) Moisture: 1.32% Activity according to British Pharmacopoeia (1988) is about 5500 IU / m
It was g.

【0027】実施例保護(1−32)カルシトニンの調製 (サケカルシトニ
ン=SCT) 環化Boc(1−32)−SCT−OH15.7g(1
2.4ミリモル)とH−(11−32)−SCT−NH
239.0g(11.3ミリモル)を、容量2リットル
の丸底フラスコ中で約0℃に氷冷された400mlのジ
メチルフォルムアミド(分析グレード)に溶解し、0℃
に維持した。この溶液にEDPA2.3ml(13.5
ミリモル)、HOBT2.1g(13.5ミリモル)及
びTBTU4.3g(13.5ミリモル)添加した。充
分撹拌した後、フラスコを1晩放置して室温まで戻し
た。反応を薄層クロマトグラフィ−で確認したところ、
H−(11−32)−SCT−NH2 スポットは認めら
れなかった。次に、ロータリーエバポレーターで減圧下
濃縮して容積を減少させた後、残留分を1時間半かけて
室温まで戻し、水素ガス300mlで処理した後乾燥し
た。固形分をフィルターで漉取して、水で4回洗浄し
た。このようにして得た化合物
Example Preparation of protected (1-32) calcitonin (salmon calcitonin = SCT) Cyclized Boc (1-32) -SCT-OH 15.7 g (1
2.4 mmol) and H- (11-32) -SCT-NH
239.0 g (11.3 mmol) were dissolved in 400 ml of dimethylformamide (analytical grade) ice-cooled to approx. 0 ° C. in a 2 liter round bottom flask and 0 ° C.
Maintained at. 2.3 ml of EDPA (13.5
HOBT, 2.1 g (13.5 mmol) and TBTU, 4.3 g (13.5 mmol). After stirring sufficiently, the flask was left overnight to return to room temperature. When the reaction was confirmed by thin layer chromatography,
H- (11-32) -SCT-NH 2 spot was observed. Next, after concentrating under reduced pressure with a rotary evaporator to reduce the volume, the residue was returned to room temperature over one and a half hours, treated with 300 ml of hydrogen gas, and then dried. The solid content was filtered off and washed 4 times with water. Compound thus obtained

【0028】[0028]

【化3】 を高真空下、35℃に加温して塩化カルシウムで乾燥し
た。収量は54.0g、収率は100%であった。
[Chemical 3] Was heated to 35 ° C. under high vacuum and dried over calcium chloride. The yield was 54.0 g, and the yield was 100%.

【0029】薄層クロマトグラフィ−の分析により、主
スポットがRf0.5に認められ、その他に痕跡量のP
yBOPの分解物と未反応のBOC−(1−32)−S
CT−OHが認められた。 薄層クロマトグラフィ−の
相展開はポーリー試薬を用いて行い、紫外線で検出し
た。
The main spot was observed at Rf0.5 by thin layer chromatography analysis, and in addition, trace amount of P was observed.
BOC- (1-32) -S unreacted with yBOP degradation products
CT-OH was observed. The phase development of thin layer chromatography was carried out using a Poly reagent and was detected by ultraviolet rays.

【0030】(1−32)−SCT−Acの精製 凍結乾燥した未精製SCT6.0gを中圧逆相液体クロ
マトグラフィー(MPLC)により室温下で精製を行っ
た。展開溶媒は、アセトニトリル、水、酢酸及び85%
燐酸を用いた。
Purification of (1-32) -SCT-Ac 6.0 g of freeze-dried crude SCT was purified by medium pressure reverse phase liquid chromatography (MPLC) at room temperature. Developing solvent is acetonitrile, water, acetic acid and 85%
Phosphoric acid was used.

【0031】使用MPLCカラムは、800x80m
m、充填体:Vydac C18、20−30μ、広細
孔であった。溶離液は、0.08M燐酸(トリエチルア
ミンでpH2.25に調整)とアセトニトリルの74:
26(v/v)の混合物を用いた。
The MPLC column used is 800 × 80 m
m, filler: Vydac C18, 20-30 μ, wide pores. The eluent was 0.08M phosphoric acid (pH adjusted to 2.25 with triethylamine) and acetonitrile 74:
A mixture of 26 (v / v) was used.

【図面の簡単な説明】[Brief description of drawings]

【図1】保護フラグメント(1−10)の合成経路を図
示したものである。
FIG. 1 depicts a synthetic route to the protected fragment (1-10).

【図2】保護フラグメント(11−16)の合成経路を
図示したものである。
FIG. 2 depicts a synthetic route to the protected fragment (11-16).

【図3】保護フラグメント(17−23)の合成経路を
図示したものである。
FIG. 3 depicts a synthetic route to the protected fragment (17-23).

【図4】保護フラグメント(23ー32)の合成経路を
図示したものである。
FIG. 4 depicts a synthetic route for protected fragments (23-32).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07K 7/36 7306−4H // C07K 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C07K 7/36 7306-4H // C07K 9/00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】サケカルシトニンの4個の保護フラグメン
ト 【化1】 を製造する方法。
1. Four protected fragments of salmon calcitonin. A method of manufacturing.
【請求項2】上記4個のフラグメントを縮合させて保護
サケカルシトニンを製造する、請求項1に関わる方法。
2. The method according to claim 1, wherein the four fragments are condensed to produce a protected salmon calcitonin.
【請求項3】上記保護サケカルシトニンの保護基を外し
て、脱保護、環化(1ー32)サケカルシトニンを製造
する、請求項2に関わる方法。
3. The method according to claim 2, wherein the protecting group of the protected salmon calcitonin is removed to produce a deprotected, cyclized (1-32) salmon calcitonin.
【請求項4】骨粗しょう症に有効な薬理活性を有する物
質を製造する、請求項1〜3に関わる方法。
4. The method according to any one of claims 1 to 3, wherein a substance having a pharmacological activity effective for osteoporosis is produced.
【請求項5】ページェット病に有効な薬理活性を有する
物質を製造する、請求項1〜3に関わる方法。
5. A method according to claims 1 to 3 for producing a substance having a pharmacological activity effective against Paget's disease.
【請求項6】カルシウム血症に有効な薬理活性を有する
物質を製造する、請求項1〜3に関わる方法。
6. The method according to any one of claims 1 to 3, wherein a substance having a pharmacological activity effective for calcemia is produced.
【請求項7】骨破壊性腫瘍に有効な薬理活性を有する物
質を製造する、請求項1〜3に関わる方法。
7. The method according to any one of claims 1 to 3, wherein a substance having a pharmacological activity effective against bone-destructive tumor is produced.
JP4174236A 1992-07-01 1992-07-01 Reproduction of calcitonin Pending JPH0616694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4174236A JPH0616694A (en) 1992-07-01 1992-07-01 Reproduction of calcitonin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4174236A JPH0616694A (en) 1992-07-01 1992-07-01 Reproduction of calcitonin

Publications (1)

Publication Number Publication Date
JPH0616694A true JPH0616694A (en) 1994-01-25

Family

ID=15975104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4174236A Pending JPH0616694A (en) 1992-07-01 1992-07-01 Reproduction of calcitonin

Country Status (1)

Country Link
JP (1) JPH0616694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014189A1 (en) * 1997-09-18 1999-03-25 Hyundai Pharm. Ind. Co., Ltd. Amino acid derivatives
JP2000504676A (en) * 1996-02-09 2000-04-18 エフ・ホフマン―ラ ロシュ アーゲー Synthesis of VIP analog

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504676A (en) * 1996-02-09 2000-04-18 エフ・ホフマン―ラ ロシュ アーゲー Synthesis of VIP analog
WO1999014189A1 (en) * 1997-09-18 1999-03-25 Hyundai Pharm. Ind. Co., Ltd. Amino acid derivatives

Similar Documents

Publication Publication Date Title
SU1651787A3 (en) Method for preparation of polypeptide with properties of factor release of growth hormone
CA1065856A (en) Derivatives of salmon calcitonin
Nakagawa et al. The use of polymer-bound oximes for the synthesis of large peptides usable in segment condensation: Synthesis of a 44 amino acid amphiphilic peptide model of apolipoprotein A-1
Romanovskis et al. Preparation of head‐to‐tail cyclic peptides via side‐chain attachment: implications for library synthesis
WO2005087794A1 (en) Process for octreotide synthesis
CN113748125A (en) Glucagon-like peptide-1 (GLP-1) receptor agonists and analogs thereof
EP0953577B1 (en) Procedure for obtaining the somatostatin analog, octreotide
EP0879246B1 (en) Synthesis of vip analog
JP2003519629A (en) Use of non-peptide constrained mimetics of dipeptides or tripeptides in the synthesis of oligomers and artificial proteins and polypeptides
CN113121673B (en) Method for preparing elcatonin by solid-liquid combination method
US20220033440A1 (en) An improved process for the preparation of plecanatide
EP0452514B1 (en) Peptide and process for preparing cyclic peptide
US6673769B2 (en) Lanthionine bridged peptides
JPH0616694A (en) Reproduction of calcitonin
Mihara et al. Synthesis of the 60 amino acid homeo domain and smaller fragments of the Drosophila gene regulatory protein Antennapedia by a segment synthesis-condensation approach
EP0181121B1 (en) Novel polypeptide and process for producing the same
US6448031B1 (en) Process for producing LH-RH derivatives
Kitagawa et al. Facile solid-phase synthesis of sulfated tyrosine-containing peptides: Part II. Total synthesis of human big gastrin-II and its C-terminal glycine-extended peptide (G34-Gly sulfate) by the solid-phase segment condensation approach
CN113512105B (en) Preparation method of elcatonin
JPH06336496A (en) Cyclic hexapeptide, its production and production of cyclic peptide
ARBO et al. Solid‐phase synthesis of protected peptides using new cobalt (III) ammine linkers
CN115433266A (en) Solid-phase synthesis method of teriparatide
CN116199765A (en) Method for synthesizing thymus by using modified dipeptide
JPS63258490A (en) Calcitonin gene-related peptide derivative
JPH0680691A (en) Production of cysteine-containing peptide